
Department of Computer Science,
University of Otago

Technical Report OUCS-2005-05

The Insertion Encoding of Permutations

Authors:

M. H. Albert
Department of Computer Science, University of Otago

S. Linton
School of Computer Science, University of St Andrews

N. Ruškuc
School of Mathematics and Statistics, University of St Andrews

Status: Submitted to "Mathematical Proceedings of the Cambridge Philosophical
Society"

Department of Computer Science,
University of Otago, PO Box 56, Dunedin, Otago, New Zealand

http://www.cs.otago.ac.nz/research/techreports.html

The Insertion Encoding of Permutations 1

Abstract

We introduce the insertion encoding, an encoding of finite permutations. Classes of
permutations whose insertion encodings form a regular language are characterized. Some
necessary conditions are provided for a class of permutations to have insertion encodings
that form a context free language. Applications of the insertion encoding to the evaluation
of generating functions for classes of permutations, construction of polynomial time algo-
rithms for enumerating such classes, and the illustration of bijective equivalence between
classes are demonstrated.

Under consideration for publication in Math. Proc. Camb. Phil. Soc. 2

The Insertion Encoding of Permutations

By MICHAEL ALBERT

Department of Computer Science, University of Otago, Dunedin, New Zealand
e-mail : michael.albert@cs.otago.ac.nz

STEVE LINTON

School of Computer Science, University of St. Andrews, St. Andrews, United Kingdom
e-mail : sal@dcs.st-and.ac.uk

and NIK RUŠKUC

School of Mathematics and Statistics, University of St. Andrews, St. Andrews, United Kingdom
e-mail : nik@mcs.st-and.ac.uk

(Received)

1. Introduction

This paper deals with the problem of describing or enumerating certain collections
of permutations. The initial impetus to this investigation was an attempt to understand
and unify numerous results concerning the enumeration of pattern classes of permutations
(defined below), in particular related to the form of their generating functions, polynomial
time enumeration algorithms, and coincidences of the enumeration sequences. The book,
Combinatorics of Permutations by Miklos Bóna [7] provides a useful introduction to this
area, and Volume 9(2) of the Electronic Journal of Combinatorics contains a wide variety
of research papers from this field.

The method we apply is to introduce a uniform encoding of permutations, called the
insertion encoding. This allows an identification between sets of permutations and words
in the language of this encoding.

We now fix some notation and definitions. Let Sn denote the set of all permutations
of {1, 2, . . . , n} and S = ∪∞n=0Sn. We denote a permutation π ∈ Sn by its sequence of
values π1π2 · · ·πn.

Definition. Let σ ∈ Sk and π ∈ Sn be given. Then σ is involved in π (σ � π) if for
some 1 ≤ i1 < i2 < · · · < ik ≤ n, and all 1 ≤ s, t ≤ k, σs < σt if and only if πis

< πit
.

If σ is not involved in π we say that π avoids σ. The definition of involvement may
appear somewhat arbitrary. The following discussion illustrates that it is really a natural
substructure relationship.

Consider a finite set X equipped with two linear orderings < and�. Label the elements
of X by {1, 2, . . . , n} so that

1 < 2 < 3 < · · · < n

Now for each 1 ≤ i ≤ n the element i has some rank πi in the linear order �. Clearly
π = π1π2 · · ·πn is a permutation, and two structures of this type are isomorphic if and
only if the corresponding permutations are the same. Thus the isomorphism classes of

The Insertion Encoding of Permutations 3

such relational structures are in one to one correspondence with permutations. Suppose
that Y ⊆ X is a substructure of X, with elements {i1, i2, . . . , ik} where i1 < i2 < · · · < ik
and associated permutation σ. Then

σs < σt ⇐⇒ πis
< πit

so σ is involved in π. Conversely any subsequence of π (and thereby any involvement of
some permutation in π) determines a substructure of X in this way.

Definition. A pattern class, C, is a subset of S closed downwards under �. That is, if
π ∈ C and σ � π then σ ∈ C. The spectrum of a pattern class is the sequence (|C∩Sn|)∞n=1.

Pattern classes are simply ideals of the partially ordered set (S,�) but, by the preced-
ing remarks are also in one to one correspondence with isomorphism and substructure
closed classes of finite sets carrying two linear orders.

It appears to be folkloric that the partially ordered set (S,�) has precisely eight
automorphisms. These form a dihedral group generated by the elements whose actions
on structures (X, <,�) are given by:

(X, <,�) → (X, >,�)

(X, <,�) → (X,�, <).

On permutations of length n these maps correspond to reversal and inversion. In order
to verify that every automorphism of (S,�) belongs to the group generated by these
elements it suffices to check that any such automorphism must agree with an element
of this group on the structures of size at most four (or equivalently on permutations of
length at most four) and that only the identity fixes all structures of size at most four.
The images of a pattern class under the automorphisms of (S,�) are called the isomorphs
of the class. Most of the significant properties of pattern classes are preserved by these
automorphisms so we shall freely replace a class by one of its isomorphs when that is
convenient.

One way to specify a pattern class is to provide a set of forbidden patterns.

Definition. Let B ⊆ S. The class of permutations avoiding B is:

Av (B) = {π ∈ S : ∀β ∈ B β 6� π}.

In general, any pattern class C is of the form Av(B) where B is the set of � minimal
elements of S \ C. This set is sometimes referred to as the basis of C.

The study of pattern classes originated with work of Knuth [14] who investigated the
class of permutations that can be generated (or sorted) by a single stack. We will return
to this example later. Subsequently the study of pattern classes has become an active
subfield of combinatorial research. Generally speaking, the aim of such research is to
attempt to develop an understanding of the structure of pattern classes. Much of the
work in this area has focused on the specific problem of determining the spectrum of
specific pattern classes. Many examples of Wilfian equivalence, that is, distinct pattern
classes with the same spectrum have been observed. The recent resolution by Marcus
and Tardos of the Stanley-Wilf conjecture [16] establishes that for each proper class C:

L(C) := lim sup
n→∞

|C ∩ Sn|1/n
< ∞.

The number L(C) is called the Stanley-Wilf limit of C. When C = Av({π}) this is usually

4 M. Albert and S. Linton and N. Ruškuc

written L(π) and in this case the lim sup is known to be an actual limit by results of
Arratia [4].

One successful tool in enumerating pattern classes and finding Wilfian equivalences
between them has been the generating tree approach introduced to this area by West
([22, 23] and see also [6]). Recently, the ECO method ([5, 11] and references therein)
has extended this approach to other combinatorial settings. A related method of creating
enumeration schemes was introduced by Zeilberger in [24] and has been significantly
extended and generalized by Vatter [20] and includes a Maple package WilfPlus [19].

In this paper we introduce a further construction or interpretation from this general
family which we call the insertion encoding. We will demonstrate that it can be used
to reproduce results previously obtained using the generating tree approach. However,
because it allows us to replace pattern classes by their encodings, we may make use of
results and techniques from the combinatorics of words and languages. In particular:

• Many classes of interest correspond to regular or context free languages under the
insertion encoding which gives a great deal of information about their spectra.

• Bijective correspondences leading to Wilfian equivalences between some pattern
classes become transparent as they often simply involve direct transcription of
corresponding encodings.

• It is often possible to provide a polynomial time algorithm for the enumeration
of a pattern class even when no information about the algebraic properties of the
generating function for the class is available.

• The insertion encoding can be used to study the properties of “generalized pattern
classes”.

In other words, the insertion encoding allows us to discover much of the structure
of whole collections of pattern classes at once, while most previous methods required
specific tailoring for each individual class.

2. Background and definitions

Every permutation can be generated from the empty permutation by successive inser-
tion of a new maximum element. We call this procedure the evolution of a permutation.
This observation is used as a basis for the generating tree methodology. In that method-
ology, a partially constructed permutation belonging to some specified pattern class is
viewed as having a number of active sites – points at which a new maximum could be
inserted while remaining in the pattern class. We modify this viewpoint slightly in that
for us an active site in the construction of a permutation is one in which a new maximum
element will eventually be inserted.

Consider for example the permutation 423615. We trace its evolution as follows:

�
� 1 �

� 2 � 1 �
� 23 � 1 �
423 � 1 �
423 � 15
423615

We refer to the unfilled parts of the permutation marked by � as slots, and a string such

The Insertion Encoding of Permutations 5

as �23�1� as a configuration. The construction terminates when all the slots have been
filled. That is, a slot is not just a site which might be occupied, it is one which must be
occupied.

This is the main distinction between the insertion encoding and the generating tree
approach. As previously remarked, a slot for the insertion encoding corresponds roughly
to what is called an active site in the generating tree. However, in the generating tree
there is no guarantee that an active site will ever be occupied, and indeed it may become
inactive owing to further insertions. The methodology of Vatter’s enumeration schemes
([20]) introduces gap vectors which again correspond roughly to slots. A gap vector
contains more information than a slot configuration does in that it specifies exactly how
many elements will be inserted into a particular gap.

At each preliminary stage we index the slots which are present from left to right
beginning with 1. Then each insertion is determined by the following information:

• The index of the slot in which it occurs.
• The way in which the slot is affected by the insertion.

There are four different types of insertion of a new maximum element m within a slot:

� → �m � represented by m (for middle)
� → m � represented by l (for left)
� → �m represented by r (for right)
� → m represented by f (for fill)

If we subscript the insertion type with the slot on which it operates, we obtain a
uniquely defined encoding of any permutation. Returning to 423615, its encoding is
m1m1l2f1f2f1. This encoding is the insertion encoding. The choice to base the inser-
tion encoding on maximum elements is an entirely arbitrary one. We could equally well
have chosen to insert new minimum elements, or to insert elements from left to right, or
right to left (in the latter two cases the slots would represent gaps in the currently con-
structed sequence of values rather than positions). However, these choices simply reflect
certain basic symmetries of the partially ordered set (S,�) and the choice to insert max-
imum values corresponds most naturally with the existing literature on the generating
tree approach. The alphabet of the insertion encoding is denoted Λ, and for a positive
integer k, Λk ⊆ Λ consists of the symbols whose subscript is at most k.

There is an infinite automaton, which we shall call PermAut, which accepts precisely
the words representing the encodings of permutations. It has states indexed by the num-
ber of free slots. The initial state is state 1, and the final state is state 0. From state
k ≥ 1 we have the following transitions:

mi for 1 ≤ i ≤ k, to state k + 1
li for 1 ≤ i ≤ k, to state k

ri for 1 ≤ i ≤ k, to state k

fi for 1 ≤ i ≤ k, to state k − 1

Most applications of the insertion encoding use, at least implicitly, a variation of
PermAut in one of two ways. Either the number of states is constrained, leading to
regular classes discussed in Section 4, or the indexes of the states are viewed as the size
of a stack and the language is constrained to a finite alphabet in some fashion leading to
context free classes discussed in Section 5.

6 M. Albert and S. Linton and N. Ruškuc

Since PermAut accepts exactly the insertion encodings of permutations, the generat-
ing function of its language and that of permutations must agree. Using the methods of
[12] this generating function is easily represented as a continued fraction and we thereby
obtain the (formal) identity:

∞∑
i=1

i!ti =
t

1− 2t−
(2× 1)t2

1− 4t−
(3× 2)t2

1− 6t−
(4× 3)t2

1− 8t−
(5× 4)t2

1− 10t− · · ·
For clarity, we sometimes use negative subscripts in counting slots from the right.

That is m−1 represents a middle insertion into the rightmost slot and r−2 represents an
insertion on the right hand end of the second slot from the right.

There are also situations where a modification of the insertion encoding is desirable.
Suppose that we are interested in studying a collection of permutations C with the prop-
erty that for any π, τ ∈ C the permutation π ⊕ τ which has an initial segment of small
values order isomorphic to π followed by a segment of larger values order isomorphic to
τ is also in C (for example 21 ⊕ 312 = 21534). Then it is natural to retain a “free slot”
on the right hand end of any configuration. We enforce this by simply forbidding the f
and r operations in the final slot. Of course there is a dual situation where it is desirable
to leave a free slot at the left hand end of every configuration.

We begin with a pair of examples which will illustrate the simplicity and transparency
of the insertion encoding.

3. The classes Av(312) and Av(321)

The class Av(312) is the collection of permutations that can be produced from ini-
tial input in order 123 · · ·n by passing it through a single stack. This is the class (or a
variation of it) originally discussed by Knuth. The operation sequence of a stack when
producing a permutation in Av(312) is uniquely determined, and this observation estab-
lishes that Av(312) is enumerated by the Catalan numbers. The class Av(321) is the
collection of permutations that can be produced from initial input in order 123 · · ·n by
passing it through a pair of parallel queues. This class is also enumerated by the Catalan
numbers and a variety of bijections between it and Av(312) are known. Both these classes
have straightforward encodings as context free languages via the insertion encoding, and
moreover this encoding immediately makes their Wilf-equivalence clear.

Proposition 1. The permutations in Av(312) are precisely those whose insertion
encoding uses only the symbols f1, l1, r1 and m1.

Proof. Consider a state of the insertion encoding when two or more slots are available.
If an element is inserted into any slot other than the first one, then it, together with any
element belonging to the left boundary of the slot into which it was inserted make a 12
pair. When, at some later point, an element is added to the first slot (as it must be)
this will create a 312 pattern. Thus, in order to avoid creating a 312 pattern, only the
symbols f1, l1, r1 and m1 may be used.

Conversely, if the encoding of π uses only these symbols then, whenever an element is

The Insertion Encoding of Permutations 7

inserted, all slots to its left will be filled before any slots to its right are. Thus no element
can be the 1 of a 312 pattern, and so no 312 patterns can occur.

Thus we have provided an encoding of the elements of Av(312) over a four element
alphabet. Moreover, this encoding can be decoded in an online fashion. That is, if the
first k letters of the insertion encoding of some permutation are known, then the relative
positional order of the smallest k values within the permutation is also known. After
suppressing the superfluous subscript, the unambiguous grammar for this language is:

S → f | lS | rS |mSS.

Using the observations of Chomsky and Schutzenberger [8] the generating function, f(t),
for the spectrum of Av(312) is seen to satisfy:

f = t + 2tf + tf2.

Extra information about the class can be derived from the grammar above. To give just
a single simple example, suppose that we wish to compute its generating function g(z, t)
where the coefficient of zktn is the number of permutations of length n in the class having
precisely k descents. We observe that the m and r letters insert a symbol which will be
the lower end of a descent, while the f and l symbols never do this. We may then read
directly from the grammar that:

g = t + tg + ztg + ztg2.

The question of whether to include the empty permutation within a pattern class, or
rather, whether the generating function of a pattern class should have a non-zero constant
term is one which does not seem to have a uniformly correct answer. Generally speaking,
when using the standard insertion encoding it is usually more convenient not to include
a constant term, as the final state with no slots free differs from the initial state. If the
modified encoding is used where a free slot is always maintained then it is usually more
convenient to include a constant term.

We turn now to Av(321). We use the modification of the insertion encoding, where
additions at the right hand end of the final slot are forbidden. In this form, the empty
permutation is included as an element of every class. We also adopt the convention that
in this modified form the only letters which may occur when only one slot is free are
m−1 and l−1. This convention is useful in reminding us of the special rôle of this slot.

Proposition 2. The following grammar describes the encodings of the class Av(321)
in the modified form presented above:

S → ε | l−1S |m−1TS

T → f1 | l1T | l−1T |m−1TT.

Proof. The symbol S should be interpreted as representing a word which represents an
element of the class, while T represents a word that removes a slot from a configuration
containing two or more slots. It is easy to see that all words in the language represented
by this grammar are the encodings of permutations (in the modified insertion encoding).

If a permutation π avoids 321 then, in constructing π, no symbol can ever be inserted
into a slot other than the first or the last. Otherwise, together with the symbol in the
right boundary of its slot, it would form a 21 which would subsequently become a 321
when some earlier slot was filled. Similarly any occurrence of the letters m1 and r1 (which

8 M. Albert and S. Linton and N. Ruškuc

in the modified form are used only when two or more slots are present) would eventually
lead to a 321. So all the encodings of permutations avoiding 321 are in the language
represented by this grammar.

Conversely, suppose that a 321 does occur in a permutation π, say π = · · · c · · · b · · · a · · ·
with c > b > a. Consider the insertion encoding at the moment when the symbol b is
inserted. As a is already present, b is not being inserted into the rightmost slot. As c will
eventually be added to its left it is not being inserted with the symbols l1 or f1. So the
encoding of π is not in the language represented by this grammar.

Now to see the bijective correspondence between Av(312) and Av(321) we need only
rewrite the grammar for the language of the encodings of the former class into the
modified form. This gives:

S′ → ε | l−1S
′ |m−1T

′S′

T ′ → f1 | l1T ′ | r1T
′ |m1T

′T ′.

which can be obtained from the above by substituting r1 for l−1 and m1 for m−1 in any
production of the second type.

4. Regular classes

Our first family of applications of the insertion encoding concerns pattern classes whose
insertion encodings form regular languages. Such regular pattern classes have a variety
of useful properties, including the rationality of their generating functions, and simple
algorithms for recognizing elements of a class or for constructing the basis elements. If
A is a regular pattern class we will freely refer to the (or a) A-automaton, which is
some finite state automaton that recognizes the insertion encodings of elements of A.
We may use deterministic or non-deterministic automata as circumstances dictate, and
refer to transitions between states that consume no input as ε-transitions. The transition
function for an A-automaton will be denoted τA.

For any regular language, L, there exists a fixed integer k such that if p is a prefix of
some word in L, then there is a word pw in L with |w| ≤ k. The minimum number of
symbols required to complete an insertion encoding from a configuration including s slots
is s. Therefore, if the language of a pattern class is regular there must be some uniform
bound on the number of slots that can occur in any configuration leading to an element
of the class.

This bound serves to restrict the language of the insertion encoding for a regular
pattern class to a finite subset of Λ. A priori we might have been willing to allow the
definition of a regular pattern class to include some translation mechanism from its finite
alphabet to Λ. However, the previous remark shows that this is not necessary.

Observe also that if A is a regular pattern class, then for each state q of an A-
automaton, there is some integer s(q) such that there is a path from q to the final
state which consumes s(q) input elements, but no such path which consumes less input.
Thus s(q) represents the number of slots present in some and hence any configuration
whose creation leads to state q.

Definition. For each positive integer k the set SB(k) of permutations whose insertion
encoding never includes more than k slots is called the set of k slot bounded permutations.

Proposition 3. For each positive integer k the set SB(k) is a pattern class. Its basis

The Insertion Encoding of Permutations 9

consists of the (k + 1)!k! permutations in S2k+1 of the form babab · · · bab where the po-
sitions marked by b’s are occupied by the numbers {k + 1, k + 2, . . . , 2k + 1} while those
marked by a’s are occupied by the numbers {1, 2, . . . , k}.

Proof. Each of the specified basis elements has an insertion encoding which passes
through a configuration with (k + 1) slots precisely at the point where all the elements
marked a have been added. So, none of these permutations belong to SB(k).

Now consider any permutation π 6∈ SB(k). The insertion encoding of π passes through
configurations with more than k slots. Since the number of slots changes by at most one
with each symbol of the encoding, there exists such a configuration with exactly k + 1
slots. Take any k elements of π, one from each block of elements between successive slots
of this configuration. Take a further k+1 elements of π so that one of them is placed into
each of the slots of this configuration. These 2k + 1 elements witness the involvement in
π of one of the permutations in S2k+1 of the form babab · · · bab.

Thus SB(k) is the set of permutations avoiding these elements, so it is a pattern class,
and as these elements are all of the same length, hence form an antichain with respect
to involvement, they are its basis.

It is immediate that the language representing the insertion encodings of the elements
of SB(k) is regular since it is the language accepted by PermAut, with all the states
of index k + 1 or higher deleted. The generating functions for these classes are easily
obtained by curtailing the continued fraction representation of the generating function
for the language accepted by PermAut. In particular, the generating function for the
class SB(1) is t/(1− t) and those for SB(2) and SB(3) are

t− 4t2

1− 6t + 6t2
and

t− 10t2 + 12t3

1− 12t− 30t2 + 12t3
.

The observation preceding the definition of SB(k) shows that any pattern class whose
language with respect to the insertion encoding is regular must be a subclass of SB(k)
for some k. Given such a class and a description of its language (or of the automaton
accepting it) we would have immediate access to its spectrum (via the transfer matrix
approach), knowledge of properties of its generating function (it is rational) and a linear
time recognition algorithm for the class (just run the automaton). So it would be useful
to have a large supply of such classes. Such a supply is provided by the following theorem.

Theorem 4. Let C be a permutation class that is a subclass of SB(k) for some k. The
following are equivalent:

• The language of C is regular.
• There is a regular language defining a subset of B ⊆ SB(k) such that C = Av(B)∩
SB(k).

In fact B can, but need not, be chosen to consist of those elements of the basis of C which
belong to SB(k), and there is an effective procedure for passing from the language of B

to that of C and vice versa.

The form of this theorem is very similar to that of Theorem 2 in Section 2 of [2].
Its proof is identical to the proof of that theorem, and depends only on the following
modification of Proposition 5 from the same section of that paper.

10 M. Albert and S. Linton and N. Ruškuc

Lemma 5. For each positive integer k there is a non-deterministic transducer Delk

with the property that for all π ∈ SB(k), the words produced by the operation of Delk

when applied to the insertion encoding of π are precisely the insertion encodings of all
the permutations σ with σ � π.

The proof of this lemma consists of an explicit, and uninteresting, description of the
transducer Delk. We therefore defer it to the end of this section in order to discuss some
of the consequences of Theorem 4 as well as some constructions which preserve regularity
of pattern classes in greater detail.

Corollary 6. Any finitely based subclass of SB(k) is encoded by a regular language
in the insertion encoding and therefore has a rational generating function. Given the
basis, there is an effective procedure which produces a linear time recognition algorithm
for the class.

In order to describe how to determine whether a class is a subclass of SB(k) for some
k and also to prepare for some closure results for regular classes we need to introduce
some structural operations on permutations and classes.

Definition. Let π ∈ Sn and τ ∈ Sk be given. A horizontal juxtaposition of π with τ is
any permutation σ ∈ Sn+k such that the pattern of the leftmost n values of σ is the same
as the pattern of π, and that of the rightmost k values is the same as the pattern of τ .
That is, for 1 ≤ i, j,≤ n σi < σj if and only if πi < πj while for 1 ≤ i, j ≤ k σn+i < σn+j

if and only if τi < τj . A vertical juxtapostion of π with τ is any permutation σ ∈ Sn+k

such that the pattern of the smallest n values of σ is the same as the pattern of π, and
that of the largest k values is the same as the pattern of τ . The direct sum π ⊕ σ is that
horizontal juxtaposition of π with σ in which the leftmost n values are all smaller than
the remaining k values and the direct difference π	 σ is that horizontal juxtaposition of
π with σ in which the leftmost n values are all larger than the remaining k values.

Example 1. If π = 123 and σ = 21 then 15243 is a vertical juxtaposition of π with σ,
13452 is a horizontal juxtaposition, the direct sum is 12354 and the direct difference is
34521.

For pattern classes A and B we define the vertical juxtaposition (horizontal juxtapo-
sition etc.) of A with B to consist of all vertical juxtapositions of some α ∈ A with some
β ∈ B. We also define the sum closure of A to be the set of all permutations of the form
α1 ⊕α2 ⊕ · · · ⊕αk for some sequence of permutations α1, α2, . . . , αk ∈ A. The difference
closure is defined similarly. It is easy to see that all of these sets are in fact pattern
classes.

Proposition 7. A class C is a subclass of SB(k) for some k if and only if there are
permutations πII , πID, πDI , πDD ∈ S \ C where πII is a vertical juxtaposition of two
increasing permutations, πID a vertical juxtaposition of an increasing and a decreasing
permutation, πDI a vertical juxtaposition of a decreasing and an increasing permutation
and πDD a vertical juxtaposition of two decreasing permutations.

Proof. Suppose first that C ⊆ SB(k). Then the four requisite permutations can easily
be found among the basis elements of SB(k) by choosing the small and large elements
(respectively a’s and b’s in the notation of Proposition 3) to be monotone sequences of
either type (increasing or decreasing).

The Insertion Encoding of Permutations 11

Conversely, suppose that four permutations of the type described can be found in S\C.
Without loss of generality we may choose each of these four permutations of length 2n for
some fixed n and to have the pattern abab · · · ab where again a denotes a “small” element
and b a “large” one. For instance if πII = 314256 ∈ S \ C we could equally well take
πII = 15263748 which involves the original choice as the subsequence 526378. Let k = n4

and let θ be any basis element of SB(k). By the Erdös-Szekeres theorem, among the k

smallest elements of θ there is a subsequence of length n2 which is monotone. Choose
such a subsequence, and take n2 large elements from θ so the pattern they form with the
chosen subsequence is aba · · · ab. Now, among these large elements there is a subsequence
of length n which is also monotone. Choose such a subsequence and interpose small
elements from the original monotone subsequence to produce a subsequence of length 2n

of the form abab · · · ab within θ in which the a’s and the b’s form monotone sequences.
This subsequence witnesses the involvement of one of the four π’s in θ. As θ was arbitrary,
none of the basis elements of SB(k) belong to C and hence C ⊆ SB(k) as required.

This result establishes that it is decidable whether a finitely based pattern class is
contained in SB(k) for some k. Together with Theorem 4 it generalizes a result of Vatter
[18] which used a careful analysis of generating trees to establish that any finitely based
class whose basis includes a permutation obtained from an increasing sequence by insert-
ing a new maximum element, and a permutation obtained from a decreasing sequence
by inserting a new maximum element has a rational generating function. In this case the
upper part of the juxtapositions required can be taken to be a singleton.

Proposition 8. Let A and B be classes which are regular for the insertion encoding.
Then the direct sum, direct difference and horizontal juxtaposition of A with B are regular
for the insertion encoding as are the sum and difference closures of A. The vertical
juxtaposition of A and B is regular if and only if one of the two classes is finite.

Proof. First consider the direct sum A⊕ B. Take a finite state automaton which rec-
ognizes the insertion encodings of elements of A. From each final state (which we still
keep as an accepting state) add an ε transition to the initial state of an automaton which
recognizes the insertion encodings of elements of B. For the sum closure of A add to the
A-automaton an ε transition from each of its final states to its initial state. A similar
construction proves the regularity of A	 B and of the difference closure of A.

Let C be the horizontal juxtaposition of A and B. Consider the insertion encoding of
some element of θ ∈ C. Choose α ∈ A and β ∈ B such that θ is a horizontal juxtaposition
of α with β. This defines a labelling of the symbols of the insertion encoding of θ as
A-symbols, and B-symbols, according to whether or not the corresponding element of θ

comes from α or β. This labelling must be consistent in that if some symbol is labelled
as an A-symbol, then any later symbol representing an element to the left of this one
must also be so labelled, and dually for B-symbols. Conversely, given any permutation
τ , and a labelling of its insertion encoding as A-symbols and B-symbols satisfying these
consistency criteria, if the interpretation of A-symbols defines a permutation in A and
the interpretation of the B-symbols (suitably reindexed) defines a permutation in B then
τ belongs to the horizontal juxtaposition of A with B.

These observations indicate how to construct an automaton for the horizontal juxta-
position of A with B from deterministic ones for A and B respectively. Let the transition
functions of the A and B-automata be τA and τB respectively.

12 M. Albert and S. Linton and N. Ruškuc

In a configuration leading towards the construction of a permutation in C, some initial
segment of slots will be associated with A, and some final segment with B. There may
be one shared slot between these two segments. The meaning of a shared slot s is that
during the subsequent evolution of the permutation at least one child of s will receive an
A-symbol and at least one child of s will receive a B-symbol. We take the states of the C
automaton to be triples (q, r, δ) where q is a state of the A-automaton, r a state of the
B automaton and δ ∈ {0, 1} is the number of shared slots. There is a special initial state
that has ε transitions to each of: (q0, r0, 1), (qf , r0, 0) and (q0, rf , 0) where q0 and r0 are
the initial states of the A and B-automata and qf and rf are (arbitrarily chosen) final
states.

Suppose that we are in state (q, r, δ) and read the letter pi where p ∈ {f , l, r,m}. If
1 ≤ i ≤ s(q)− δ then the resulting state of the C-automaton is

(τA(q, pi), r, δ).

Similarly, if s(q) + 1 ≤ s(q) + s(r)− δ the resulting state of the C-automaton is

τC((q, r, δ), pi) = (q, τB(r, pi−s(q)+δ), δ).

This covers all insertions, except those into a shared slot, that is when i = s(q) and δ = 1.
By our previous convention, a shared slot may not be filled. Suppose first that pi = li.
The element inserted must be an A-symbol (otherwise the shared slot will never receive
an A-symbol). There are two possible transitions depending on whether or not the slot
is still to be shared, namely to

(τA(q, fi), r, 0) or (τA(q, li), r, 1).

Similarly, when pi = ri the resulting state is one of

(q, τB(r, f1), 0) or (q, τB(r, r1), 1).

Finally, a similar analysis applies when pi = mi. This time there are four possible tran-
sitions to:

(τA(q, ri), r, 0), (τA(q,mi), r, 1), (q, τB(r, l1), 0), or (q, τB(r,m1), 1).

The final states of the C-automaton are all the states of the form (q, r, 0) where q and r

are final states of the A- and B-automata.
As regards the vertical juxtaposition, if neither class is finite then the alternating

vertical juxtaposition of two permutations of length n, one from each class, shows that
the vertical juxtaposition of the classes is not slot bounded. If either class is finite, it
is immediately clear that their juxtaposition will be regular. For example, when B is
finite (the more difficult case), the basic automaton recognizing A is adjusted to allow
the creation of certain slots reserved for the B elements. It is easiest to simply create
automata for recognizing the vertical juxtaposition of A with a single element β for each
β ∈ B and then appeal to the closure of regular languages under finite union.

The asymmetry of regularity with respect to horizontal and vertical juxtaposition is a
consequence of our (arbitrary) choice that the insertion encoding represents the elements
of a permutation taken in value order. Had we instead worked with elements in position
order, then vertical juxtapositions would have preserved regularity, and horizontal jux-
tapositions would tend to destroy it. However, we do feel that this apparent asymmetry
does represent a possible flaw of the insertion encoding in general.

The Insertion Encoding of Permutations 13

All of the examples of regular classes given in [2] are in fact regular with respect to
the insertion encoding. On the other hand, the deletion transducer is significantly more
complicated for the insertion encoding than for any of these examples, so for practical
computational purposes it is still worthwhile to operate within these subclasses if possible.
Likewise the caveat noted in that paper, that the results given, while effective are not
necessarily practical since they generally involve several iterations of determinization
of non-deterministic finite automata, apply even more strongly to the languages and
automata associated with the insertion encoding.

Recently, the Stanley-Wilf limit of the class Av(4231) was shown to exceed 9.35 es-
sentially by constructing the automaton for the class SB(13)∩Av(4231) and evaluating
the largest eigenvalue of the corresponding transition matrix [3]. The significance of this
result is that it refutes a conjecture of Arratia [4] that L(π) ≤ (k − 1)2 for any π ∈ Sk.
The qualifier “essentially” is required above because the same modification of the inser-
tion encoding as we used in discussing Av(321) was used to obtain this result. Previous
attempts to construct these automata using the general methodology provided by The-
orem 4 had failed for seven or more slots owing to the exponential complexity of the
underlying algorithms.

Proof. (of Lemma 5) As k is fixed throughout, we will refer simply to SB and to Del

rather than SB(k) and Delk throughout the proof. The purpose of Del, thought of as
acting on the permutation π rather than on its insertion encoding, is to delete symbols. So
to describe the construction of Del we imagine some target σ � π, obtained by deleting
a fixed set of symbols from π and we arrange that σ (or rather its insertion encoding) is
realized by some run of Del on the insertion encoding of π. As the proof proper is quite
technical and case ridden, we would like to begin with a few explanatory remarks.

Some parts of Del are easy to understand. For instance if we wish to delete an element
encoded by a symbol r2 then often we can simply delete that symbol from the encoding
as the slot in which it is inserted is unaffected, and will be filled later. On the other
hand if we delete an element inserted by m2 then Del must “remember” that where
originally there were two slots there is now only one, though this may be split into two
again by a later r2 or l3 either of which would need to be transliterated as m2. Even more
confusingly if we intend to delete a symbol encoded by f3, then Del must make a change
to the previous symbol which affected that slot to ensure that it is closed. This seems to
be contrary to the allowed operation of a transducer, except that we should remember
that we can view our intended target σ as given, and so we, or rather the transducer, can
determine that this modification needs to be made when that previous symbol arrives.

Let us begin with an extended example. Consider the permutation:

m1m1r3l2f2f2f1 i.e. 7245163,

and also the involved subpermutation 7513 (we dispense with reindexing this as 4312
since relative order is all we care about) whose encoding is m1f2r1f1. We can follow the

14 M. Albert and S. Linton and N. Ruškuc

evolution of these two permutations in parallel:

� 1 � m1 m1 � 1 �
� 2 � 1 � m1 ε � 1 �
� 2 � 1 � 3 r3 f2 � 13
� 24 � 1 � 3 l2 ε � 13
� 2451 � 3 f2 r1 � 513
� 245163 f2 ε � 513
7245163 f1 f1 7513

The points worth noting in this example are the following:

• When 3 is added, it fills the slot to the right of 1 rather than being added on its
right. This is because we intend to subsequently delete 6 which is the only other
element destined for this slot.

• When 5 is added it is added on the right of the first slot rather than filling the
second slot as it did in the original permutation. In fact, at this point there is
no second slot. This is because the first slot (after the deletion of 2) is really
a superposition of the first two slots of the original permutation. So, filling the
second half of it doesn’t fulfil the obligation also to fill the first half.

We can design Del to cope with both of these points. The first point should be viewed
as Del amending some r to an f . This must result in a state where an attempt to add
to the slot which the r would have left available must be replaced by an ε (as happens
to 6). The second point is dealt with as indicated in its description. That is, slots which
were separate initially may be superimposed. That then requires later additions which
break the superposition up in some fashion to be changed. In an extreme case we might
have three successive slots, say the first three, superimposed. A subsequent f2 would in
fact be translated into an m1 and the superposition would break down.

The states of Del can be described as follows. For each s ≤ k there is a collection
of states identified with sequences a1a2 · · · as of non-negative integers. These sequences
satisfy the following restrictions:

• a1 ∈ {0, 1},
• ai+1 ∈ {0, a, a + 1} where a = max {aj : j ≤ i}.

Note in particular that 0 ≤ ai ≤ k in any case and so the number of states is finite.
We refer to the ai (or, technically, to the pairs (i, ai)) as the components of the state.
States are to be interpreted as strings so that operations such as removal of values, or
replacement of values by sequences of values entail a reindexing of components where
necessary. When we refer to incrementing or decrementing a value, the amount of the
increment/decrement is always 1.

The “intent” of a1a2 · · · as is to represent a state reached when some prefix of the
encoding of some π ∈ SB has been processed where the corresponding configuration for
π has s slots available. That is the individual components of the state represent the actual
slots which would be present if we were producing π. The values, ai, at these components
represent the actual slots present (and their indices) at this point with respect to the
target permutation σ. Some slots are indexed by 0’s indicating that any subsequent
input symbols which would have occupied them will be deleted, while blocks of equal
values among the remainder indicate slots which are superimposed in the deleted version

The Insertion Encoding of Permutations 15

because the input symbols separating them which came from the original permutation
have been deleted. Note that a 0 can occur within such a block, as witnessed by the
involvement of 534 in 516234.

Now we describe the transitions from state a1a2 · · · as. Since the source sequence, that
is the insertion encoding of π, has only s slots available, we need only deal with input
symbols whose subscripts come from 1 through s. Suppose that the subscript is i. We
refer to the component ai as the current component, and denote its value by a. The
output symbols and transitions available differ sharply according to whether or not a is
0.

Case (a = 0). In this case we are obliged to delete this input symbol, that is, output
ε. So our choices are simple.
fi Output ε. Move to the state obtained by removing the current component.
ri or li Output ε. Leave the state unchanged.
mi Output ε. Move to the state obtained by replacing the current component by 00.

Case (a 6= 0). This situation is more complicated as there are multiple types of action
which we might take. We generally need to make reference to the last preceding non-
zero, and first following non-zero values of components within the state. We refer to this
information as the local situation and denote it by a pair of symbols, either ==, =<, <=
or <<. In the cases where there is no preceding non-zero value we use < and likewise when
there is no following non-zero value. The notation should be self-explanatory, but just to
be clear the situation <= refers to a state in which the last non zero value preceding the
current component was smaller than a (or no such value exists) and the next non zero
value following the current component is equal to a (and definitely exists).

Now we deal with each type of input symbol in turn. In a few cases we provide a detailed
explanation for the transition. Otherwise we leave these explanations to be provided by
the reader.

If the input symbol is fi it may not be deleted as it eliminates a slot. If we intended to
delete it, we should have avoided creating the slot earlier. The output symbol depends
on the local situation.

(==)

• Output ma. Move to the state obtained by incrementing all non-zero aj for j > i

by 1 and then removing the current component.
Explanation: Filling a central part of a superposition breaks the superposition into
distinct states.

(=<)

• Output ra. Move to the state obtained by removing the current component.
Explanation: Filling the right side of a superposition, is like adding on the right
of the superimposed states.

(<=)

• Output la. Move to the state obtained by removing the current component.

(<<)

• Output fa. Move to the state obtained by decrementing the non-zero aj ’s for j > i

and then removing the current component from the sequence.

16 M. Albert and S. Linton and N. Ruškuc

The cases where the input symbol is ri or li are similar to one another so we consider
only the former. Suppose first that we intend to delete this symbol, i.e. output ε. Then
simply do so, but make no change to the underlying state. Otherwise, consider again the
local situation.

(==)

• Output ma. Move to the state obtained by incrementing all non-zero aj for j > i

and either leaving the value of the current component unchanged, or change it to
0.
Explanation: We have broken a superposition, and must also indicate whether an
element will be added later into this slot, or whether all such elements are deleted
in the target.

(<=)

• Output ma. Move to the state obtained by incrementing all non-zero aj for j >

i and leaving ai unchanged. Or, output la and move to the state obtained by
changing the value of the current component to 0.
Explanation: Either we break a superposition, or we intend to delete all further
elements of the superposition to the left of this one.

(=<)

• Output ra. Leave the state unchanged, or change the value of the current compo-
nent to 0.

(<<)

• Output ra and leave the state unchanged. Or, output fa, and move to the state
obtained by changing the value of the current component to 0 and decrementing
all subsequent non-zero values.

Finally, consider the input symbol mi. Suppose first that we decide to delete this
symbol. Then we output ε. We obtain our new state from the original state by replacing
the current component by any one of aa, a0, or 0a (but not 00) depending on our
subsequent intentions. If we do not wish to delete the input symbol then consider the
local situation again.

(==)

• Output ma. Move to a state obtained by replacing the current component by one
of a, (a + 1), or a, 0, or 0, a and incrementing all subsequent non-zero values.

(=<)

• Output ma. Move to a state obtained by replacing the current component by
either 0, a + 1 or a, a + 1 and incrementing all subsequent non-zero aj . Or, output
ra and move to the state obtained by replacing the current component by a, 0.

(<=)

• Output ma. Move to a state obtained by replacing the current component by
either a, a+1 or a, 0 and incrementing all subsequent non-zero values. Or, output
la and move to the state obtained by replacing the current component by 0, a.

The Insertion Encoding of Permutations 17

(<<)

• Output ma. Move to the state obtained by replacing the current component by
a, a + 1 and incrementing all subsequent non-zero values. Or, output la and move
to the state obtained by replacing the current component by 0, a. Or, output ra

and move to the state obtained by replacing the current component by a, 0. Or,
output fa, and move to the state obtained by replacing the current component by
0, 0 and decrementing all subsequent non-zero values.

That concludes the description of Del except to mention that its initial state is the
state 1 and its accepting state is the state corresponding to the empty sequence. Each
possible transformation from the insertion encoding of a permutation π to that of some
σ � π is allowed for in the non-deterministic operation of Del and no other transforma-
tions are possible. Thus Del does indeed fulfil its specified rôle.

5. Context free classes

The definition of what it means for a pattern class C to be represented by a context
free language with respect to the insertion encoding is not quite so straightforward as
the regular case. Already in Av(321) we have seen the necessity of allowing new symbols
such as m−1 in the alphabet in order to allow insertions at either end of a configuration.
What conditions then shall we demand of a modification to the insertion encoding to
define context free pattern classes?

The conditions we will introduce provide a fairly restrictive set of demands. They are
centered on the requirements that for some push down automaton AC which represents
C as a “context free class”, each transition of the automaton must correspond to some
single letter of the insertion encoding and the number of symbols in the stack is required
to equal the number of slots available after the corresponding prefix has been interpreted.

More precisely, let Σ be the alphabet of the automaton AC . Then for each positive
integer k (stack size), stack symbol s and state a (of the automaton) we must be given
an injective map:

T(k,s,a) : Σ → Λk.

These maps must be consistent with respect to stack size. That is, if T(k,s,a)(x) = fi for
some i then the transition of AC on symbol x from (k, s, a) should be to (k−1, s′, a′) and
similarly for the other symbols of Λ. Given a word w = w1w2 · · ·wn accepted by AC the
symbol wi is processed with some stack size ki, stack symbol si and state ai. We define
the associated word o1o2 · · · on ∈ Λ∗ to have oi = T(ki,si,ai)(wi). Then AC represents C
as a context free class if the image under this association of its accepted language is the
insertion encoding of C.

Definition. Let k be a positive integer. The set IB(k) consists of all those permutations
whose insertion encodings can be written using only symbols whose subscripts come from
{±1,±2, . . . ,±k}. We call this the insertion bounded class of depth k.

Proposition 9. Each set IB(k) is a context free pattern class. Its basis consists of
the set of permutations of the form:

c1a1c2a2 · · · ckak (2k + 1) ak+1, ck+1 · · · a2kc2k

where {a1, a2, . . . , a2k} = {1, 2, . . . , 2k} and {c1, c2, . . . , c2k} = {2k+2, 2k+3, . . . 4k+1}.

18 M. Albert and S. Linton and N. Ruškuc

Proof. The proof of this proposition is essentially the same as that of Proposition 3.
That is, consider any permutation π. If the insertion encoding of π includes a symbol of
depth more than k, then this symbol, together with representatives of the boundaries of
the first and last k slots at the time of its insertion, and elements which fill those slots,
provides an involved permutation from the proposed basis. Conversely if one of these
permutations is involved in π then the insertion of the symbol corresponding to 2k is at
depth greater than k. So IB(k) is a pattern class.

That it is context free follows immediately by simply using a stack whose size is equal
to the number of slots available, and that responds to the various symbols in the obvious
way.

The basis of IB(1) is

{41325, 51324, 42315, 52314}.

It is a matter of routine computation to use the description of the push down automaton
for IB(k) to generate its spectrum. For instance, applied to IB(1) we can determine that
the generating function f of this class satisfies:

(2t2 − 2t + 1)f2 + (4t2 − 3t)f + 2t2 = 0

and has Taylor series:

t + 2t2 + 6t3 + 24t4 + 116t5 + 632t6 + 3720t7 + 23072t8 + 148528t9 + · · ·

The next result shows that these classes do indeed play the same rôle with respect to
context free classes as the classes SB(k) do for regular classes.

Theorem 10. Any context free class is a subclass of IB(k) for some k.

Proof. Suppose that a class C with associated push down automaton AC , together with
maps T(k,a,s) were a counterexample to this theorem. Then, for any positive integer N

there is a permutation in the basis of IB(N) which belongs to C. At the time that 2N

is inserted into this permutation the configuration present has 2N + 1 slots. By deleting
d elements before the slot in which 2N is to be inserted, and N − d after that slot we
see that there are configurations c1 through cN+1 each having N + 1 slots, and such
that for each i there is an element of C whose generation passes through ci followed by
an insertion in the ith slot. Choose N + 1 to be larger than the product of the sizes of
Σ, the stack alphabet and the number of states of the underlying automaton. Then for
more than |Σ| of the ci the corresponding triple (N + 1, ai, si) is the same. However,
different insertion symbols are required for each of these states and only |Σ| symbols are
available.

6. Wilfian formulae

Suppose that a family of combinatorial objects with a notion of “size” (a non negative
integer) are given, so that there are only finitely many elements in the family of each
size. Then a Wilfian formula for this family is an algorithm which computes the number
of elements in the family of size n in time bounded by a polynomial in n.

Let L be any language in the letters of the insertion encoding that encodes a set of
permutations. Although we are generally interested in the case when this set forms a

The Insertion Encoding of Permutations 19

pattern class, this restriction is superfluous at this time. The enumeration problem for L

is the same as that for the class of permutations it encodes.
An equivalence relation ∼L on the set, Pref(L), of prefixes of words in L can be defined

by setting p ∼ q if and only if for all s ∈ Λ∗,

ps ∈ L ⇐⇒ qs ∈ L.

In more concrete terms, this equivalence relation can be thought of as relating the con-
figurations that arise in the process of constructing a permutation that lies in the set
of permutations encoded by L. Two such configurations are deemed to be equivalent
if they have exactly the same successful methods of completing the construction of a
permutation in this set. For example, in Section 3 we implicitly made use of this equiva-
lence relation in generating 312-avoiding permutations by noting that the only relevant
information about a configuration was the number of slots. This was used to construct
an algebraic generating function (and coincidentally a Wilfian formula) for this class. In
general we can adapt that methodology in the following way:

Proposition 11. Suppose that there exists L′ ⊆ Pref(L) with the following properties:

• L′ contains at least one representative from every ∼L equivalence class.
• The number of elements of L′ of length n is bounded by a polynomial in n.
• There is a polynomial time algorithm which, for each w ∈ L′ and each letter a ∈ Λ

for which wa is a prefix of some element of L computes an element v ∈ L′ such
that wa ∼L v and v is not longer than wa.

Under these conditions L has a Wilfian formula.

Proof. There is little to say about this. It is essentially an application of the transfer
matrix approach to enumeration. Suppose that we wish to enumerate the words of length
n in L. The conditions allow us to construct in time polynomial in n a directed multigraph
Gn with adjacency matrix Mn whose vertices correspond to elements of L′ of length at
most n and whose edges correspond to insertions of any type provided only that they
can be followed by further insertions leading to an element of L. The number of elements
of L of length n is then just the number of walks in Gn of length n from the state
corresponding to the empty word, to the state corresponding to a configuration with
no slots. This can be computed by evaluating the corresponding entry of Mn

n , which is
certainly possible in polynomial time.

A direct implementation of the ideas above shows that if the number of elements of L′

of length at most n is O(nc) then the number of elements of L of length exactly n (in
fact the full spectrum of L through length n) can be computed in time O(nc+2). Observe
also that if L and K are two languages to which the result above applies, then by a
similar method (working with the product L′ × K ′) we also obtain a polynomial time
algorithm for enumerating L∩K. Also note that it is possible to relax the third condition
somewhat, in particular the length condition on v, though in practice this never seems
to be required.

The simplest application of this method is to the class of permutations containing no
descending subsequence of length c. In a configuration of say s slots, the only relevant
information is the sequence si for 0 ≤ i < c− 1 where si is the number of slots preceding
a descending sequence of length i but not one of length i + 1. Since s0 + s1 + · · · +

20 M. Albert and S. Linton and N. Ruškuc

sc−2 = s and s0 ≤ 1, there are O(nc−2) such sequences. Furthermore, it is easy to check
that all the conditions of the proposition above are satisfied. We thus obtain a O(nc)
enumeration algorithm for this class. An algorithm of the same complexity due to Gessel
can be found in [13]. However, the latter one requires divisions as well as multiplications
and additions/subtractions as well as the evaluation of many terms whose magnitude is
significantly larger than the final answer. By contrast the method described above uses
only multiplication and addition and (with a little care) can be carried out without ever
evaluating a term larger than the final answer.

As mentioned previously in Section 4, the same essential idea was used in [3] applied
to the class of 4231 avoiding permutations. In this case there is not a polynomial bound
on the number of ∼L equivalence classes, so an extra limitation restricting the number
of slots to some fixed bounds was applied. Although this then enumerates only a proper
subclass of Av(4231) this was sufficient to show that L(4231) > 9 and thereby refute a
conjecture of Arratia.

7. Further applications

7·1. Classes with basis elements of length three and four

A catalogue of the spectra of pattern classes whose basis consists of a permutation of
length three and a permutation of length four was given by West in [23]. Most of these
were computed using the generating tree approach, with a few exceptions. Although
successful, the methods applied in these instances were somewhat ad hoc. Using the
insertion encoding we can argue that almost all of these classes are regular while the
exceptional cases are context free and easily analyzed based on the grammars or stack
automata for Av(312) and Av(321).

Using the automorphisms of (S,�), the length three basis element can always be taken
to be either 312 or 321. Consider first a class Cτ = Av(312, τ) where τ is a permutation
of length four not involving 312. Among the basis elements of SB(k) for k ≥ 2 only the
permutation (k + 1) k (k + 2) (k− 1) · · · 2k 1 (2k + 1) avoids 312. Therefore, if for some k

this permutation involves τ then the class C will be regular. This situation applies either
to Cτ or one of its isomorphs (the isomorphism fixing 312) except for C1324 and C2143.

In both these cases the modifications to the automaton for Av(312) required to enforce
the extra restriction are easy to describe. We will deal with the first one only as the second
one will arise again in the subclasses of Av(321). Avoiding 1324 implies that after an l1
or f1 (creating a “1”) no further m1’s may occur (that would be the 2, and the restriction
that all insertions be in the first slot would lead inevitably to a subsequent 3 and 4), nor
may an r1 occur until only a single slot remains. These conditions transform naturally
into a grammar for this class:

S → f | lT | rS |mUT

U → f | lV | rU |mUV

V → f | lV
T → f | lT | rT.

In this grammar, S as usual represents the language, U represents an unrestricted first
slot, V a slot other than the rightmost slot which has been restricted by the placement
of a small element to the left, and T the rightmost slot after such a restriction. Solving

The Insertion Encoding of Permutations 21

the resulting system of equations for the generating function of the class yields:

t− 3t2 + 3t3

(1− t)(1− 2t)2
.

Now consider classes Dτ = Av(321, τ) where τ is of length 4. For k ≥ 3 the only
elements of the basis of SB(k) that avoid 321 are those of the form bab · · · bab where the
a’s form an increasing sequence, and so do the b’s except possibly for the final element.
This situation applies to Dτ or one of its isomorphs except for the case τ = 2143.
Recall that in the modified insertion encoding of Av(321) we were restricted to splitting
or adding on the left of the final slot, or filling or adding on the left of the first slot.
Symbols of the latter type create a 21 (possibly spanning the first slot) and require the
remaining slots to be filled strictly from left to right (to avoid 2143) except in precisely
the case of a configuration of the form 2 � 1 � (where 1 might stand for an increasing
sequence of values smaller than 2). In this case, we may add on the left hand end of
either slot. This condition complicates the grammar somewhat and gives:

S → ε | l−1S |m−1AT

A → l−1A |m−1BY | f1 | l1X
B → l−1B |m−1BY F1 | l1Y
X → f1 | l1X | l−1X

Y → f1 | l1Y
T → ε | l−1T

In this grammar, S as usual represents the language, A represents the first newly created
slot, X, B any subsequently created slot, X the fashion in which the first newly created
slot can be filled if the configuration 2 � 1 � is created by the first occurrence of l1, Y the
fashion in which any new slots can be filled if this is not the case, and T the sequence of
elements added when we reach a configuration equivalent to 21�. This yields a generating
function for this class of:

1− 5t + 10t2 − 9t3 + 4t4

(1− 2t)(1− t)4

7·2. Generalised patterns

A number of generalisations of pattern avoidance have appeared in the literature [9,
10, 21]. Two of the more common are blocked patterns (also called gapped patterns)
and barred patterns. In an occurrence of a blocked pattern, certain parts of the pattern
must occur as consecutive elements. The blocks are generally separated by -’s or gaps so
for instance an occurrence of 1− 23 is an occurrence of 123 in the ordinary sense where
the second and third elements are consecutive. In a barred pattern certain patterns are
forbidden unless they occur within other patterns. Thus an occurrence of 314̄2 is an
occurrence of 312 with no element between the symbols representing the 1 and the 2
that is larger than the symbol representing 3. That the two notions are not entirely
complementary can be seen by noting that avoiding 314̄2 is in fact equivalent to avoiding
3 − 12. For in any occurrence of 312 which is not a 314̄2 the elements between the 1
and 2 (inclusive) must all be strictly smaller than the 3. Since this sequence of elements
finishes with a larger element than it starts with it must include at least one ascent. This

22 M. Albert and S. Linton and N. Ruškuc

ascent gives an occurrence of 3− 12. Conversely, any occurrence of 3− 12 is already an
occurrence of 314̄2.

Claesson in [9] showed that the classes avoiding a single gapped pattern of length 3
divide into two Wilf-equivalent groups, one enumerated by the Bell numbers and the
other by the Catalan numbers. In the first group, natural symmetries (reversal and
complementation) account for all of the equivalences except those between the classes
3− 12 and 3− 21.

Using the insertion encoding, this Wilf equivalence can be directly illustrated. In each
case, knowing that the answer is the Bell numbers, it is relatively easy to construct a bi-
jection with set partitions thus “explaining” the Wilf equivalence. However, the bijections
provided by the insertion encoding can be seen without knowing the actual enumeration
sequence.

Consider a configuration that arises in the construction of a 3− 12 avoiding permuta-
tion. We work in the modified insertion encoding where the right hand slot must remain
unfilled (i.e. only l and m operations are permitted in the rightmost slot). The next
element added can be part of a 12 only if it is added using f or l. Such an addition will
inevitably be part of a 3 − 12 pattern, unless it occurs in the first slot. So, if there are
n > 1 slots available, the next code symbol in a 3− 12 avoider can be any one of f1, l1,
ri for 1 ≤ i < n and mi for 1 ≤ i ≤ n. Counting transitions gives 1 transition to n − 1
slots, n transitions to n slots, and n transitions to n + 1 slots. These numbers (except
for the first) also apply to the configuration consisting of a single slot.

Now consider the analysis of 3− 21 avoiding permutations in the same way. This time
any r at all or any f except in the first slot will inevitably create an occurrence of 3−21.
So, if there are n > 1 slots available, the next code symbol in a 3−21 avoider can be any
one of f1, li for 1 ≤ i ≤ n and mi for 1 ≤ i ≤ n. Again, the pattern is consistent with the
one slot case. Since the number of transitions from each slot configuration agree in the
two cases, the two classes are Wilf equivalent. Moreover, we have an explicit bijection
between the classes which amounts to changing any r occurring in the generation of a
3− 12 avoiding permutation into an l (with the same subscript).

7·3. Classes closed in the strong Bruhat order

The strong Bruhat order is a partial order on permutations defined by taking the
transitive closure of relations of the form:

αaγbδ < αbγaδ

whenever b < a. Investigation of pattern classes closed downwards in the strong Bruhat
order was begun in [1] motivated by the consideration of abstract machines whose purpose
it is to sort permutations.

Definition. Let r and s be positive integers. The permutation class B(r, s) consists of
all those permutations not containing a subsequence of the form:

b1b2 · · · bra1a2 · · · as

where bi > aj for all 1 ≤ i ≤ r and 1 ≤ j ≤ s. Equivalently, it is is the class whose basis
consists of the r!s! permutations of length r + s which are precisely of this form.

In [1] the following result appears:

The Insertion Encoding of Permutations 23

Proposition. Let C be a non trivial pattern class closed downwards in the strong
Bruhat order. Then C ⊆ B(r, s) for some r and s.

We therefore obtain:

Corollary 12. Let C be a non trivial pattern class closed downwards in the strong
Bruhat order. Then C ⊆ SB(k) for some k.

Proof. Recall that SB(k) consists of all those permutation whose evolution through
the insertion encoding never requires more than k slots at a time. Its basis consists of
the k!(k + 1)! permutations of the form:

baba · · · ab

where the b’s form the set {k +1, k +2, . . . , 2k +1} and the a’s form the set {1, 2, . . . , k}.
From the form of the basis elements it follows that for all positive integers r and s,
B(r, s) ⊆ SB(2r+2s−1) since every basis element of the latter class involves at least one
basis element of the former class. Taking r and s as provided by the previous proposition
completes the proof.

Recall that Theorem 4 states that any pattern class contained in SB(k) for some k

whose basis is encoded by a regular language in the insertion encoding is itself regular.
Such classes automatically have rational generating functions. For a class closed down-
wards in the strong Bruhat order there are potentially two definitions of “basis”. We
might intend a minimal set of forbidden patterns in the ordinary sense, or we might
intend a minimal set of forbidden patterns with respect to the transitive closure of the
involvement and strong Bruhat orders. Call the former type the ordinary basis and the
latter type the strong basis. In [1] it is shown (Theorem 14) that if the strong basis is
finite then so is the ordinary basis (the converse is trivial). So we obtain:

Proposition 13. If a class C closed downwards in the strong Bruhat order has a finite
strong basis then it has a rational generating function.

In [1] the generating functions for all such classes having a single strong basis element
of length at most four are determined. Although the preceding result is in principle
effective, it proved simpler to deal with these situations on a case by case basis using the
structural information about the elements of these classes determined by their ordinary
bases.

7·4. Miscellaneous examples

As soon as we consider classes with a single basis element of length four, or with a pair
of basis elements of length four it is a rare occurrence that these are context free in the
restricted sense defined above. An exception are a number of the pairs of permutations of
length four which are bases for classes whose enumeration sequence consists of the large
Schröder numbers (sequence A006318 of [17]). Building on earlier work of West [22],
Kremer showed in [15] that ten fundamentally different pairs of permutations of length
four all generate classes enumerated by the large Schröder numbers.

Many of these classes are easily seen to be equinumerous by recourse to their insertion
encoding. We will illustrate this with a single example, which we grant is the most

http://www.research.att.com/projects/OEIS?Anum=A006318

24 M. Albert and S. Linton and N. Ruškuc

attractive and simple. Consider the two classes:

C1 = Av(3124, 4123)

C2 = Av(3142, 4132).

Then arguments very similar to those of Section 3 and to the proofs of Propositions 3
and 9 show that with respect to the insertion encoding these two classes are defined by
the following rules:
C1 Any operation is allowed in the first slot. Additionally if there are two or more slots

f−1 and r−1 are allowed.
C2 Any operation is allowed in the first slot. Additionally if there are two or more slots

f2 and l2 are allowed.
We will give details of the argument for the first class only. First of all, the two proposed

basis elements violate the given conditions as in both cases the 2 is added with l2. So
C1 ⊆ Av(3124, 4123). For the reverse containment we show as usual that any permutation
whose insertion encoding violates one of the given conditions must involve one of these
two elements. The two conditions are equivalent to the single condition: no insertion is
allowed which leaves a slot to its right, except in the first slot. Suppose that such an
insertion is made, say of an element b. At that point we have the situation � a · · · b · · · �
within the current configuration, where a is any element forming part of the right hand
boundary of the first slot. Regardless of how those two slots are filled we will obtain
either cabd or dabc i.e. one of the two forbidden patterns.

From the description of the two classes it follows immediately that they are equinu-
merous. We can mechanically derive the (known) generating function by the following
method (based on techniques described in [12]) which demonstrates a skeleton for such
arguments that apply to any class where the allowed insertions are always the same once
a certain number of slots are present.

Suppose that there are k ≥ 2 slots. Then two of the allowed symbols reduce the number
of slots by one, three leave the number of slots unchanged, and one increases the number
of slots by one. If we let f≥2(t) be the generating function for sequences of symbols which
start from k ≥ 2 slots, never pass through a configuration with fewer than k slots, and
return for the first time to a configuration of k slots at the end, then:

f≥2 = 3t + t

(
1

1− f≥2

)
2t.

The derivation of this equation is by the observation that such sequences include:

• three sequences of length one which do not change the number of slots, and oth-
erwise,

• an initial increase by one slot, followed by a sequence (possibly empty) of returns
to this number of slots without decreasing the number of slots, followed by a
decrease of one slot.

From the initial configuration containing a single slot there are only two transitions
which leave the number of slots unchanged. So the equation for the generating function
g counting first return to the one slot configuration is:

f1 = 2t + t

(
1

1− f≥2

)
2t.

Finally, the encodings of elements of the class consist of a sequence of returns to the

The Insertion Encoding of Permutations 25

one slot configuration, followed by the final fill, i.e. f = t/(1 − f1). Solving this set of
equations gives (of course) the large Schröder numbers.

However, we can also make use of the insertion encoding to enumerate C1 ∩ C2 =
Av(3124, 4123, 3142, 4132). For this class is described by the rules: any operation in the
first slot is permitted, as is filling the second slot if there are precisely two slots. Using
the same approach to finding the generating function (starting from configurations with
k ≥ 3 slots) shows that:

|C1 ∩ C2 ∩ Sn| =
(

2n− 2
n− 1

)
.

A result of applying this same method was reported in [1]. The generating function,

3− 13t + 2t2 + (5t− 1)
√

1− 4t

2(1− 4t− t2)
,

of the class Av(3241, 3421, 4321) was computed by representing it as a context free
language with respect to the insertion encoding. This class is of interest because it is
the largest permutation class not containing the permutation 3241 that is closed under
the operation: αbaβ → αabβ for b > a which exchanges any adjacent pair of elements in
a permutation that are not in their correct value order. That is, it is a class in the weak
Bruhat order whose weak basis is 3241.

8. Conclusions

The insertion encoding provides a new tool for the analysis of pattern closed classes
of permutations. Our presentation has concentrated on its underlying theory, and a few
specific examples connected to enumeration and Wilf equivalence to illustrate its use as
a unifying framework for known enumeration results in this field. On the other hand
it has already shown its utility in the refutation of Arratia’s conjecture [3], and in the
enumeration of a number of classes closed downwards in the weak Bruhat order as well
as providing general results about finitely based classes closed downwards in the strong
Bruhat order [1].

As we have seen, the insertion encoding can often be used to provide a polynomial time
enumeration algorithm for pattern classes. The Noonan-Zeilberger (or Gessel-Noonan-
Zeilberger) conjecture asserts that any finitely based pattern class will have a P-recursive
generating function, so the concentration on such schemes may seem a little misplaced.
However, the recently produced data on the number of 4231-avoiding permutations has
caused some (including Zeilberger himself [25]) to cast doubt on this conjecture. In that
context such algorithms regain a measure of importance.

The general theory of pattern classes whose insertion encodings form a regular lan-
guage seems to be well understood. For most “interesting” classes in this group, which
necessarily have relatively short basis elements and are restricted to making use of a
small number of slots, the effective methods provided are sufficient to perform any com-
putations desired in these classes. However, it would definitely be of interest to determine
whether more efficient algorithms for computing in these classes are available, or alter-
natively to establish that some problems in this family are NP-hard.

The situation with respect to context free languages is not nearly so clear. In particular,
the astute reader will have noticed that results corresponding to Theorem 4, Corollary
6 or Proposition 7 are not presented in this paper. It seems to us that a result of the

26 M. Albert and S. Linton and N. Ruškuc

latter type should be relatively easy to prove. There seems to be some hope of proving
at least certain restricted cases of Corollary 6 in the context free case. However, results
corresponding to Theorem 4 seem unlikely, given the weak closure properties of context
free languages. Moreover, the definition of context-free class that we provided above is
only one possible one. It does not encompass such classes as the separable permutations
(those avoiding both 2413 and 3142) whose natural recursive structure cries out for such
an identification. With regard to this specific class we can say that by paying suitable
attention to the tree structure that exists among the slots of a configuration (where slots
created by an m are considered to be children of the slot in which the m took place) it is
possible to provide a context free interpretation for the insertion encodings of elements of
this class. However, this interpretation is quite convoluted in comparison to the natural
recursive description of the class. Of course this may simply be taken as an indication
of the rather obvious, and heartening, observation that no single technique of describing
permutations is ever likely to handle all pattern classes with equal facility.

The application of the insertion encoding to the description of generalized pattern
classes has only been touched upon here, and is the subject of further investigation.
Generalizations of the insertion encoding can be used to enumerate other families of
combinatorial objects, for example matchings on {1, 2, . . . , 2n} avoiding certain patterns.

We believe the insertion encoding to be a significant new tool in the investigation of the
structural and enumerative properties of pattern classes and their relatives. As well as
providing some general theory, it unifies the presentation of a number of known results,
and is useful in the solution of specific exact and approximate enumerative problems.

REFERENCES

[1] M. H. Albert, R. E. L. Aldred, M. D. Atkinson, H. P. van Ditmarsch, C. C. Handley,
D. A. Holton, and D.J. McCaughan. Sorting classes. Tech Report OUCS-2005-04,
http://www.cs.otago.ac.nz/research/techreports.html, 2005.

[2] M. H. Albert, M. D. Atkinson, and N. Ruškuc. Regular closed sets of permutations. Theoret.
Comput. Sci., 306(1-3):85–100, 2003.

[3] M. H. Albert, M. Elder, A. Rechnitzer, P. Westcott, and M. Zabrocki. On the Wilf-Stanley
limit of 4231-avoiding permutations and a conjecture of Arratia. http://www.arxiv.
org/abs/math.CO/0502504, 2005.

[4] Richard Arratia. On the Stanley-Wilf conjecture for the number of permutations avoiding
a given pattern. Electron. J. Combin., 6:Note, N1, 4 pp. (electronic), 1999.

[5] Silvia Bacchelli, Elena Barcucci, Elisabetta Grazzini, and Elisa Pergola. Exhaustive gen-
eration of combinatorial objects by ECO. Acta Inform., 40(8):585–602, 2004.

[6] Cyril Banderier, Mireille Bousquet-Mélou, Alain Denise, Philippe Flajolet, Danièle Gardy,
and Dominique Gouyou-Beauchamps. Generating functions for generating trees. Dis-
crete Math., 246(1-3):29–55, 2002. Formal power series and algebraic combinatorics
(Barcelona, 1999).

[7] Miklós Bóna. Combinatorics of permutations. Discrete Mathematics and its Applications
(Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2004.

[8] N. Chomsky and M. P. Schützenberger. The algebraic theory of context-free languages. In
Computer programming and formal systems, pages 118–161. North-Holland, Amsterdam,
1963.

[9] Anders Claesson. Generalized pattern avoidance. European J. Combin., 22(7):961–971,
2001.

[10] Anders Claesson and Toufik Mansour. Counting occurrences of a pattern of type (1, 2) or
(2, 1) in permutations. Adv. in Appl. Math., 29(2):293–310, 2002.

[11] Enrica Duchi, Jean-Marc Fedou, and Simone Rinaldi. From object grammars to ECO
systems. Theoret. Comput. Sci., 314(1-2):57–95, 2004.

[12] P. Flajolet. Combinatorial aspects of continued fractions. Discrete Math., 32(2):125–161,
1980.

http://www.cs.otago.ac.nz/research/techreports.html
http://www.arxiv.org/abs/math.CO/0502504
http://www.arxiv.org/abs/math.CO/0502504

The Insertion Encoding of Permutations 27

[13] Ira M. Gessel. Symmetric functions and P-recursiveness. J. Combin. Theory Ser. A,
53(2):257–285, 1990.

[14] Donald E. Knuth. The art of computer programming. Addison-Wesley Publishing Co.,
Reading, Mass.-London-Amsterdam, second edition, 1975. Volume 1: Fundamental al-
gorithms, Addison-Wesley Series in Computer Science and Information Processing.

[15] Darla Kremer. Permutations with forbidden subsequences and a generalized Schröder
number. Discrete Math., 218(1-3):121–130, 2000.

[16] Adam Marcus and Gábor Tardos. Excluded permutation matrices and the Stanley-Wilf
conjecture. J. Combin. Theory Ser. A, 107(1):153–160, 2004.

[17] N. J. A. Sloane. The online encyclopedia of integer sequences, 2005. http://www.research.
att.com/~njas/sequences/.

[18] Vincent Vatter. Finitely-labeled generating trees and restricted permutations. To appear,
J. Symb. Comp. http://www.arxiv.org/abs/math.CO/0309238.

[19] Vincent Vatter. WilfPlus. http://www.math.rutgers.edu/~vatter/programs/
wilfplus/, 2005.

[20] Vincent Vatter. Enumeration schemes for restricted permutations. In preparation.
[21] Julian West. Sorting twice through a stack. Theoret. Comput. Sci., 117(1-2):303–313, 1993.

Conference on Formal Power Series and Algebraic Combinatorics (Bordeaux, 1991).
[22] Julian West. Generating trees and the Catalan and Schröder numbers. Discrete Math.,

146(1-3):247–262, 1995.
[23] Julian West. Generating trees and forbidden subsequences. Discrete Math., 157(1-3):363–

374, 1996.
[24] Doron Zeilberger. Enumeration schemes and, more importantly, their automatic generation.

Ann. Comb., 2(2):185–195, 1998.
[25] Doron Zeilberger. Personal communication. Comments made at the Permutation Patterns

conference, 2005.

http://www.research.att.com/~njas/sequences/
http://www.research.att.com/~njas/sequences/
http://www.arxiv.org/abs/math.CO/0309238
http://www.math.rutgers.edu/~vatter/programs/wilfplus/
http://www.math.rutgers.edu/~vatter/programs/wilfplus/

	Introduction
	Background and definitions
	The classes Av (312) and Av (321)
	Regular classes
	Context free classes
	Wilfian formulae
	Further applications
	Classes with basis elements of length three and four
	Generalised patterns
	Classes closed in the strong Bruhat order
	Miscellaneous examples

	Conclusions
	References

