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Model Checking Russian Cards*

Hans van Ditmarsch! Wiebe van der Hoek! Ron van der Meyden$ Ji Ruan¥

Abstract

We implement a specific protocol for bit exchange among card-playing agents in three
different state-of-the-art epistemic model checkers and compare the results.

1 Introduction

Protocols based on public/private key encryption assume computationally limited agents.
Decryption of messages is tractable for the intended recipient but should be intractable (or at
least computationally too expensive) for an eavesdropper, for example, because it is based on
factorizing a large product of primes. Instead, we investigate protocols for computationally
unlimited agents, also known as ‘perfect logicians’ or ‘ideal agents’. In that case it should
not just be intractable but even impossible for an eavesdropper to access the secret content
of a message. In a worst-case scenario of that kind, the eavesdropper intercepts all messages
entirely. If this scenario is public knowledge, and if all messages are truthful, then, firstly, we
can assume a convenient abstract architecture for such systems, namely that of distributed or
interpreted systems, where all agents (i.e., sender, receiver, and eavesdropper(s)) at least know
their local state; and, secondly, we can assume that all messages are public announcements,
and use corresponding logics to specify the properties of protocols for sender and receiver to
communicate secret information.

Information-based protocol analysis has proved useful for protocol specification and to
uncover protocol flaws [3, 13]. It more particularly applies when protocol requirements are
in terms of knowledge and belief, as in zero-knowledge protocols [9], and to the analysis of
protocols for ideal agents, such as protocols consisting of public announcements in interpreted
systems. Communicative features of interpreted systems have been described in epistemic
logics with explicit representation of time (in runs of systems) and/or corresponding temporal
epistemic logics [5, 10, 15], and also in dynamic epistemic logics [8, 2, 16]. We focus on the
latter, in particular on public announcement logic [2].

In this contribution we assume interpreted systems for card players, as represented by
pointed multi-agent Kripke models. A player can communicate secret bits such as card
ownership to another player without revealing that to a third player (eavesdropper). This
has been investigated in [6, 17, 11, 1, 18]. A typical example is ‘Russian Cards’: two players
each draw three cards from a pack of seven cards, and the remaining player (eavesdropper)
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gets the last card. The ‘problem’ of the Russian Cards problem is to find protocols that allow
sender and receiver to learn each other’s hand of cards, without the eavesdropper being able
to learn that. In [17], protocols of length two are presented that solve it. Protocols of length
greater than two are investigated in [18].

In such card protocols, the required postconditions are not always clear or not easy to
verify, publicly known protocol features may involve fairly complex nested dynamic epistemic
formulas, and enumeration of all possible protocols is an issue as well. For all that, model
checkers are promising tools.

Such explorations have been partially carried out for the Russian cards problem in [21]:
epistemic properties of the scenario are translated into (linear time) LTL, and then verified
using the model checker SPIN. A deal of cards together with a number of announcements
corresponds to a time line, not unlike the modeling in MCK presented in this paper. Uncer-
tainty of the agents is represented by exploiting local propositions proposed in [4], see also
[14].

In this contribution, we verify protocol properties in the epistemic model checkers MCK
[7], DEMO [19] and MCMAS [12]. We have selected one specific Russian Cards protocol,
the ‘five hand protocol’, implemented it in these quite different dedicated ‘epistemic’ model
checkers, and verified its relevant properties. This involved reinterpreting dynamic epistemic
concepts in temporal epistemic terms; this theoretical exercise was carried out successfully and
increased our understanding of dynamic epistemic features. All three implementations were
carried out within a reasonable development time and all were successful. Some additional
Russian Cards protocol features, in particular for protocols of length greater than two, have
been kept outside this comparison. Also, incorrect protocols (such as for non-solutions of the
Russian Cards problem) can be easily shown to be so by establishing failure of (commonly
known or other) epistemic conditions. This only requires (almost) trivial changes in the
scripts presented below for a correct protocol.

In Section 2 we present the Russian Cards problem. Sections 3 to 5 are dedicated to the im-
plementation of the ‘five hands’ protocol for the Russian Cards problem in the model checkers,
respectively, MCK, DEMO, and MCMAS. Section 6 compares the results. The MCK, DEMO,
and MCMAS input scripts can be found on www.cs.otago.ac.nz/staffpriv/hans/aoard/.!

2 Russian Cards

From a pack of seven known cards two players each draw three cards and a third
player gets the remaining card. How can the players with three cards openly inform
each other about their cards, without the third player learning from any of their
cards who holds it?

This ‘Russian Cards’ problem originated at the Moscow Math Olympiad 2000. Call the
players Anne, Bill and Cath, and the cards 0,...,6, and suppose Anne holds {0, 1,2}, Bill
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{3,4,5}, and Cath card 6. For the hand of cards {0, 1,2}, write 012 instead, for the card
deal, write 012.345.6, etc. Assume from now on that 012.345.6 is the actual card deal. All
announcements must be public and truthful. There are not many things Anne can safely say.
Obviously, she cannot say “I have 0 or 6,” because then Cath learns that Anne has 0. But
Anne can also not say “I have 0 or 3,” because Anne does not know if Cath has 3 or another
card, and if Cath had card 3, she would have learnt that Anne has card 0. But Anne can
also not say “I have 0 or 1.” Even though Anne holds both 0 and 1, so that she does not
appear to risk that Cath eliminates either card and thus gains knowledge about single card
ownership (weaker knowledge, about alternatives, is allowed), Cath knows that Anne will
not say anything from which Cath may learn her cards. And thus Cath can conclude that
Anne will only say “I have 0 or 1”7 if she actually holds both 0 and 1. And in that way Cath
learns two cards at once! The apparent contradiction between Cath not knowing and Cath
knowing is not really there, because these observations are about different information states:
it is merely the case that announcements may induce further updates that contain yet other
information.

Whenever after Anne’s announcement it is (at least) not common knowledge to Anne,
Bill, and Cath, that Cath remains ignorant of any of Anne’s or Bill’s cards, this may be
informative to Cath after all. A typical example is when Anne says that she either holds 012
or not any of those cards, after which Bill says that Cath holds card 6. For details, see [17].
Indeed, a solution requirement is that Cath’s ignorance remains public knowledge after any
announcement. Such announcements are called safe.

A solution to the Russian Cards problem is a sequence of safe announcements after which
it is commonly known to Anne and Bill (not necessarily including Cath) that Anne knows
Bill’s hand and Bill knows Anne’s hand. This (instance of a) five hand protocol is a solution:

Anne says “My hand of cards is one of 012, 034, 056, 135, 246,” after which Bill
says “Cath has card 6.”

Note that Bill’s announcement is equivalent to “My hand of cards is one of 345, 125, 024.”
After this sequence, it is even publicly known that Anne knows Bill’s hand and Bill knows
Anne’s hand. If we extend Anne’s announcement with one more hand, namely 245, and if
it is public knowledge that the protocols used by Anne and Bill are of finite length (so may
consist of more than two announcements), then it is ‘merely’ common knowledge to Anne and
Bill that they know each other’s hand, but (disregarding further analysis) Cath considers it
possible that they do not know each other’s hand of cards. This is a useful security feature
for Anne and Bill, as Cath plays the role of the eavesdropper. A further postcondition is that
all safe announcements by Anne ensure at least one safe response from Bill, and vice versa.
This recursive requirement results in a more complex condition. See [18].

Public announcement logic The Russian Cards problem can be modelled in public
announcement logic with common knowledge. We give a concise overview of the language
and its semantics.

Given are a set of agents N and a set of atoms P. An epistemic model M = (S,~,V)
consists of a domain S of (factual) states (or ‘worlds’), accessibility ~ : N — P(S x S), and
a valuation V : P — P(S). For s € S, (M, s) is an epistemic state. For ~ (n) we write ~,,
and for V' (p) we write V. So, access ~ can be seen as a set of equivalence relations ~,,, and
V as a set of valuations V,,. For (,cq ~n)", write ~g: this is access to interpret common
knowledge for group G.



The language of public announcements is inductively defined as

pu=p || (@AY) | Knp | Cap | @l

where p € P, n € N, and G C N are arbitrary. For K, p, read ‘agent n knows formula ¢’.
For Cgp, read ‘group of agents G commonly know formula ¢’. For [p]i, read ‘after public
announcement of ¢, formula v (is true)’. The effect of the public announcement of ¢ is the
restriction of the epistemic state to all worlds where ¢ holds. So, ‘announce ¢’ can be seen
as an information state transformer, with a corresponding dynamic modal operator [¢].

The semantics is as follows. Given is an epistemic model M = (S, ~, V).

M,skE=p iff seV,

M,s = —p ifft M,s e

M,sE=EpANy iff M,sk=pand M,s E

M,s = Kyp iff forall te S:sn~,,timplies M,t =
M,s = Cgp iff forall t€S:s~gtimplies Mt ¢
M,s E [l iff M,s | ¢ implies M|p, s =1

Model M|p = (S’,~', V') is defined as

S o= {d eS| M Ep}
~i= N (8 xS
Vy, = Vpns

In other words: the model M|y is the model M restricted to all the states where ¢ holds,
including access between states. Formula ¢ is valid on model M, notation M |= ¢, if and
only if for all states s in the domain of M: M,s = ¢. Formula ¢ is valid, notation |= ¢, if
and only if for all models M: M = .

We now model the Russian Cards problem in this logic. Given a stack of known cards and
some players, the players blindly draw some cards from the stack. In a state where cards are
dealt in that way, but where no game actions of whatever kind have been done, it is commonly
known what the cards are, that they are all different, how many cards each player holds, and
that players only know their own cards. From the last it follows that two deals are the same
for an agent, if she holds the same cards in both, and if all players hold the same number of
cards in both. This induces an equivalence relation on deals.

An epistemic model (Rus,012.345.6) for the deal 012.345.6 that we investigate, encodes
the knowledge of the players Anne, Bill and Cath (a,b,c) in this card deal. It consists of
(g) (g) G) = 140 deals. For each player, access between states is induced by the equivalence
above, for example, 012.345.6 ~, 012.346.5 says that Anne cannot tell these two card deals
apart (as her hand is 012 in both). Facts about card ownership written as gy, for ‘card ¢ is
held by player n’. The valuation Vj, of fact 0, (Anne holds card 0) consists of all 60 deals
where 0 occurs in Anne’s hand, etc.

After a sequence of announcements that is a solution of the Russian Cards problem, it
should hold that Anne knows Bill’s cards, that Bill knows Anne’s cards, and that Cath doesn’t
know any of Anne’s or Bill’s cards:

aknows bs = A _g ¢(Kaqp V Kamqp)
b_knows_as = A, _o ¢(Kbqa V Kpqa)
c.ignorant := /\q:o_,(s(_‘ cGa N ~Kcqp)
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We suggested in the previous section that these conditions are too weak. This can be exem-
plified by the observation that, e.g.,

Rus,012.345.6 = [K,(012, V (=04, A =14 A =2,))][c-ignorant]—c_ignorant

After Anne says that her hand is 012 or that she does not hold any of those cards, c_ignorant
is true, but a further update with that (in other words: when Cath can assume that this
is true) makes Cath learn some of Anne’s cards, so that c_ignorant is false. The actually
required postconditions avoiding such complications are: after every announcement of an
executed protocol, it is publicly known that Cath is ignorant, and after the execution of
the entire protocol it is commonly known to Anne and Bill that: Anne knows that Bill
knows her hand of cards, and Bill knows that Anne knows his hand of cards. Also using
that Cgyp,(Kpa_knows_bs A K,b_knows_as) is equivalent to Cy,(a_knows_bs A b_knows_as) this is

formalized as
Cyp(a_knows_bs A b_knows_as)

CapeC_ignorant

Concerning protocols: when Anne announces ‘@’, this should be interpreted as ‘K,p’ given

that she knows what she says, and even as ‘K,p A [Kyp|Kyc_ignorant’ given her intention,
and beyond that even as ‘K,p A [K,p]CapcKyc-ignorant’ given that her intention is public.
One can then show that

Rus,012.345.6 = [Kap A [Kqp]Capec-ignorant] CopeC_ignorant

So in this case the intention is indeed realized, unlike above: the announcement is safe.
We ignore the further complication that safe announcements require safe responses in this
submission. The solution given in Section 2 consists of the successive announcements

a_announce := 012,V 034,V 056, V 135, V 246,
b_announce := 6,

3 Model Checker MCK

MCK, for ‘Model Checking Knowledge’, is a prototype model checker for temporal and knowl-
edge specifications, developed by Peter Gammie and Ron van der Meyden [7]. The overall
setup supposes a number of agents acting in an environment, by temporal development. This
is modelled by an interpreted system where agents perform actions according to a protocol.
Actions and the environment may be only partially observable at each instant in time.

Different approaches to the temporal and epistemic interaction and development are im-
plemented. Knowledge may be based on current observations only, on current observations
and clock value, and on the history of all observations and clock value. The last corresponds
to synchronous perfect recall. We have used that approach. In the temporal dimension, the
specification formulas may describe the evolution of the system along a single computation,
i.e., using linear time temporal logic (LTL), or they may describe the branching structure
of all possible computations, i.e, using branching time or computation tree logic (CTL). We
have used LTL. See www.cse.unsw.edu.au/"mck/ for more information.

Russian Cards in MCK In MCK, we have to reinterpret the dynamic epistemics of Section
2 in temporal epistemic terms. In a program rus.mck we successively introduce environmental



variables and initialize those; we create three agents A, B, and C with corresponding protocols
"anne", "bill" and "cath"; a main part of the program specifies the (temporal) transitions,
induced by card dealing and the announcements, that relate different information states for
these players; finally rus.mck contains a part with various to be verified properties of the
timelines created.

A hand of cards of an agent is encoded by a list of seven booleans, for example a_hand :
Bool[7] specifies for all of the cards 0, ..., 6 whether they are held by Anne or not, such that
anne_cards[0] is true when Anne holds card 0, etc. Initially, such variables are set to false.

Agent A, for Anne, is created by

agent A "anne" (a_hand, a_announce, b_announce, stage)

The name of the agent is A. It uses protocol "anne". It can interact with, and potentially
observe the variables between parentheses. The first of those is, obviously, only observable by
Anne, the others will reappear in the other agent definitions, as they are publicly observable.
The variable stage is the ‘clock tick’.

The transitions part of rus.mck specify what happens in different stages of the execution
of the protocol. We distinguish stages (clock ticks) 0, 1, 2, and 3. In stage 0 the cards are
dealt to the players, in the order 0, ..., 6. We show it up to the dealing of card 0.

stage == ->
begin if
na < 3 -> begin a_hand[0]:=True; na:
nb < 3 -> begin b_hand[0]:=True; nb:
nc == 0 -> begin c_hand[0]:=True; nc:
fi;

na+1l end []
nb+1 end []
1 end

Variables na, nb, and nc are counters to record how many cards agents have, and [] means
nondeterministic choice. In this part of the transitions, 140 different deals are created, repre-
sented as 140 different timelines.

In stage 1, Anne announces that her hands is one of 012, 034, 056, 135, and 246. This is
done indirectly by executing the protocol "anne", that contains a condition corresponding to
these five deals, which causes the action Announce to be executed. This then results in the
atom a_announce becoming true.

stage == 1 /\ A.Announce -> a_announce := True

In stage 2, Bill announces that Cath holds card 6. Alternatively, one can model that
Bill announces Cath’s card — whatever it is. Bill’s announcement is by way of an action
B.Announce, and results in the variable b_announce to become true. This is the transition
to stage 3, the final stage. We can imagine the whole system to consist of 140 different runs.
Whether variables a_announce and b_announce are true in stage 2 and stage 3, respectively,
depends on the deal in that run.

The protocol for Anne is

protocol "anne" (cards: observable Bool[7],
a_announce: observable Bool, b_announce: observable Bool,
stage: observable Counter)



begin
skip; if
( (cards[0] /\ cards[1] /\ cards([2]) \/ (cards[0] /\ cards[3] /\ cards[4]) \/
(cards[0] /\ cards[5] /\ cards([6]) \/ (cards[1] /\ cards[3] /\ cards[5]) \/
(cards[2] /\ cards[4] /\ cards[6]) )
-> <<Announce>>
fi
end

The ‘begin-end’ part of this protocol specifies for each of the stages 0, 1, and 2 what
happens in that stage. In stage 0 nothing happens: skip. In stage 1, the action Announce —
that is, whatever is found between << and >> — is executed. Actually, the value or instance
of cards for Anne is a_cards; see above, where Anne is created. Alternatively to five actual
hands, a much longer protocol creates five arbitrary hands of cards based on Anne’s actual
hand. Nothing is specified for stage 2: this is therefore skip again by default. Bill has a
similar protocol but his protocol starts with skip ; skip, as his announcement is in stage
2. And Cath does not act at all, which carries the protocol skip ; skip ; skip.

The knowledge of the agents evolves with every stage, via the agents’ limited access to
the environment. Initially, they only observe their own hand of cards, and Anne’s and Bill’s
public announcement is accessed by all agents. Anne cannot distinguish two states iff her
observations are the same in those states. For example, in stage 1 Anne cannot distinguish
the timelines for deals 012.345.6 and 012.346.5, because: both have the same a_hand values
(for all seven variables), a_announce is true in both cases, and b_announce is false is both
cases. But in stage 3, Anne can distinguish these timelines, since b_announce is true for the
former and false for the latter.

A final part of rus.mck lists various temporal epistemic properties to be checked. For ex-
ample, we want to verify that Rus,012.345.6 |= [a_announce|[b_announce]C,pa_knows_bs. The
current version (0.2.0) of MCK does not support common knowledge operators for specifi-
cation in the perfect recall module. Therefore we verify instead that in stage 3, a_knows_bs
is valid in the model. This corresponds to Rus|a_announce|b_announce |= a_knows_bs which
ensures that Rus|a_announce|b_announce,012.345.6 = Cype.a_knows_bs. And in this specific
model Cypa_knows_bs «— Cp.a_knows_bs is also true.

spec_spr_xn = X 3 ( (a_announce /\ b_announce) =>
( (((Knows A b_hand[0]) \/ (Knows A neg b_hand[0]))) /\
C...)
(((Knows A b_hand[6]) \/ (Knows A neg b_hand[6]))) ))

The part spec_spr_xn means that we are using the perfect recall module of MCK, and X 3
is the triple ‘next state’ temporal operator, counting from stage 0. Therefore, the formula
bound by the operator is checked in stage 3. Similarly, other properties of the five hands
protocol are verified.

4 Model Checker DEMO

The tool DEMO is developed by Jan van Eijck [19]. DEMO is short for Dynamic Epistemic
MOdelling. It allows modelling epistemic updates, graphical display of Kripke structures in-
volved (i.e., epistemic or state models, and action models that represent epistemic actions),



formula evaluation in epistemic states, etc. Epistemic models are minimized under bisimula-
tion, and action models are minimized under the (more appropriate, weaker) notion of action
emulation [20]. DEMO is written in the functional programming language Haskell. See also
www.cwi.nl/"jve/papers/04/demo/.

The model checker DEMO implements the dynamic epistemic logic of [2]. In this ‘action
model logic’ the global state of the multi-agent system is represented by an epistemic model
(multi-agent Kripke model), and the agents’ action is represented by an action model. An
action model is also based on a multi-agent Kripke frame, but instead of carrying a valuation
it has a precondition function which assigns a precondition to each point in the action model,
which stands for an atomic action. The state change in the system is via an operation called
update product. This is a restricted modal product. In this submission we restrict our
attention to action models for public announcements. Such action models have a singleton
domain. We refrain from details and proceed with the recursive definition of formulas in
DEMO.

Form = Top | Prop Prop | Neg Form | Conj [Form] | Disj [Form]
| K Agent Form | CK [Agent] Form

Formula Top stands for T, Prop Prop for atomic propositional letters (the first occurrence
of Prop means that the datatype is ‘propositional atom’, whereas the second occurrence of
Prop is the placeholder for an actual proposition letter, such as P0), Neg for negation, Conj
[Form] stands for the conjunction of a list of formulas of type Form, similarly for Disj, K
Agent stands for the individual knowledge operator for agent Agent, and CK [Agent] for
common knowledge operator for the group of agents listed in [Agent].

A pointed (and singleton) action model for a public announcement is created by a function
public with a precondition (formula) as argument. The update operation is specified as

upd :: EpistM -> PoAM -> EpistM

Here, EpistM is an epistemic state and PoAM is a pointed action model. The update generates
a new epistemic state as specified above. Formula checking is defined as

isTrue :: EpistM -> Form -> Bool
Its arguments are an epistemic state and a formula, and it returns a boolean value.

Russian Cards in DEMO In DEMO, one is restricted to propositional letters starting
with lower case p, ¢ and r, so we cannot write, for example, 0, for the atomic proposition that
Anne holds card 0, as in Section 2. Instead, atoms {p,...,p6,q,...,96,r,...,r6} represent
such atomic propositions. The name p4 — Anne holds card 4 — actually stands for Prop (P
4), etc. Instead of pO we write, somewhat arbritrarily, p, and similarly for q and r.

The initial epistemic state rus representing the knowledge in card deal 012.345.6 is con-
structed as follows. A set of integers [0..139] represents the 140 different deals. Each integer
is associated with seven propositional letters. The first two deals are

(o,[p Oo,P 1,P 2,Q 3,Q 4,9 5,R 6]), (1,[P O,P 1,P 2,Q 3,Q 4,Q 6,R 5])



The deal numbered 0 stands for actual deal 012.345.6. A pair of two integers is in the
accessibility relation for an agent n, if that agent holds the same cards in both deals. Two
such pairs for Anne are (a,0,0),(a,0,1). DEMO assumes arbitrary accessibility relations.
So, unfortunately, we have to explicitly list all pairs in the equivalence relation for each agent,
as above.

Anne’s public announcement a_announce corresponds to the following singleton action
model named anne5, which is produced by the function public.

public( K a (Disj[Conjlp,pl,p2],Conjlp,p3,p4],Conjlp,p5,p6],
Conj[p1,p3,p5],Conj[p2,p4,p611))

Similarly, we have an action model billkc for Bill’s announcement b_announce. The post-
condition that Anne knows Bill’s hand of cards, a_knows_bs, is represented as

aknowsbs = Conj[ Disj[K a q, K a (Neg q) ], Disj[K a q1, K a (Neg q1) 1,
Disj[K a g2, K a (Neg q2) 1, Disj[K a q3, K a (Neg g3) 1,
Disj[K a g4, K a (Neg g4) ], Disj[K a 95, K a (Neg g5) 1],
Disj[K a g6, K a (Neg qg6) 1]

Similarly for b_knows_as and c_ignorant. The model checker now verifies the postconditions
of the constructed models. After Bill’s announcement it is common knowledge to Anne and
Bill that Anne knows Bill’s hand of cards, and it is also common knowledge to Anne and Bill
that Bill knows Anne’s hand of cards. It is publicly known that Cath remains ignorant:

*RUS>isTrue (upd (upd rus anneb) billkc) (CK [a,b] aknowsbs])
True

*RUS>isTrue (upd (upd rus anneb) billkc) (CK [a,b] bknowsas])
True

*RUS>isTrue (upd (upd rus anneb) billkc) (CK [a,b,c] cignorant)
True

The epistemic state (upd (upd rus anne5) billkc) is the result of updating epistemic state
(upd rus anneb) with singleton pointed action model billkec, and (upd rus anneb) was
the result of updating the initial epistemic state rus with the action model representing the
announcement of a_announce.

5 Model Checker MCMAS

MCMAS presumably stands for Model Checking Multi-Agent Systems. This model checker
has been developed by Franco Raimondi and Alessio Lomuscio [12]. The current version is
mcmas 0.6. System descriptions and protocol properties are verified using ordered binary
decision diagrams, comparable to the approach used in MCK. It extends existing obdd-based
techniques for reactive systems by adding both an epistemic (ATL) and a deontic dimension
to the logical language, and allowing input in terms of interpreted systems. MCMAS is imple-
mented in C++. See www.cs.ucl.ac.uk/staff/F.Raimondi/MCMAS/ for more information.

In MCMAS, the global state is represented as a tuple of the local states of the agents.
For Russian Cards, agents Anne, Bill, and Cath represent players, and an agent Env (the



environment) represents the card deal. The local state of agent Anne requires five components,
that can be seen as variables; three represent her hand of cards, and two the status quo and
outcome of the two announcements. Version 0.6 of MCMAS does not support variables in the
description of agents’ local states. Therefore we encode the variable parts in a single string.
For example, one local state for Anne is a012tf. This means that Anne holds cards 0,1, and
2, that Anne’s announcement a_announce has been (truthfully) made in the global state of
which this local state is a component, and that Bill’s announcement b_announce could not
be made (was false) in that global state. Similarly, we have five variables for Bill, and three
variables for Cath. The local state of the agent Env has seven variables, because it represent
a card deal. An example is e0123456. This stands for the actual deal 012.345.6.

The information changes take the usual steps: (1) the cards are revealed to the agents, (2)
Anne announces a_announce, and (3) Bill announces b_announce. All reachable global states
will be included in the next stage. An example initial global state is (annnnn, bnnnnn,
cnnn, e0123456); an ‘n’ essentially means that the agent has no information on the value of
corresponding variable, modelled by giving the variable that value n. So, bnnnnn means that
Bill’s local state is that he does not know his cards yet (the first three n’s), that Anne has
not made her announcement yet (the fourth n) and that Bill has not made his announcement
yet. The above global state (annnnn, bnnnnn, cnnn, e0123456) then transits to (a012nn,
b345nn, c6bnn, €0123456), where each agent knows what cards it holds. Anne’s a_announce
is then made, causing the transition to (a012tn, b345tn,c6tn, e0123456) and b_announce
finally results in (a012tt, b345tt,c6tt, e€0123456) — this time, Bill’s announcement is
successful. These state transitions are specified in the program. For example, for agent Anne,
the transition for step one is as follows; Lstate is the local state of (current) agent Anne, and
Env.Lstate is the local state of Env.

a012nn if (Lstate=annnnn and ( Env.Lstate=e0123456 or Env.Lstate=e0123465 or
Env.Lstate=e0123564 or Env.Lstate=e0124563 ));

The environment Env does not change during transitions, but this has to be made explicit as
e0123456 if Lstate=e0123456;

In the ‘valuation’ part of an MCMAS program we define what can be seen as (the denotation
of) atomic propositions. For example

ab_d0123456 if (Anne.Lstate=a012tt and Bill.Lstate=b345tt and
Cath.Lstate=c6tt and Env.Lstate=e0123456);

is the atom that is (uniquely) true in the global state (a012tt, b345tt,c6tt, e0123456).
Similarly, atoms expressing card ownership such as 0, for ‘Anne holds card 0’ are defined by
enormous expressions starting as (and consisting of 60 alternative card deals)

a0 if (Env.Lstate=e0123456 or Env.Lstate=e0123465 or ...

Groups of agents can be named too. This is useful when checking common knowledge. For
example ABC={Anne, Bill, Cath}; gives the group consisting of Anne, Bill, and Cath the
label ABC. A common knowledge formula such as Cyp.(0, — K404) is then represented
as CK(ABC,a0->K(Anne,a0)). We conclude this short exposition with the postcondition
CapcC_ignorant that verifies that Cath remains ignorant after both announcements have been
made — ‘I” stands for negation.
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ab_d0123456 -> GCK(ABC, (

IK(Cath,a0) and !'K(Cath,b0) ) and ( !'K(Cath,al) and !K(Cath,bl) ) and
IK(Cath,a2) and !'K(Cath,b2) ) and ( 'K(Cath,a3) and !K(Cath,b3) ) and
IK(Cath,a4) and !'K(Cath,b4) ) and ( !'K(Cath,ab) and !K(Cath,b5) ) and
IK(Cath,a6) and !'K(Cath,b6) ) ));

~ N~~~

6 Comparison

We did not compare the model checkers on their computational powers. Currently, none of
our checks took more than a few minutes. Mostly, we were interested in how versatile the
tools appeared to be, to implement a problem that was originally formulated in local, and
dynamic epistemic, terms, into temporal epistemic terms and/or as an interpreted system. In
other words, we were more than anything else interested in development time and supported
functionality. Conclusions based on our experiences are extremely tentative. The fastest goal
to success was implementing the Russian Cards problem in DEMO. This took about half a
day, for Ji Ruan, who is an expert in DEMO. But it took Ron van der Meyden, expert in MCK,
also half a day to write the initial version of the MCK implementation — though that was
finished much later by Hans and Ji, non-experts in MCK. Currently, MCK does not support
common knowledge (in the used module), nor epistemic preconditions, nor preconditions to
temporal formulas. The last makes it impossible to have knowledge preconditions to players’
announcements. Such preconditions are always epistemic, as agents only announce what they
know to be true. Also, unsuccessful updates — formulas that become false because they are
announced — cannot be made visible in the way they have to be checked in MCK: the analogue
is a conditional formula where the antecedent is also a subformula of the temporal consequent.
On the other hand, MCK allows a very natural formalization of protocols — this is not, or
less, possible in DEMO or MCMAS. The ‘fully interpreted system’ approach of MCMAS is
very transparent, but the models that need to be built are ‘very’ large: (automated input of)
thousands of lines of code, as opposed to (manual input of) about a hundred lines of code
in MCK. More than anything, this case-study increased our insight into the state of the art
in epistemic model checking, and our understanding of the theoretical issues involved in card
cryptography, emerging from the need to reformulate these issues in different logics.

7 Conclusions

We have implemented the five hand protocol to solve the Russian Cards problem in the
model checkers MCK, DEMO, and MCMAS. Dynamic epistemic requirements can be easily
reformalized in temporal epistemic terms, a necessary requirement for formalization in MCK
and MCMAS. The model checkers vary in how easy, or difficult, it is to build the initial
epistemic state, in how difficult it is to formalize announcements and execute them in that
initial state, and in how to verify protocol properties. We intend to pursue this investigation
by implementing more complex protocols and verifying more complex properties for such ‘card
cryptography’, and generalize it to the level of interpreted systems with agent dependencies,
where groups of agents aim to share their local state value while keeping it a secret from the
remaining agents.
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