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PERMUTATIONS CONTAINING MANY PATTERNS

M. H. ALBERT, MICAH COLEMAN, RYAN FLYNN, AND IMRE LEADER

Abstract. It is shown that the maximum number of patterns
that can occur in a permutation of length n is asymptotically 2n.
This significantly improves a previous result of Coleman.

1. Introduction

Given a sequence t = t1, t2, . . . , tk of distinct elements from some totally
ordered set, there is a unique permutation τ of [k] = {1, 2, . . . , k} with
the property that for all 1 ≤ i, j ≤ k, ti < tj if and only if τ(i) < τ(j).
We call τ the pattern of t. For example, the pattern of 5, 10, 2 written
in one line notation is 231. In other words, the sequence representing
τ is obtained from t simply by replacing each element of t by its rank
in t.

Let σ be a permutation of length n, written in one-line notation as
σ(1)σ(2) · · ·σ(n), and thought of as a sequence of length n. For each
non-empty subset X of [n] define σX to be the pattern of that subse-
quence of σ whose indices belong to X. Define:

P (σ) = {σX : ∅ 6= X ⊆ [n]}.
That is, P (σ) is the set of patterns that occur in σ. Also define h(n)
to be the maximum value of |P (σ)| taken over all permutations σ of
length n.

Trivially, h(n) ≤ 2n − 1. Slightly more precisely, for any permutation
σ of length n:

(1) |P (σ)| ≤
n

∑

k=1

min

(

k!,

(

n

k

))

since not more than k! patterns of length k can occur. However, the
expression on the right hand side of this inequality is easily seen to be
asymptotically 2n. At the 2003 conference on Permutation Patterns,
Herb Wilf raised the issue of determining the (asymptotic) behaviour
of h(n), and exhibited a sequence of permutations which established
that h(n) exceeded the nth Fibonacci number. Micah Coleman then
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demonstrated in [1] a sequence of permutations πn, for n a perfect
square,1 for which:

|P (πn)| > 2n−2
√

n+1.

Of course this establishes that h(n)1/n → 2 (for all n, not just perfect
squares, using the fact that h(n) is non decreasing). However, this left
open the question of whether or not h(n)/2n tends to 1 as n tends to
infinity.

In this paper, we refine the counting arguments concerning the number
of patterns in πn, for n an even perfect square, and then extend the
construction to all other values of n, in order to show that |P (πn)|/2n →
1. Indeed, we will obtain:

h(n) > 2n
(

1 − 6
√

n 2−
√

n/2

)

for all positive integers n.

2. The main construction

Let k be a positive integer and let n = 4k2. Let s be the sequence:

s = (2k) (4k) (6k) · · · (4k2)

and consider the permutation πn which in one line notation is defined
by:

πn = s (s − 1) (s − 2) · · · (s − 2k + 1).

Here s − i indicates the sequence obtained by subtracting i from each
element of s. Generally, we will suppress the subscript on πn when
there is no risk of confusion. Informally, the graph of π is obtained by
taking a standard orthogonal 2k × 2k grid and rotating it slightly in
the clockwise direction around its lower left hand corner. We associate
to each subset X of (the indices of) π a 2k×2k 0-1 matrix, MX , whose
1 entries correspond to the elements of the subset. We also view MX

as being partitioned into four k × k submatrices (called the corner

submatrices) in the usual way, that is, so that they form a 2× 2 block
decomposition of MX . We say that X (or MX) is ample if each k × k
corner submatrix of MX has no zero rows or zero columns. An example
is shown in Figure 1.

Proposition 1. The number of ample matrices is greater than

2n

(

1 − 4
√

n

2
√

n/2

)

.

1We have adjusted the notation slightly from that of [1] — what was there called
πk we are calling πk2 so that the subscript is equal to the length of the permutation.
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Figure 1. The graph of the permutation π64, an ample
subset of its elements indicated by filled circles, together
with the corresponding matrix divided into its corner
submatrices.

Proof. Recall that n = 4k2. Suppose that we sample an n × n 0-1
matrix uniformly at random from among all n × n 0-1 matrices. The
probability that any particular row or column sum of one of the corner
submatrices is 0 is 1/2k. There are 8k such sums which must all be
non zero in order for the matrix to be ample. However, the probability
that any of them are 0 is less than 8k/2k. So, the probability that all
are non zero is greater than

1 − 8k

2k
= 1 − 4

√
n

2
√

n/2
,

which is equivalent to the stated result. �

Proposition 2. Let X and Y be ample sets. Then πX = πY implies

X = Y .

Proof. We must show that, if X is ample, then it can be reconstructed
from just the permutation πX . Since X is ample, the column sum
of both the top half and bottom half of each column of MX is non
zero. Therefore, there are 2k − 1 descents in πX , corresponding to
the transitions between columns of MX . Thus, we can associate the
elements of πX with their correct columns. However, this argument
applies equally well to the rows of MX — as is most easily seen by
considering π−1. Determining the row and column that represents each
element of πX is exactly the same as reconstructing X. �

Combining these two results we have:
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Theorem 3. If n is an even perfect square, then

h(n) > 2n

(

1 − 4
√

n

2
√

n/2

)

.

We will refer to the second term inside the parentheses above as the
correction term for this estimate.

3. Refinements

It is easy to extend the above arguments to give lower bounds on h(n)
that are valid for all values of n. We can do this by using the basic
construction of the previous section, and adding some extra elements
in appropriate places to construct permutations πn of length n that
contain many patterns.

First suppose that n = 4k2 + l where 0 < l < 2k. Take the grid
associated to the permutation π4k2 and add a (partial) column on the
right hand side at the bottom containing not more than k elements,
and, if necessary, a partial row on top at the right hand side, also not
containing more than k elements, so that the total number of elements
added is l. As before, rotate this grid slightly, and view the result as
the graph of a permutation, πn. An example is shown in Figure 2. Call
the elements of this permutation arising from the original grid defining
π4k2 the main elements, and the remaining elements the extra elements.
Define a subset of the indices of πn to be ample if its intersection with
the main elements would be ample for π4k2 .

Figure 2. The graph of the permutation π70, together
with the matrix associated with a particular ample sub-
set of its elements indicated by filled circles.
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Proposition 4. Let X and Y be ample sets. Then πX = πY implies

X = Y .

Proof. As before, we must describe how to reconstruct X from πX .
However, we can identify the extra elements (and hence the main el-
ements) in πX . If there are any belonging to the new partial column,
then they are exactly the elements following the (2k)th descent, while
those belonging to the new partial row, if such exist, are exactly those
lying above the maximum element of the first k columns. Since the
main elements form an ample subset of π4k2 we can use the preceding
result to identify their values. Once the values of the main elements
are known, so are the values of the extra elements. �

Therefore, for such n,

h(n) ≥ |P (πn)| > 24k2

(

1 − 8k

2k

)

2l.

Certainly k ≤ √
n/2, but also (2k + 1/2)2 > n so k > (

√
n − 1/2)/2.

Applying these estimates we obtain:

h(n) > 2n

(

1 − 29/4
√

n

2
√

n/2

)

.

This differs from our previous estimate by a factor of 21/4 in the cor-
rection term.

For n = 4k2 + 2k, we switch to a grid consisting of 2k + 1 columns
of size 2k and define πn appropriately. As in the previous section, we
define the four corner submatrices, except now those on the right hand
side of the matrix are k × (k + 1) instead of k × k. The probability of
a subset of the matrix not being ample is not as much as:

2(2k + 1)

2k
+

2k

2k
+

2k

2k+1
=

7k + 2

2k
.

Using the same bounds as before (which still apply) plus trivial esti-
mates for k ≤ 2 it is easy to check that the bound

h(n) > 2n

(

1 − 29/4
√

n

2
√

n/2

)

still applies in this case. We can proceed from this point with the half-
row/half-column construction again (possibly at a penalty of another
factor of 21/4 in the correction term) as far as n = (2k + 1)2. At this
point we pause for a detailed re-evaluation. In a (2k+1)×(2k+1) grid,
divided into corner submatrices of sizes k × k, k × (k + 1), (k + 1)× k
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and (k + 1)× (k + 1), the probability that a subset is not ample is less
than:

2k

2k
+ 2

(

k

2k+1
+

k + 1

2k

)

+
2(k + 1)

2k+1
=

6k + 3

2k
.

Since k = (
√

n − 1)/2, this equals

(3
√

2)
√

n

2
√

n/2
.

We can pursue these constructions through to the next even perfect
square, and, allowing for a further penalty of

√
2 in the correction

term (which we leave to the reader to verify is generous), obtain:

Theorem 5. For all positive integers n,

h(n) > 2n

(

1 − 6
√

n

2
√

n/2

)

.

4. Conclusions

It would be interesting to know just how close to 2n the value of h(n)
actually is. A more careful analysis of the various steps in moving from
one square grid to the next might well provide a small improvement in
the constant factor of the correction term of our estimate. Similarly,
an analysis of conditions weaker than ample which none the less would
allow for a reconstruction result might actually improve the asymp-
totic form of the correction term. However, the simplicity of the main
construction (for n = 4k2) and of the proof that ample subsets can be
reconstructed from their patterns, together with the lack of any great
need for more precise estimates of h(n) somewhat dampens our enthu-
siasm for further investigations in that direction. Of perhaps greater
interest would be to investigate the distribution of the statistic |P (π)|
as π ranges over permutations of length n.

We would like to thank Herb Wilf for having posed such an interesting
problem!
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