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Abstract

View-Oriented Parallel Programming (VOPP) is a novel parallel programming model which
uses views for communication between multiple processes. With the introduction of views, mutual
exclusion and shared data access are bundled together, which offers both convenience and high
performance to parallel programming. This paper presents the performance results of VOPP on
Chip-Multithreading processors, e.g. UltraSPARC T1. We have compared VOPP with MPI and
OpenMP in terms of programmability and performance. An implementation of helper threaded
prefetching for VOPP has also been discussed and evaluated.

Key Words: Chip-Multithreading, View-Oriented Parallel Programming, OpenMP, Message Pass-
ing Interface, Helper Threaded Prefetching

1 Introduction

Computer architectures and the computer industry are beingtransformed by the advent of multi-core
and Chip-Multithreading (CMT) technologies [20]. These technologies offer massive increase in pro-
cessing capacity on a single computer and open new opportunities for system- and application-level
software. With conservative estimation, in the near futurethere will be hundreds or even thousands
of cores in a single, economical chip [2].

The challenge for us is how to efficiently utilize this computing power. This task will eventually
fall on the shoulders of application programmers, who should make sure that their programs run
correctly and efficiently on multiple processors. In this sense, parallel programming models and
related environments become more important to the programmers.

To facilitate programmability, the underlying parallel programming models should be friendly to
programmers. A well designed, easy model will help increasethe productivity largely. On the other
hand, it should perform well in efficiency and scalability, which is needed to guarantee a fairly good
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speedup for most applications. Traditionally, there are two camps in parallel programming method-
ologies. One is based on message passing such as MPI, and the other is based on shared memory
which is used for communications between computing entities such as processes.

Parallel programming with message passing is commonly known as difficult and complex, espe-
cially when there are hundreds of processes communicating with messages. Programmers are bur-
dened with the task of orchestrating inter-process communication through explicit message passing.
While MPI is often ade factostandard for distributed memory systems due to its high performance,
it is less efficient for shared memory systems. The reason is that the advantage of message passing
has turned out to be a potential disadvantage due to its overhead of data transfer in a shared memory
system.

Using shared memory for communications between processes is natural and straightforward for
programmers, but the problems such as data race and deadlockhinder parallel programming with
shared memory. Recently, OpenMP becomes ade factostandard for shared memory environments
because of its ease of use. However, it suffers from performance penalties due to the fork-join pat-
tern in its compiler-automated code. Also it is not always convenient in programmability, as to be
discussed in Section 2.2.

View-Oriented Parallel Programming (VOPP)[8, 11] is a recently proposed parallel programming
model which has demonstrated its high performance on cluster computers[9]. This paper will show
that, as a model based on shared memory, VOPP can achieve goodperformance on shared memory
systems such as multi-core systems, besides its advantagesin programmability.

In this paper, with the CMT technology of UltraSPARC T1 (aka Niagara)[1], we will compare the
performance of the above three models and make detailed discussions in terms of both programmabil-
ity and performance. Additionally, the unique features of VOPP enable us to adopt the idea of helper
threaded prefetching [14], in order to reduce memory accesslatency of shared data.

This paper has the following contributions. First, we present the first implementation of VOPP on
multi-core processors, which provides an alternative parallel programming environment for shared
memory systems. Second, we use four applications written inVOPP, MPI, and OpenMP to compare
the performance of these three parallel programming styleson a CMT system. Third, we give a
detailed analysis on the differences between VOPP and the other two popular parallel programming
environments. The analysis is based on both experimental results and programmability. Fourth, we
implement helper threads for prefetching data for parallelprograms and give a performance evaluation
and analysis of the helper threads.

The rest of this paper is organized as follows. Section 2 briefly describes the VOPP programming
style and compares it with that of MPI and OpenMP. In Section 3, we introduce the implementation of
VOPP on CMT with a helper threaded prefetching feature. Section 4 presents the performance results
and analysis. Finally, our future work is suggested in Section 5.

2 View-Oriented Parallel Programming (VOPP)

In VOPP, shared data is partitioned into views. A view is a setof memory units (bytes or pages)
in shared memory. Each view, with a unique identifier, can be created, merged, and destroyed at
any time in a program. Before a view is accessed (read or written), it must be acquired (e.g., with
acquireview); after the access of a view, it must be released (e.g. withreleaseview). The most
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significant property for views is that they do not intersect with each other.
The following classes of views are identified in [8] for parallel programming: Single-Writer View

(which includes Consumable View and Atomic View), Multiple-Writer View, and Automatically De-
tected View.

There are a number of requirements for VOPP programmers. First, the programmer should partition
shared data into a number of views according to the data sharing pattern of the parallel algorithm.
Second, each view should consist of data objects that are always processed as an atomic set in the
program. Third, when any data object of a view is accessed, view primitives such asacquireviewand
releaseviewmust be used (refer to [8] for details of the primitives).

VOPP allows programmers to participate in performance optimization through wise partitioning of
shared data into views. Views can be carefully designed and tuned in order to reduce the communica-
tion overhead between processes. VOPP does not place any extra burden on programmers since the
partitioning of shared data is an implicit task in parallel programming. This task is just made explicit
in VOPP by adding view primitives, which renders parallel programming less error-prone in handling
shared data.

The focus of VOPP is shifted more towards data management (e.g. data partitioning and sharing),
instead of mutual exclusion and data race as in traditional lock-based parallel programming. Mutual
exclusion is automatically achieved when a view is acquiredusingacquireview.

Some programming interfaces that bundle mutual exclusion and data access have also been pro-
posed [3, 12, 13]. CRL (C Region Library)[13] focuses on low-level memory mapping, and limits
a region to contiguous memory space. In contrast, a view in VOPP is a higher level shared object
whose memory space may be non-contiguous, e.g., Automatically Detected Views. Entry Consis-
tency (EC)[3] and Scope Consistency (ScC) [12] also bundle mutual exclusion and data access like in
VOPP. However, their programming interfaces are very different from VOPP (refer to [9] for details).

Bundling mutual exclusion and data access together is a convenient way for parallel programming.
It has the following advantages. First, programmers can be relieved from data race issues. In VOPP,
when a view is acquired, mutual exclusion is automatically achieved, so it is not possible for other
processes to access the same view at the same time. If a view isaccessed without being acquired,
either the programmer can be notified of the problem by the compiler with some VOPP related sup-
port, or the run-time system can report the problem with the support of the underlying virtual memory
system. Second, debugging is more effective. In VOPP, viewsare the only shared data between
processes. Since views can be tracked down with view primitives, they can be easily monitored by
a debugger while a program is running. Third, since the memory space of a view can be known,
view access can be made more efficient with cache prefetchingtechnique. We will demonstrate this
advantage shortly in this paper.

2.1 Comparison with MPI

MPI is different from VOPP in that it is based on message passing. Although MPI is difficult for
programmers, it is very suitable and effective to utilize the computing power on computers that are
connected by networks, such as cluster computers. Since it is the programmers’ responsibility to
perform the actual message passing, the overhead of data transfer can be minimized by carefully
selecting the data to be transferred.

From programming point of view, VOPP is more convenient and easier for programmers than
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MPI, since VOPP is still based on the concept of shared memory(except that view primitives are
used whenever shared memory is accessed). Like MPI, VOPP provides experienced programmers
an opportunity to finely-tune the performance of their programs by carefully dividing the shared data
into views.

Since partitioning of shared data into views becomes part ofthe design of a parallel algorithm
in VOPP, VOPP offers the potential to make VOPP programs perform as well as MPI programs on
clusters. A view in VOPP can be regarded as a message with transparent location, and therefore a
VOPP program can be finely tuned so that its behavior can matchthat of its MPI counterpart. That is,
a VOPP program can imitate the MPI program in a way that wherever there is data sharing through
message passing between processors in the MPI program, the VOPP program can allocate a view for
the shared data and uses view acquisition to get the data. In this way, the overhead of message passing
for VOPP on distributed shared memory (DSM) can be almost thesame as that in MPI program, since
the cost of view acquisition is almost the same as that of sending and receiving a block of data in
MPI. We have demonstrated that the performance of VOPP is comparable to that of MPI on cluster
computers[9, 11]. However, VOPP still suffers from performance penalties incurred by certain critical
routines such as barrier[9], which is common for DSM on cluster computers.

Fortunately, the shared memory model has been attracting more and more attention with the advent
of CMT processors, which provide physical shared memory andshared caches. Since all processes
share the same physical memory, the high overhead of maintaining memory consistency that hin-
ders the speedup of parallel programs on DSM can be entirely removed. Therefore, shared memory
models can take full advantages on these systems. That means, besides a guaranteed much better
programmability, they can even overwhelm the message passing model in terms of performance. A
typical producer/consumer problem written in both VOPP andMPI, shown in Figure1(a) and 1(b), can
demonstrate their significant difference in programming style. In these programs, a master process
produces the data, and then distributes it for other processes to consume. TheacquireRviewprimitive
in Figure1(a) is acquiring a view for read-only accesses.

        /*produce the data*/ 

}

/*do something with the data*/

if (0==proc_id) {
        aquire_view(view_id);

        release_view(view_id);

barrier(bar_id);
acquire_Rview(view_id);

release_Rview(view_id);

(a) VOPP style program

        /*produce the data*/
if (0==rank) {

               send(data,i);
        for (i=1; i<nprocs; i++) { 

        }
}
if (0!=rank) {

}
/*do something with the data*/

        recv(data,0);

(b) MPI style program

Figure 1: producer/consumer program written in VOPP and MPI

These two simple programs are also used to test the extra overhead of data transfer in MPI on shared
memory systems. Their performance results are shown in Section 4.3, which suggests that VOPP is
more scalable than MPI on multi-core systems.
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2.2 Comparison with OpenMP

As a popular shared memory model, OpenMP has been appreciated due to its ease of use. For certain
types of programs, a few OpenMP directives will “magically”turn a sequential program into a parallel
one.

Although both OpenMP and VOPP are based on shared memory, they are essentially different in
methodology. In OpenMP, everything is shared by default. While this concept sounds straightforward
for a shared memory model, it brings performance penalties especially on distributed shared memory
(DSM). Although an effort is being made to extend OpenMP for cluster computers[7], its performance
is still not satisfactory. In contrast, while VOPP does use shared memory for communications between
processes, it emphasizes the use of private memory wheneverpossible. By creating and acquiring
views explicitly, programmers are reminded of the cost of data sharing and are discouraged of using
unnecessary shared data. This philosophy and its efficient View-Based consistency protocol help
VOPP achieve a high performance on DSM.

As a shared memory model, OpenMP can bring net performance gain for many sequential programs
on shared memory systems, such as multi-core systems. Whilesequential code likefor loops can be
parallelized by OpenMP compiler, there are programs that cannot be parallelized in such a convenient
way. A classical example in artificial intelligence is the search of a decision tree. Pruning is used while
the tree is explored. Pruning could largely reduce the computation, but it results in an unpredictable
amount of work to do. Since it brings data dependency in the program, it is hardly parallelizable by
OpenMP in the convenient way. A typical code pattern for sucha program is shown in Figure 2.

do{
    /*calculate with data in current
node*/ 
    /*calculate whether perform
pruning*/
    if (!prun){
           node−>rtree=new_rnode;
    }
    node=node−>ltree;
}while(searchnotfinished);

Figure 2: Generation of a tree with pruning

bucksort(){
    for(i=0; i<count; i++)
         key_den[key[i]]++;
    

         key_den[i]+=key_den[i−1];
        
    for(i=0;i<count;i++)
         rank[i]=−−key_den[key[i]];  
}

    for(i=1; i<MAXKEY;i++)

Figure 3: A typical bucketsort algorithm

With VOPP, we can parallelize the program in Figure 2 based ona producer/consumer pattern.
When anrtree is identified, it is put into a shared task queue. All processes look up the queue for new
tasks. Since this problem is already under discussion in recent work on OpenMP, hopefully it will be
solved in the upcoming OpenMP Specification 3.0.

Another example is a bucket sort program in Figure 3. This program aims to compute the rank of
each integer in an arraykey[]. At first glance, the program looks perfect for OpenMP because it has
threefor loops. However, by carefully examining the behavior of the program, we find the second
loop cannot be parallelized with OpenMP directives due to data dependency. Furthermore, the first
loop cannot be parallelized as well, becausekey[i] is a random value and accessingkey den[key[i]]
concurrently incurs data races. While the third loop has thesame data race problem if parallelized,
the data races in that loop only affect the rank of the integers of the same value. From this example,
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we also realize that novice OpenMP programmers may easily get such programs parallelized incor-
rectly by directly applying OpenMP directives. In fact, Theseemingly easy OpenMP interfaces have
incurred a lot of traps that may result incorrectnessmistakes for new parallel programmers[21]. With
VOPP, we can parallelize the program by dividing the key array into several parts. After the first and
the second loop are done by each process, all processes work in parallel to construct a sharedkeyden
using the values of their localkey denarray.

Of course, the above two problems can also be addressed by OpenMP by hardwiring the parallel
code with parallel sections. However, in this way, it falls back to the traditional lock-based model,
which exposes the problems such as data race conditions to the programmers and is not what OpenMP
is supposed to advocate.

In terms of performance, OpenMP suffers from penalties due to spawning and maintaining threads
dynamically. While this overhead can be amortized in coarse-grained parallelism, it becomes promi-
nent for fine-grained parallelism and for applications withsmall data size. This problem is demon-
strated in Section 4.2.

3 Implementation of VOPP

We have implemented VOPP primitives [8] in Linux kernel 2.6.20 running on UltraSPARC T1. They
are implemented as a kernel module supporting a shared memory device. This device provides both
shared memory and synchronization mechanisms for VOPP. UltraSPARC T1 has eight cores, each of
which can support four hardware threads. In total, it can support up to 32 simultaneous threads. There
is a 12-way 3MB L2 cache in the chip, shared by all cores. Each core has a 16KB instruction cache
and a 8KB data cache (L1 caches) and is clocked at 1.0GHz. There are four DDR2 channels with a
total throughput of 23GB/s for accessing RAM [1].

3.1 Implementation principle

VOPP is implemented with multi-processing support. Multiple processes are created when a program
is started with the primitiveVdc startup. We prefer multi-processing to multi-threading, because we
believe independence and isolation are better than sharingin parallel computing. In the same line,
we encourage more independence and isolation than sharing in VOPP. With multi-processing, we
can keep the sharing of data among processes to the minimal, since the sharing of data in VOPP
programs can only be achieved through views. In contrast, threads have lots of unnecessary sharing
which expose programs to potential problems like data race condition. By the way, the overhead of
multi-processing has been much reduced with the Light-Weight Process (LWP) and Copy-On-Write
(COW) techniques.

VOPP conforms to this principle of minimizing sharing. Every time there is a sharing of data,
a view has to be created by the programmer. Every time a shareddata object is accessed, view
primitives have to be used. In this way, sharing is discouraged and the programmer is reminded to
carefully budget the amount of sharing.

On cluster computers, minimizing data sharing helped VOPP reduce large amount of data transfer
and false sharing effect [10]. This principle also benefits from the shared cache (L2 cache) on multi-
core platforms. Since minimizing the shared data can reducethe footprint of the data in memory, the
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shared data can be more often kept in the cache instead of the RAM for fast accesses.

3.2 Helper Threaded Prefetching for VOPP

In order to help VOPP programs tolerate the increasing gap ofmemory latency, we have tried to take
advantages of the prefetching techniques [4–6, 14, 15, 17–19], which have received much attention
recently with the advent of chip-level multithreading technology. To prefetch data accurately and
efficiently, efforts are put into region selection, which identifies the appropriate regions to include a
piece of helper code, and phase detection which identifies the right timing to run the helper code [17].
However, without the help of the above techniques, VOPP can provide the right information for both
the prefetching regions and the prefetching timings. When aview is acquired, it is almost for sure
that the memory space of the view is about to be accessed due tothe view-oriented feature of VOPP.
When a view is created with thealloc viewprimitive, the address and the length of the memory space
of the view are recorded. With this information, we can prefetch the memory space of a view at the
view acquiring time.

For our view prefetching, we have tried to use the PREFETCH instruction provided by Ultra-
SPARC T1. The instruction can prefetch a cache line to L2 cache each time it is executed. However,
UltraSPARC T1 only allows three PREFETCH instructions in flight at the same time. This limi-
tation renders it impossible to use them inacquireview because a view can be very large and the
PREFETCH instructions cannot preload them into cache in time.

An alternative solution is a helper thread that does prefetching for a task thread. Helper threaded
prefetching is a technique which proved to be promising on multi-core and hyper-threading plat-
forms [14, 15, 18]. With the help of the view information discussed above, a helper thread can adapt
to the dynamic behavior of a running application. That means, it works effectively despite a different
input data set each time an application is given. The communication between the helper thread and
the task thread is achieved by a shared variable that contains the identifier of the view being acquired.
In our implementation, we make the helper sleep in a wait queue initially. When a view is being
acquired, the task thread wakes up the helper, which then checks the shared variable to find out which
view should be prefetched.

In previous research work, helper threaded prefetching is used in both chip-level multiprocessors
(CMP), which have multiple cores inside one chip, and Simultaneous Multi-Threading (SMT) [22]
processors, which physically support simultaneous threads in a single core. The implementation of
a helper with a hardware thread inside an SMT processor is called tightly-coupled helper, while the
helper implemented with another core in a CMP is called loosely-coupled. It had been suggested
that a tightly-coupled helper incurs the contention of the same core that is shared among multiple
threads [14, 18]. However, a helper thread that is located inthe same core as the task thread can
actually help prefetch the data into the L1 cache which is much closer to the CPU than the L2 cache.
Although the difference of the speed between the L1 cache andthe L2 cache is not so significant as that
between the L2 cache and the memory, there are chances that tightly-coupled helpers would provide
further performance gain when we perform read access (e.g.acquireRview). Previous research work
could not compare and evaluate both the loosely-coupled andthe tightly-coupled approaches with
experimental results. Fortunately, with the CMT technology in UltraSPARC T1, which supports both
CMP and SMT, we can now evaluate them on the same architecture. The experimental results are
shown in Section 4.4.
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Using helper threads to increase the speed of task threads isa promising approach to high per-
formance computing on multi-core systems. It can offer further performance gain on top of parallel
computing technology. Since there will be hundreds (maybe thousands) of cores in a chip, a helper
thread may well use some idle core to speed up a sequentially executed task thread.

4 Performance evaluation

The performance evaluation is divided into four parts. First, we use four applications to compare
the general performance of VOPP (without use of the helper threads) with MPI and OpenMP. In the
second part, we use the Gaussian Elimination problem with small data sizes to compare the perfor-
mance of VOPP and OpenMP for fine-grained parallelism. In thethird part, the producer/consumer
programs shown in Figure 1 are used to demonstrate the overhead of data transfer in MPI. Finally, we
use a sum program to demonstrate the performance of VOPP withthe helper threads.

All performance tests are carried out on Sun Microsystems’ T2000 server. The server has Ultra-
SPARC T1 as its processor and 16GB RAM. Its operating system is Linux 2.6.20 for sparc64. We
use a gcc version 4.2.1, which supports-fopenmpoption to compile OpenMP programs. MPICH2 is
used to compile and run MPI programs. All the applications inSection 4.1, 4.2 and 4.3 are compiled
with -O2 optimization switch. However, in Section 4.4, in order to make sure the compiler does not
disturb the memory access pattern, we do not use any optimization provided by gcc.

4.1 VOPP performance

In this part of our evaluation work, the applications we use are Integer Sort (IS), Gauss Elimination
(GE), Successive Over-Relaxation (SOR), and Neural Network (NN). Since UltraSPARC T1 has only
one floating point unit, we replaced floating point calculations with integer calculations without af-
fecting the correctness of these programs, in order to avoidthe bottleneck problem of the floating
point unit in T1. We only use up to 30 processes in our experiments in order to avoid interference
from other system processes.

IS ranks an unsorted sequence of N keys using a bucket sort algorithm shown in Figure 3. The
rank of a key in a sequence is the index valuei that the key would have if the sequence of keys were
sorted. All the keys are integers in the range[0, Bmax]. In order to guarantee the effectiveness of the
parallelization, we do not put any restriction on the order of the keys with same value. As discussed
in Section 2.2, this approach makes it possible for OpenMP toparallelize the third loop, despite the
potential data race which only affects the rank of the integers of the same value. In our test, the
problem size is226 integers with aBmaxof 2

15, and 40 iterations are performed. The speedup of IS is
shown in Figure 4.

GE implements the Gauss Elimination algorithm in parallel.In our test, the matrix size is4000 ∗
4000. The speedup of GE is shown in Figure 5.

SOR uses a simple iterative relaxation algorithm. The inputis a two-dimensional grid. During each
iteration, every matrix element is updated to a function of the values of its neighboring elements. We
use local buffers for those infrequently-shared data in theVOPP program. In contrast, we use shared
memory (a set of views) for those frequently-shared data such as the boundary elements shared by
two adjacent processes. In our test, a matrix with a size of8000 ∗ 4000 is processed in40 iterations.
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The speedup of SOR is shown in Figure 6.
NN trains a back-propagation neural network in parallel using a training data set. After each epoch,

the errors of the weights are gathered from each processor and the weights of the neural network are
adjusted before the next epoch. The training is repeated until the neural network converges or it
reaches the max epoch number. In our test, the size of the neural network is9 ∗ 40 ∗ 1 and the
maximum number of epochs is 200. The speedup of NN is shown in Figure 7.
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Figure 6: Speedup of SOR

The performance results of these applications show that VOPP outperforms both MPI and OpenMP,
especially when the number of processes is large. The results are consistent with the prior discussions
in Section 2. For example, for the GE application, VOPP performs up to 18% better than OpenMP
and up to 16% better than MPI for 30 processes. The program pattern in GE is similar to the producer-
consumer pattern in Section 2.1. Every time a process finishes the calculation of the pivot row, all
other processes begin to process their rows with the pivot row. GE in MPI should thus transfer the
pivot row to all other processes, which affects its performance. OpenMP also performs worse than
VOPP in GE due to the overhead of dynamically maintaining threads with fork-join patterns. Al-
though we have optimized the OpenMP program by merging different loops into one parallel section,
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Figure 7: Speedup of NN

there are still many fork-joins because of the large number of iterations in the outer loop. The over-
head of data transfer in MPI and the fork-join overhead in OpenMP can also be applied to other
applications, which differ in these overheads due to the different data sharing patterns they follow.
These overheads are amortized in the programs when the granularity of parallelism is large. They are
more prominent for fine-grained parallelism, which will be shown shortly in the next section.

The only exception from the above results is IS in OpenMP. As discussed in Section 2.2, to follow
the typical way of OpenMP programming, we can only parallelize the third loop, which makes the
speedup of the program is lower than2 due to Amdal’s Law.

4.2 OpenMP for fine-grained parallelism

To demonstrate the performance problem of OpenMP with fine-grained parallelism, we show the
running time of the GE application with various number of processes working on a matrix of size
200 ∗ 200 in Figure8(a). Also we show the running time of GE with various matrix sizes ranging
between100 ∗ 100 and1000 ∗ 1000 using 16 processes in Figure8(b). In order to make an optimal
OpenMP program, we merge three separate loops into one parallel section so that OpenMP generates
threads only once in one iteration.
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(b) different data size

Figure 8: Performance Comparisons

We can see from Figure 8(a) that OpenMP reaches its peak of speedup much earlier than VOPP
when dealing with the small data size. From Figure 8(b), we can also find that when we decrease
the problem size, the time cost by OpenMP is decreasing more slowly than VOPP, and the time
difference between VOPP and OpenMP becomes larger. The difference presented by the curve is
calculated using the time of OpenMP divided by the time of VOPP. When we perform this test on
a 100*100 matrix, OpenMP is 4.5 times slower than VOPP. Therefore, VOPP is more scalable than
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OpenMP for fine-grained parallelism.

4.3 Overhead of data transfer in MPI

Figure 9(a) and 9(b) show the time cost of the producer/consumer program mentioned in Section 2.1.
They depict the running time for various number of processesand various data sizes, respectively.
Note that we only demonstrate the time cost of data sharing between the producer and the consumers,
which excludes the computation time.
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Figure 9: Performance Comparisons

We use 1000 integers as the shared data in Figure 9(a), where the increasing time cost of both
programs is expected because synchronization overhead increases when the number of processes
increases. The overhead of VOPP is attributed to the barriers synchronizing the processes, and is
relatively small. However, the communication overhead forMPI becomes not negligible when the
number of processes is large. Data transfer becomes a significant overhead in the MPI program when
more processes are involved in message passing. We have tried to use a broadcast operation to reduce
the overhead in the MPI program. However, the program using the broadcast operation performs even
worse in our experiments, of which the reason is unknown yet.

Figure 9(b) shows the time cost with variable data sizes. Thetime cost of MPI increases signifi-
cantly because it has to do more data transfers. However, there is no extra overhead for VOPP because
there is no data transfer and the overhead ofacquireRviewis trivial and constant.

4.4 Performance of the helper thread

To evaluate our preliminary implementation of helper threads, we divide our experiments into two
parts. The first part involves cache misses and the second part involves general performance of the
helper threads.

The benchmark program is a sum program in real world. It adds all the integers from a shared
array. It is selected because it is a memory-intensive program that has a regular memory access
pattern, which makes it an ideal program to show the effectiveness of helper threads due to its regular
memory access pattern.

Since Linux dynamically schedules the processes to any physical cores, to perform our test, we
have to bind the processes to specific physical cores with thesetaffinity() system call in Sparc64
Linux.
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In order to get accurate profiling of cache misses, the L2 cache and the L1 caches are thoroughly
cleared before the computation starts. Since there are no libraries for performance profiling for Ul-
traSPARC T1, we have to access directly the two performance counters, namely PIC and PCR, by
calling theperfctr()system call in Sparc64 Linux.

Cache misses are shown in Table 1 and 2 for two data set sizes, 4K and 100K, which are used
for the integer array in the sum program. The results in the tables are collected for the sum program
running with one task thread and one helper thread (if helperthreaded prefetching is used).

Helper task thread helper
Type L1 L2 Tick L1 L2
Vtc 10 1 25685 245 64
Vlc 252 1 28484 64

Vnon 252 63 34362

Table 1: cache misses, 4K data

Helper task thread helper
Type L1 L2 Ticks L1 L2
Vtc 482 131 510084 5875 1447
Vlc 6278 1 567828 1564

Vnon 6278 1563 703808

Table 2: cache misses, 100K data
In the above tables,Vtc, Vlc, andVnon stand for VOPP task thread with a tightly-coupled helper

thread, VOPP task thread with a loosely-coupled helper thread, and VOPP task thread without any
helper, respectively. The columnsL1 andL2 are the L1 and L2 cache misses. The columnTicks is
the number of CPU ticks cost by the task thread.

From Table 1 and 2, we can see that the helper thread can significantly decrease the CPU ticks of
the task thread. Compared withVnon, the tightly-coupled helper can dramatically decrease both L1
and L2 cache misses, while the loosely-coupled helper can only decrease L2 cache misses.

However, when the data set size is larger, e.g. 100K in Figure2, the count of L2 cache misses for
Vtc is higher than that ofVlc, and its L1 cache misses is also increasing. This is largely due to the
interference between the task thread and the helper thread competing for resources in the same core.
Nevertheless, there is a significant performance gain by thetightly-coupled helper thread according
to the CPU ticks, which is attributed to the decrease of L1 cache misses.

We can also notice that no matter whether we run the helper thread on the same core or not, the
total number of L2 cache misses from both the task thread and the helper thread is larger than that of
Vnon. This also applies to L1 cache misses. The above result is expected due to two reasons. One is
the interference between the two simultaneous processes inthe same core. The other is the inaccurate
prefetch performed by the helper.

Since our experimental results have shown that tightly-coupled helper threads can perform better
for read accesses, we currently adopt the tightly-coupled approach for theacquireRviewin our imple-
mentation of VOPP. However, since L1 cache is write-through, the tightly-coupled helper cannot pro-
vide the benefits mentioned above and will incur more contentions. Instead, we use loosely-coupled
helpers for write accesses. The performance benefit from thereduced cache misses is reflected in the
improved performance of the parallelized sum program, which is shown in Figure 10.

Figure 10 shows the performance of a simple sum program that adds up 25,000 integers randomly
selected from an array of 100,000 integers.Vtc, Vlc, Vnon have the same meaning as above. We only
use up to 4 cores to perform this test forV OPPlc, because there are only 8 cores in the T1 chip and
thus we can only have 4 cores for the task threads while the other 4 cores are used by the helper
threads. For comparison purposes, we show the time cost of the corresponding OpenMP program,
which suffers from performance penalties due to the fine-grained parallelism in the sum program.

For VOPP with helper threaded prefetching, we can see a further improvement of performance.
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Figure 10: performance of helper threaded prefetching for VOPP

With tightly-coupled helper threads, VOPP achieves an evenbetter speedup. However, when the
number of processes is increasing, the performance gap betweenVnon andVlc is decreased. This is
expected because when the data loaded into each process becomes smaller, the helper threads are less
effective in terms of cache prefetching. This also applies to the decreased performance gap between
Vtc andVnon, which is also partially attributed to the high L2 cache misses ofVtc as mentioned above.

Due to limited time, we have not integrated the helper threads in other applications yet. Tests on
other benchmark applications with helper threaded prefetching will be carried out in our future work.

5 Conclusions and future work

We have presented an implementation of VOPP on a latest CMT processor, UltraSPARC T1. We
have shown the differences and advantages of VOPP compared to two popular parallel programming
models–MPI and OpenMP. Our experimental results show that VOPP is more scalable than MPI and
OpenMP on CMT processors. VOPP outperforms OpenMP for fine-grained parallelism. It also out-
performs MPI when there is large data sharing between processes such as in our producer/consumer
problem. We have also adopted helper threaded prefetching in our implementation, which enables
VOPP to achieve additional performance gain.

In the near future, we would like to test these programming models on other multi-core architectures
such as Intel Core 2 and AMD multi-core processors. Since theperformance of VOPP is better than
OpenMP on CMT processors and comparable to MPI on cluster computers [9], an integrated parallel
programming environment based on VOPP for multi-core clusters is desirable to replace the current
solution of combining OpenMP and MPI, which is both hard to program and error prone due to the
two completely different models.

Current VOPP helper threads can only load memory for regularaccess patterns. They cannot
guarantee a similar performance gain for applications withirregular memory access pattern. The
cache contention of simultaneous processes is another problem that should be solved when the shared
memory block is large. These factors can largely restrict the efficiency of prefetching in VOPP and
a more efficient prefetching strategy may still rely on a morespeculative approach [20]. We will
address these issues with some compiler support using the techniques introduced in some related
work [5, 14, 16].
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