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1 Introduction

Thielscher (1999) distinguishes two versions of the franoblem. Theepresenta-
tional versionis the problem of designing a logical language and a sensasiich
that domains can be described without making the relatidwden every action
and fluent explicit: basically, when there areactions andn fluents, the domain
description should be much smaller thar & x m. Theinferential versionof the
frame problem is more demanding: given a framework thatrimo@tes a solution
to the representational version, it is the problem of deeman “efficient” decision
procedure for reasoning in such a framework.

In this paper we consider the inferential version of the &gmoblem and investi-
gate how it can be solved based on what is currently the mastigosolution to the
representational frame problem, viz. successor statere@s introduced by Reiter
(1991). Reiter’s solution received a number of extensioieh s for concurrent ac-
tions (Gelfond et al., 1991), for probabilistic actions ¢(Baus et al., 1999), and for
knowledge and knowledge-producing actions (Scherl anc¢gwe, 1993, 2003).
We here also take into account the latter epistemic extang¥e will start from the
reformulation of Scherl&Levesque’s solution in (Lakemegad Levesque, 2004,
2005).

We focus on decision procedures, and therefore only considepropositional
case. In this case and in Reiter’s predicate logic formoiatine so-called proposi-
tional fluents only have situations as arguments, pttb(a, s)) reads p holds in
the situatiordo(a, s)’, where the situatiomo(a, s) results from the performance of
actiona in situations. Thensuccessor state axioniSSAs) are of the form

VXxvs ((p(do(x,s)) <
(x=a1 AY" (a1, p,8)) V-V (Xx=an AY" (an, p,S)) V
(P(S) A= (x=a1 AY™ (81, P,S)) A+ A= (X=8n AY (8m, P;S)))))

The formulay™ (&, p,s) characterizes the condition under whighmakesp true,
and the formulay™ (&, p,s) characterizes the condition under whighmakesp
false. These formulas have to baiform in § which in particular means that the
function symboldo does not occur in them.

The hypothesis underlying Reiter’s solution is that duenkertia it is “rare” that
actions change the truth value of fluents. This means thdbtheula on the right
hand side of the equivalence can be expected to be shortlotviothat the size
of the set of all SSAs can be expected to be of the order of th&euof fluents
m, and that it is thus much smaller than twice the product ohtlmaber of actions
and the number of fluents;2n x m. Therefore, SSAs count as a solution to the
representational frame problem.



Basic action theoriesssentially contain one successor state axiom for eacht fluen
p. Given such a basic action theory one can reduces(pes$ any formulad to an
equivalent formula re@) not mentioning actions. This leads to a straightforward
decision procedure for the propositional fragment of tingleage. However, the re-
duced formula can be exponentially larger than the origmahula, and therefore
regression does not solve the inferential frame problem

In this paper we solve the inferential frame problem in theppsitional case.
For the extension to knowledge, among all epistemic actions method is op-
timal when epistemic actions are restrictedbservationsall agents observihat
some proposition holds in the world, and update their epigtstate accordingly.
Note that observations are less general than sensing aatiodied in (Scherl and
Levesque, 2003). By performing the latter, the agents eksdnethersome propo-
sition holds in the world.

Technically, our approach builds on recent progress in #id 6f dynamic epis-
temic logics. Precisely, we use two extensions of publicoameement logid®AL
(Plaza, 1989):

e public announcement logic with assignmeR#d A (van Ditmarsch et al., 2005;
van Benthem et al., 2006; Kooi, 2007), and
e an extension oPALA by test actions that we calALAT.

All three logicsPAL, PALA and PALAT have the same expressivity. In these log-
ics situation terms are left implicit, and one cannot qugrdver actions as in the
situation calculus. Thus the central device in Reiter'sisoh is not available. We
show that nevertheless one can do without it: our first coation is a polyno-
mial transformation from Lakemeyer&Levesque’s lois to PALAT. The logic
PALA being an extension dfAL, we extend Lutz’ procedure fatAL satisfiability
checking (Lutz, 2006) t&ALA, and show that we keep optimality. This provides
an optimal decision procedure for reasoning about actiodskaowledge: both in
Reiter’s case (without knowledge operators) and in the ragant case, satisfiabil-
ity checking can be done in nondeterministic polynomialeiim the multiagent
case it can be done in polynomial space; and in the case of corknowledge it
can be done in deterministic exponential time. All theseltesre optimal because
they match the computational complexity of the underlyipgstemic logic.

The remainder of the paper is organized as follows: Sectioacalls Lakeme-
yer&Levesque’s logidES. Section 3 introduces public announcement logic with
assignments and tede&\LAT. Section 4 presents an encodingEX basic action
theories INPALAT; and Section 5 contains optimal decision procedures fosfeat
bility checking inPALA. Section 6 contains the results for the multiagent case, and
section 7 concludes.

1 A first version of this paper entitled ‘Optimal Regression Reasoning about Knowl-
edge and Actions’ was presented at AAAI'2007 (van Ditmarsichl., 2007a). The present



2 Lakemeyer& Levesque'slogic ES

Reiter formulated SSAs within a dialect of second-orderd@glledsituation cal-
culus which is the mainstream formalism in reasoning about ast(®eiter, 1991).
However, because situation calculus is defined axioméatjgabperties about ac-
tion theories that are not direct entailments are very hamgrove. For instance,
(Lakemeyer and Levesque, 2004, 2005) mentions the longd pr¢Beiter, 2001b)
for the fact that ifK ¢ entailsK Y1 VK )2 in a theory®, thenK ¢ entailsK i1 in ©,

or K¢ entailsK )2 in ©. Aiming at a “more workable” semantics for the situation
calculus, they proposed a variant callesl This logic is not as expressive as the
entire situation calculus, but it handles Reiter’s basimacheories and, thereby,
also his solution to the frame problem. In this section we §irge the syntax and
semantics oS, then show how basic action theories are defined, and finglly e
plain how regression works.

2.1 Syntax oES

The full language oES provides modal operators of knowledge and action together
with quantification over both actions and objects, and is tamany-sorted modal
language. In this work though, we focus our attention onsdeniprocedures, and
therefore consider only quantification over action symbols

DEFINITION 1 LetU be a countable set of action variables,RPgtbe a countable
set of fluents of arity O, leA be a countable set of action constants, andPtets
(‘possible’) andSF (‘sensed fluent’) be two predicate symbols of arity 1.

A Termis an action constart< A or an action variablg e U.
The languagé&gs is the set of formulag defined by the following BNF:
¢ = p|Posgt) |SHt) [t=t]—d [dAD[Kd|[t]d ][O |Vxd

wheret ranges over the set of ternsranges ovePy, andx overU.

The predicat®osss used to model executability preconditions of actionBo§ga)
holds, then the actioais executable. The predicai-is used to model the result
of sensing actions. The formuHa) stands for the formula whose truth value is
known by the agent after the execution of the acloAs in epistemic logics, the

version extends its results by establishing a precise foraetationship between a formal
translation fromES to PALAT. These ideas were also presented at the 2007 Dagstuhl work-
shop ‘Formal Models of Belief Change in Rational Agents'r(\Ritmarsch et al., 2007b)
and at the 2007 ‘Methods for Modalities’ workshop.



operatorK is used to model knowledge of the agent. The opergtds used to
model the transitions associated to actions. A formula efftim [a]¢ is read §
holds after the execution of acti@. The formulaO¢ is read § holds after the
execution of any sequence of actiorfs’.

We use the common abbreviations for the operatqrs- and«+; and L. and T
respectively abbreviate A —p and—(pA —p), for somep € P,.

As usual a formula is callegroundif no variable occurs in it. Boolean formula
is built from Py with the Boolean operators. Thus Boolean formulas neitbetain
Poss SF, 0, [t], K, = nor variables.

DEFINITION 2 Ground box-free formulaare ground formulas without the opera-
tor O. The set of ground box-free formulas is notegﬂs.

2.2 Semantics diS

Formulas ofES are interpreted at possible worlds after sequences ofrectierst
we need a definition.

Primitive formulasare ground formulas without any logical operator (neittugrag-
ity nor Boolean nor modal operators). The set of primitiverialas is notedpPy, i.e.

Pr=PyU{Posga):ac AJU{SHa):ac A}

Let A* be the set of all sequences of actions frAmvheree is the empty sequence.
Let Wes be the set of all mappings frof x A* to {0,1}. Formulas inLgs are
evaluated in triples of the forrfe,w, a) such thate C Wks is the epistemic state of
the agentw € eis the actual state, ard € A* is the sequence of actions that has
been performed.

To interpret what is known by the agent after a sequence fres;twe inductively
define that two worlds armdistinguishablawith respect to a sequence of actions
a by:

o W~ W, forallw,w ¢ Wes; and
e Wrq.aW iff (W~g W andw(SFa),a) =w (SHa),a)).

That is,w andw are indistinguishable after acti@nif they were so before, and if
a’'s sensed fluent has the same valugzandw'.

2 The original language d&S also contains the operat@K that stands for ‘only knows’.
It allows, for instance, to infer more about the ignoranc¢hefagent. We do not consider
this here.



The satisfaction relatior= between triples and sentences (formulas without free
variables) is defined inductively by:

(ew) =¢ iff  (ewe) =o
(ew,0) = p iff  w(p,a)=1forpeP;
(ew,0) =aj=ay iff a; anday are (syntactically) identical
(e, w,a) = —d iff (ew,a) ~= ¢
(ew,a) =dAY iff (ew,a) = ¢ and(ew,a) = Y
(e,w,0) = Vx¢ iff ~ forall acA (ew,a) = ¢[x\a
(ew,a) =Ko iff ~ forall Wee if w~qWwW then(e,w,a) = ¢
(e,wcxH:[ ] iff <e,w,a-a)):¢
(e,w,a) = Od iff foralla’eA* (ewa-d)E=0d

where¢[x\a] is the formula resulting from replacing all free occurrenoéx in ¢
by a.

Aformula¢ € Lgg is avalid ES consequencef a set of formulas¥ C Lgg, noted
W =gs ¢, if and only if for alleandw, if (e, w) = for all € W then(e,w) = ¢.
A formula ¢ is ES valid, notedi=gs ¢, if and only if 0 =gs §.

For example we havie-gs [a]—¢ < —[a]¢. (Note that this equivalence is not valid in
dynamic logic.) Lakemeyer&Levesque show that positiveospectiond(K ¢ —
KK¢) is ES valid, as well as negative introspectiofi—K ¢ — K=K ¢). They also
show that the followinguccessor state axiom for knowled§SAK) is valid:

SSAK Fes VX0 (K¢ — ((SHX) AK(SHX) — [X]9)) v
(=SFX) AK (=SHX) — [X]9))))

It will be useful for our proofs that the rule of replacemehéquivalences holds in
ES: suppose is a subformula o, and suppos®¥ =gs Y« '; thenW =gs ¢ —
¢’, whereg’ is obtained fromp by replacing subformulg by (.

2.3 Basic action theories

Reiter’s solution to the frame problem requires that agti@tonditions and effects
be described by what he caltasic action theoriesSuch theories must contain in
particular successor state axioms (SSAs) for each flpen®.

DEFINITION 3 A basic action theorys a set of formula® = O, U OnJ Opost
such that:

e foreachac A, O, contains a formul®,.(a) of the formO (Posga) < ¢pos{@)),
wheredposd @) is a Boolean formula;



e foreachac A, O,,contains a formul®....(a) of the formO (SKa) < ¢sr(a)),
wheredsg(a) is a Boolean formula; and
e for eachp € Py, O, contains a formula of the form

VX0 ([X|p < (x=aq AY" (a1, p)) V-V (Xx=an AY" (an, p)) V
(PA=(x=ag Ay (8, ) A+ A=(X=8mAY (8m P))))

for eachp € Py, wherey™ (a;, p) andy (&, p) are Boolean formulas.

REMARK 4 Lakemeyer&Levesque’s definition is slightly more genefalst, ©,,
consists of a single formuk&d (Posgx) < dposd X)), wherepposd X) may contain
quantifiers and equalities; similar f@:.,..

Second, they use Reiter’s generalization (Reiter, 200dd)aélow the SSA for a
fluent p to take the formivxO ([x]p < y(X, p)), wherey(x, p) may again contain
guantifiers and equalities. Our approach does not work fatrdeneralization, as
we will explain in Remark 8 in Section 2.3).

Given a basic action theo® and a formulap, theentailment problenm ES is to
decide whethe® s ¢.

When we use basic action theories we make some hypothests Reon-episte-
mic solution relies on the following three. (1) All actionealeterministic. (2) Ac-
tion precondition completeness: for each A there is a Boolean formuliipesd a)
that characterizes the conditions under wragh executable. (3) Causal complete-
ness: first, for each € A there is a seEff " (a) of fluents which may become true
by the execution o, and there is a sé&ff ~ (a) of fluents which may become false
by the execution of; second, for eaclp € Eff*(a) there is a Boolean formula
y"(a, p) characterizing the conditions under whighecomes true by the execution
of a, and for eaclp € Eff ~(a) there is a Boolean formulg (a, p) characterizing
the conditions under which becomes false by the executionaof

Scherl&Levesque’s epistemic extension relies on the fahg supplementary hy-
potheses: (4) The agent knows the basic action th@omnder concern. (5) The
agent learns about all action occurrences. (6) For eachrestthere is a formula
dse(a) that characterizes what is perceived by the agent via theuéra ofa.

In the sequel we illustrate basic action theories by a rupexample inspired by a
puzzle of Smullyan (1992).

EXAMPLE 5 The environment consists of an agent that dwells in a rooim twio
doors. These doors may be opened by the agent and, if so,dbeaah one the
agent will either find the lady, or the tiger. If the agent opendoor and finds the
lady, then she will marry him, and if he finds the tiger, thewiit kill him.



The fluentlady; represents that the lady is behind door 1 and the tiger isndehi
door 2. Thus the formulalady, expresses that the lady is behind door 2 and the
tiger is behind door 1.

The available actions atistery andlisterp (the agent listens to what happens be-
hind the respective door, which results in hearing the tigaring if there is one
behind the door), andpen andopen, (the agent opens the respective door, which
results in either marrying the lady or being killed by theetigdepending on what
is behind the door).

A basic action theory for this example is made up of:

0O,.={ O (Posgopen) « alive),
O (Posgopen) < alive),
O (Posglistery) < alive),
O (Posglisterp) < alive))) }
Osense={ O (SHopen) < T),
O (SHopen) < T),
O (SKlistery) < lady;),
O (SKlisteny) < —lady;))) }
O,.« = {VXO ([X|alive — (alive\ —(x=0pen A —lady;) A —(x=open Alady;))),
vxO ([x]married < ((x=open Alady;) V (x=open A —lady;) Vv
married)),
vxO ([X|lady; < lady;) }

We get e.g. the entailmen® =g [listeny](K lady; VK —lady; ), and

O =5 (lady; A alive) — [listery][open K married

We end this section by an interesting property of basic adtieories.
DEFINITION 6 LetO, be the set of SSAs of a basic action the@ryand let

VX0 ([X|p < (x=a1 AY" (a1, p)) V-V (x=an Ay (an, p)) V
(PA=(x=a1 AY™ (a1, p) A+ A= (X=am AY (8, P))))

be its SSA forp. An actiona is positively relevantor p if and only if a = g for
some 1< i < n, anda is negatively relevantor p if and only if a = & for some
1<i<m

The set of fluentg such thata is positively relevant fomp is notedEffg(a), and
the set of fluentp such that is negatively relevant fop is notedgff 5 (a). Finally,
Effo(a) = Eff§(a) UEffg(a).



The setEffg(a) is the set of fluentp € Py such that occurs in the successor state
axiom forp.

PROPOSITION7 For every basic action theo@), if p ¢ Effg(a) then® =gs p —
[a]p.

REMARK 8 As already said in Remark 4, Lakemeyer&Levesque afipyto con-
tain SSAs of the more general forvixd ([x]p < y(X, p)). An extreme example is
vxO ([xp < T), stating thatp is true after every action. The above Proposition 7
does not hold for such generalized action theories. It isifat reason that we will
not be able to translate them inRALAT, and thus our optimal method does not
apply to them.

Note that usingeff§ andEff g, SSAs can be written as follows:

VO (Kp < (\/ (x=any'(@mp))vipr- A (x=dAy (@,p)))

acEffg(a) adcEffg(a)
2.4 Regression

Given a basic action theo and a ground box-free formufaof L‘E)S, there is an
effective procedure that decides whetB®ee=gs ¢. It amounts to a simplification of

¢ by the equivalences @: by iterating the application of these equivalences one
obtains an equivalent formula withoBbss SF, O or [t]. This procedure is called
regression, and it allows to reduce the entailment probtethe validity problem

in epistemic logic.

The two central equivalences are the SSAs for fluent®,qf and the successor
state axiom for knowledge SSAK. These and the other equigakof® can be
turned into rewriting rules that allow to transform grounakree formulas into
epistemic formulas.

REMARK 9 Lakemeyer&Levesque do not require the box-free formjule be
ground, and allow for sentences suchval|p andvx3x (X' # xA (p — [X|[X]p)).
We will not be able to handle such formulas, the reason béiagthe target logic
of our translation does not have quantifiers.

Instead of stating a formal definition we illustrate regi@s$y our running exam-
ple.

ExAMPLE 10 Consider the basic action thed®yof Example 5. We regress the



formula[listen | [open]K married by applying the equivalences &

[listem][open |K married < [listen;]K [open |married
listery K (lady; vV married)
(lady; AK (lady; — [listery](lady; vV married))) Vv
(—lady; AK (—lady; — [listen](lady; vV married)))
— (lady; AK (lady; — (lady; vV married))) v

(—lady; AK (—lady; — (lady; vV married)))

— lady; VK (lady; V married)

—_— —

—
<
—

The first and the third equivalences are valid by SSAK (thée irslue to® =gs
SKopen) < T, and the third is due t® =gs SKlister) < lady;). The second
and fourth equivalences are logical consequence3 Qf for the second® s
[open]married < lady; V married and for the fourth, first=gs [listen](lady; v
married) < ([listery]lady; V [listery]married), and then® |=gs ([listery]lady; Vv
listemy]married) < (lady; vV married).

Let regy(¢) denote the result of rewritingg by means of the equivalences@as
formally defined in (Lakemeyer and Levesque, 2004). Th&otbms 1 and 5 can
be restated here as follows.

THEOREM 11 (Lakemeyer and Levesque, 2004) I@te a basic action theory,
and let¢ € LI(E)S be a ground box-free formula. Théh=gs ¢ if and only if =g
regs(¢). (WhereEL stands for epistemic logic to be defined in Section 3.1.)

Regression has high computational complexitygf@d can be exponentially larger
thang. To see this, consider the application of SSAK in ExampleNidie that each
time SSAK is applied t@, the resulting formula may be twice as largepasn the
rest of the paper we show that one can do better by applyirgtéechniques that
were introduced in the field of dynamic epistemic logic.

3 Public announcement logic with assignments and tests PALAT

A different tradition in modelling dynamics of knowledgectesses on particular
epistemic actions that make the agents expand their kngeledthout chang-
ing the world itself, see for example work by Plaza (1989)it&pet al. (1998),
Gerbrandy (1999) and van Benthem (2006). It is only recethidy ontic actions
(actions changing the facts of the world) were introduced these dynamic epis-
temic logics (van Ditmarsch et al., 2005; Kooi, 2007). AlltbEm are extensions
of Plaza’s public announcement logiRAL) (Plaza, 1989). In this section we recall

10



this extension, that we baptipeiblic announcement logic with assignmePad A,
and that we augment by test actions. We call the réALAT.

All these dynamic epistemic logics are based on standasdegpic logic, that we
recall first.

3.1 Background: epistemic logklL

Epistemic logics are a family of modal logics that use pdssiorlds semantics
to represent agents’ knowledge. This idea, originally duglintikka (1962), has
known great development in more recent works such as (Fagin €995), (Meyer
and van der Hoek, 1995) and (van Ditmarsch et al., 2007c). &e frecall the
monoagent case, postponing the multiagent case to Section 6

DEFINITION 12 The languagég, of monoagent epistemic logic is the set of for-
mulas¢ defined by the following BNF:

o=p[-d[dAD|K
wherep ranges over the countable set of propositional lefgrs
DEFINITION 13 Anepistemic modgEL model) is a tupléW,R V) such that:
e W is a nonempty set of possible worlds;
e RC (W x W) is an equivalence relation;

e V: Py — (W) associates an interpretativiip) C W to eachp € Po.

For everyw € W, the pair(M,w) is apointed epistemic model

For convenience, we defifgw) = {W : (w,w) € R}. The elements oR(w) are
the worlds the agent considers possiblevat

DEFINITION 14 Let (M,w) = ((W,R V),w) be a pointed epistemic model. The
satisfaction relation= betweenEL formulas and pointed epistemic models is in-
ductively defined as follows:

M,wEp iff weV(p)

M,w = ¢ iff M,w = ¢

M,wkEd AW iff M,w = ¢ andM,w = W
M, w = K ¢ f R(W) C [¢]u

where[¢]m def {w:M,w = ¢} is the extension ap in M.

11



Aformula¢ € Lg isEL valid, noted=g, ¢, if and only if for all pointecEL models
(M,w), (M,w) = ¢; and itisEL satisfiablef and only if fg —¢.

Lakemeyer&Levesque’s I0gi€S is a conservative extension BE.:

PROPOSITION15 Letd be a formula offg . Then=gs ¢ if and only if =g ¢.

Satisfiability checking irEL is NP-complete (Halpern and Moses, 1992).

3.2 Syntax oPALAT

DEFINITION 16 Thelanguage of public announcement logic with assignment and
test LpaaT IS the set of formulag defined by the following BNF:

ou=p[-¢[dAd|KO[['D]¢ ][] [[c]d

o:l=¢|p:=¢,0

wherep ranges over the countable set of propositional lefgm@nde is theempty
assignment

Let a be one of §, !!¢ or o; the formulaja]¢ reads § holds after all possible
executions of’. The action b is the public announcement ¢f the action !

is the public test whether or n¢t and the actiorp:=¢ is the public assignment
of ¢ to the atomp. For examplep:=_1 is an assignment making false, and
K[p:=_L]—-pis a formula expressing that the agent knows this. A compsiga-
ment(p1:=d1,..., Pn:=0n) is supposed to take place in parallel. We sometimes
write this as the sefp;:=®1,...,pn:=0¢n}. Thuse is identified with. It is sup-
posed that in parallel assignments, the same propositietiat can appear only
once on the left hand side of the operatet '

We shall show that announcements and tests are able to nyuddmaic actions,
and that assignments are able to model ontic actions. Fongrathe epistemic
actionlistery of Example 5 can be modelled atadly,;, and the ontic actionpen
can be modelled as the complex assignment

{alive:=(lady; A alive), married:= (lady; V married)}.

The language of public announcement logic with assignmeésg; o IS Lpal AT

without tests. Théanguage of public announcement lodiga; IS Lpaa Without
assignments.

12



3.3 Semantics dfALAT

Just as formulas of epistemic logic, formulas/@iy a1 are interpreted in pointed
epistemic models.

DEFINITION 17 Let (M,w) = ((W,R V),w) be a pointed epistemic model. The
satisfaction relatior}= betweenPALAT formulas and pointed epistemic models is
that of Definition 14 extended with the following three class

M,w = [1o]y iff M,w [= ¢ impliesM'®, w = g
M,w =[]y iff M,w = o]y andM, w = [1-¢]p
M,w = [o]d iff M w o

The modeldv'® andM are updates of the epistemic modklrespectively defined
as:

M'® = (W' R® v'®) M% = (W,R,VF)
W' =W [¢]u VO(p) = [o(p)Im
R® =R ([0]m x [¢]m)

V! (p) =V (p) N [$]m

whereao(p) is the formula assigned tp by o. If there is no such formula, i.e., if
there is ndp:=¢) € o, theno(p) = p. For exampld)(p) = €(p) = pfor all p, and
{p:=-p}(p) =-p.

To illustrate this let(M,w) be any pointed epistemic model. We havew =
[p:=L]-pbecaus& P=+(p)=[(p:=L)(p)]m = [L]m = 0; and we havél, w |=
['p]K p becaus&/'P(p) = W'P,

A formula ¢ € Lpaiat is PALAT valid, noted =paiaT ¢, if and only if for all
pointed epistemic modelgV,w), (M,w) = ¢; and it isPALAT satisfiableif and

only if Epaiat —d.

For example|p:=_L]-p, [!p|K pandp — [!! p|K p are allPALAT valid (for atomic
p). Note that neithefl¢]$ nor the strongejl $|K ¢ arePALAT valid.

PROPOSITION18 The following equivalences aRALAT valid.
e Announcements and tests are interdefinable:

FraLat [1O]W < [1O]JYA[I=0]Y and Fparat ['O]Y < (¢ — [ ]Y)
e Assignments and tests are deterministic and executable:

FpaLaT [M1O]-W < —[1o]Y and EpaLaT [P:=0] W < —[pi=0]Y
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e Tests do not modify Boolean formulas:

):PALAT [”(I)]llJ — llJ if llJ is Boolean

Therefore our test operator can be defined in terms of theuarmemnent operator,
and thus does not increase the expressivitpAfAT. Nevertheless, its definition
as a primitive operator allows us to provide a polynomiats$tation ofES sensing
actions intoPALAT. If tests were defined as abbreviations, then the translatio
anES formula with sensing actions of Section 4 would be expordigtiarger than
the original formula in the worst case.

Just as Lakemeyer&Levesqué&s, our PALAT is a conservative extension BE:
PROPOSITION19 Let¢ be anEL formula. Then=paaT ¢ if and only if =g ¢.

REMARK 20 The semantics of both the announcement and the test opisrdif-

ferent from that of the dynamic logic test operator ‘?’. Eins dynamic logid$?|y

is equivalent tap — W, while ['¢]W is not equivalent td — W in PALAT. Second,
["$] L is unsatisfiable ilPALAT, while the dynamic logic formulé$?] L is not.

Also note the difference between our reading ¢f&s ‘testwhether or notp’, and

the dynamic logic reading af? as ‘testhat¢’.

3.4 Reduction to epistemic logic

PALAT is axiomatized by the axioms and inference rules of the 16§iplus the
following axioms (van Benthem et al., 2006; Kooi, 2007) (théom for !! is our
addition):

[o]p < a(p)
[0]=¢ < —[o]d
[0](d1A b2) < ([0]d1 A [O]d2)
[0]K¢ « Ka]d
fWp= (Y —p)
W)=t < (W — -['y]o)
(1A d2) < (W1 A ['W]2)
[WKo — (¢ — K['Y]o)
Mlo < ("W A-])

e N N N

These axioms provide equivalences for all possible contioimaof the logical con-
nectives with dynamic modal operators. The right hand sfdbese equivalences
is simpler than the left hand side, and for that reason theycalled reduction
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axioms (see e.g. Kooi (2007) for a precise definition of whateans to be ‘sim-
pler’). Such axioms provide at the same time a proof methual; allow to rewrite
every PALAT-formula into an equivalerL-formula, which can then be checked
by independent means.

Let red ¢) be the formula that is obtained in this way.

THEOREM 21 (van Benthem et al., 2006; Kooi, 2007) lgebe aLpai aT-formula.
Thenl=paLaT ¢ if and only if =g red(d).

However, this method has the same problera&segression of Section 2.4: in the
worst case re@) is exponentially larger thaf. This cannot be avoided: at least in
the multiagent case it can be shown tRAt is more succinct thaBL (Lutz, 2006).
This means that there aRAL formulas such that every equivaldet formula is
exponentially longer, see Example 33 in Section 6.

In Section 5 we provide a better method that performs a reztuétom PALA to
EL in polynomial time. But first we establish the link betwdehandPALAT.

4 Trandation from ES to PALAT

Reiter’s regression of Section 2 is similar in spiriRALAT reduction of Section 3.
We will show in this section that the problem of entailmenEBcan be translated
to a validity problem irPALAT: the changes brought about by an aceatescribed
by a basic action theor® can be modelled asRALAT test ofpse(a) followed by
a set of assignments simulating Reiter's SSAs.

4.1 Finite change constraint

In order to make our proof method work we moreover have toireduasic action
theoriesO to satisfy a constraint of ‘finite potential change’: for gvactiona, the

set of fluent constants whose truth value may be flipped by tkeution ofa is

finite.

Remember thaEffg(a) is the set of fluents for whichis relevant (Definition 6 of
Section 2.3).

DEFINITION 22 Let® be a basic action theor@ satisfies thdinite change con-
straintif and onlyEffg(a) is finite for every actiora € A.

EXAMPLE 23 Here is a basic action theory that does not satisfy thefaliange
constraint. Consider the set of flueRts- {at; : i € Z} whereZ is the set of integers,
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and the singleton set of actioAs= {inc}. at; means that the value of the counter
is i, andinc increments the value of the counter. Thegh(inc,at) = at_1, and
y~(inc,at)) = at;. Hence the set of fluents that are possibly changethbys the
entire set of fluentEff (inc) = Po. Therefore® does not satisfy the finite change
constraint.

We nevertheless believe that finite change action theorges dficiently expressive
to be of interest. For such theori®we are going to define a translationgrauch
that for every ground box-free senteng®f LES, © entails¢ in ES if and only if
trao(¢) is PALAT valid.

4.2 Polynomial transformation

DEFINITION 24 Let® be a basic action theory satisfying the finite change con-
straint (Definition 22). We inductively define a mappingstfeom the set of ground
box-free formulasL to Lpa aT:

(1) trag(p) = p for DEfF’o . i |
T : : :
(2) trap(ag—ay) — {L :) ts; :,C,SZZ are (syntactically) identica
(3) trap(Posga)) = dposda)
(4) trao(SHa)) = dsr(a)
(5) trag(—9) = —~trag(¢)
(6) trao(d1 1 2) = trap(d1) Atrag(¢2)
(7) trap(K ) = K trag(¢)
(8) trap([ald) = [ dsr(a)][0a] trae(9),

wherea, is the complex assignment defined by:

{p:=(y"(a,p)vVp) : peEffi(a) andp ¢ Effg(a)} U
{p:=(pA—-y (a,p)): p¢Eff§(a) andp e Effg(a)} U
{p:=(y" (& p)V(PA-Y (ap))): peEffs(a)nEffg(a)}

The formulashpesd @), dsr(a), Y (a, p) andy (a, p) are those fron® (Definition
3).

Note that in the last item the set, is finite becaus® satisfies the finite change
constraint. Therefore the mappingdré well-defined. For the theory of Exam-

ple 23 which does not have that property, the®gf would be infinite and thus
trag([inclat;) would not be a well-formed formula.

ExXAMPLE 25 Consider again our running example. For the epistemiaraciten
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we get:

trag([listem |K lady; ) = [!'lady;|[€] trag (K lady; )
[ady;][e]K lady;

that is equivalent t@!lady;|K lady,. For the ontic actiompen we get:
trao([openJalive) = [!! T][alive:=lady; A alive, married:=lady; vV marriedalive

Since[!! T]¢ is equivalent tap by Proposition 18, and since

[alive:=lady; A alive, married:=lady; v marriedalive
is equivalent tdady; A alive, the formula trg([open |alive) is equivalent tdady; A
alive,

THEOREM 26 Let® be a basic action theory satisfying the finite change coinstra
and let¢ be a ground box-free formula GI‘E)S. Then

O =es ¢ if and only if [=paLaT trae(9).

PROOF We take advantage of both regression and reduction: by réhedl,
O |=gs ¢ iff |=gL rego(¢); by Theorem 21j=paiart trae(9) iff =g redtrag(9)).

It therefore suffices to prove thatg regg(d) iff =g redtrag(¢)). The details
are in Appendix All

In order to prove that this transformation is polynomial, define the function len
that returns théengthof a given expression. In the case of sets and tuples, we count
the length of each element and also the commas and delimiteasis, the length

of asetX is len(X) = 1+ S ycx (1+len(x)), while for a tupleY = (yi,...,Yyn), itis
len(Y) =1+ 3¢ ; (1+len(yk)). Note that leX) > 1 for every sek; in particular
len(0) = 1.

For formulas inLg, we inductively define:

len(p) =1
len(—¢) = 1+len(d)
len(¢p AP) =1+len(dp) +len(y)
len(K$) =1+len(d)

For formulas in£d we also use:

len(a;=ap) =3

len([a¢) = 2+ len()
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and for formulas ofLpa AT We also use:

len(['¢]Y) = 1+len(d) +len(yp)
len([!!¢]w) = 1+len(¢) +len(w)
len([o]d) = 1+len(o) +len(¢)
len(p:=¢)=2+len()

where we consider as a set of assignments.

For example, lefiL) = 4, lenT) =5, and

len([{p:=0,q:=pAQ}]Kp=1+len({p:=0q,q:=pAQq})+len(Kp)
=14+ (1+A+3)+(1+5)+2
=14

THEOREM 27 Let® be a basic action theory satisfying the finite change coinstra
and letp € L. Then lerftrag(¢)) < O(len(©) x len(¢)).

PROOF Please, see Appendix B.

Hence for finite change basic action theories the problemeafdihg whether
O g5 ¢ can be polynomially reduced to a validity problemRALAT. This is
our first main result.

It remains to define a proof method fRALAT. In the next section we give a method
that is optimal for the fragmerALA of PALAT.

5 Optimal reduction for PALA

Our optimal reduction is based on a recent method that altowediminate an-
nouncements frorRAL formulas by means of subformula renaming (Lutz, 2006).
The transformation is polynomial, and provides an optingaision procedure for
PAL.

First note that the reduction axioms for assignment opesatiso cause a combi-

natorial explosion. Indeed, consider the family of fornsulaductively defined by:
Y1 = p1, andPn = [Pr—1:=Pn A Pn]...[P1:= P2 A p2] p1. By the reduction axioms
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we get:

[Pn—1:=PnAPn]...[P2:=P3A P3][P1:= P2 A P2 1
< [Pn-1:=PnAPn]...[P2:=pP3A P3](P2A P2)

< [Pn—1:=PnAPn]...((P3AP3) A (P3A P3))
(o (PnAPR)A.) L)

The last formula is redpy). According to the definition of the length of a formula
we have that lefiy,) = 6n—5 and lerfred(yy,)) = 2" — 1. Therefore, the length of
redWn) is exponential in the length afi,.

By using a subformula renaming technique similar to Lutz& define a poly-
nomial reduction that allows to eliminate assignments fiohh A formulas. The
combination of these two polynomial transformations isiagalynomial.

In this section we only consider formulas 6fa a, i.€. LpaaT Without the test
operator ‘II. The reason for this restriction is that we didt succeed in finding
a polynomial reduction when formulas contain that operatothe worst case the
reduction method proposed here is not polynomial any moosveier, note that
by Proposition 18, tests can be decomposed into two annmards: the formula
[Mo]wis equivalent td!¢]P A ['-¢]P. Therefore this syntactic restriction does not
restrict the expressivity of the logic.

Our method takes a formula ifpa A @s input and returns a satisfiability-equivalent
formulain Lg, . The first step eliminates assignments and returns a forim gy ;

the second step eliminates announcements and returnssfakdity-equivalent
formulain Lg .

5.1 Eliminating assignments

In order to eliminate assignments frdPALAT formulas we apply a technique that
is fairly standard in automated theorem proving, see e.gnfldngart and Weiden-
bach, 2001), and that is based on the theorem below.

THEOREM 28 Letd € Lpaia, and letlpr:=91,..., Pn:=9Pn]dn+1 be a subformula
of ¢. Letyn;1 be obtained frond, 1 by substituting every occurrence f by Xp, ,
wherex,, is a new propositional letter not occurring¢n Let ) be obtained from
¢ by replacing p1:=61,..., Pn:=0n|Pn+1 BY Wnr1. Then,d is PALA satisfiable if
and only if:

K( /\ ka<—>¢k)/\llJ

1<k<n

is PALA satisfiable.
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PrROOF To simplify the exposition let us suppose singleton assignts, i.e., the
subformula ofp is [p:=b1]¢2.

From the left to the right suppose tht= (W,R V) is an epistemic model such that
for somew € W, (M, w) = ¢. Now consider the epistemic moddj = (W, R V)
such thatVy,(p) = V(p) for all p # Xp, andVy,(Xp) = [¢1]m. First, note that
(My,, W) = ¢ (because, does not appear if)). Second, note thadfl, = Xp < ¢1
(becausgxp]wmy, = [1]my,)- Therefore(My,,w) [= K (xp < ¢1). Third, note that

for everyv € W, (My,,V) = [p:=01]02 iff (Mf‘j:q’l,v) = ¢, iff (M)E’rj:‘pl,v) = Y2
(becaus&'x%:q’l(p) :fo,::q’l(xp)). ThereforeMy, |= [p:= 1] < W, and there-
fore (My,, W) |= K (xp < ¢1) AU

From the right to the left suppose w.l.0.g. that the epistemadelM = (W, R,V)
is point-generated from the world € W. Now suppose thatM,w) = K (X, <
$1) AY. ThenM = xp < §1, i.e.,V(Xp) = [¢1]m. Hence for alv e W, (M,v) =
W iff (MP=%1v) |= ¢, (because/ (xp) = [d1]m = VP=?1(p)). In other words,
M = Yo < [p:=0¢1]d2. ThereforeM,w = ¢. 1

Intuitively, the formulak (Algkgn(xpk — ¢k)) sets the value of each new proposi-
tional letterxp, to that of¢y in all accessible worlds.

We are ready to define the first step of our reduction methodrder to improve
readability the definition below only considers singlet@signments. The exten-
sion to complex assignments is straightforward. The bel@apping regu, 5 col-
lects the announcements occurring in a given fornquknd relates them to new
propositional letters.

DEFINITION 29 Letd € LpaLa, and leta, a; anda, denote lists of formulas. Let
be the empty list, and let’*be concatenation. The assignment elimination operator
regea a IS defined inductively as follows:

(1) reg:ALA(q)) = (/\xea X) A,
where rega a(€,9) = (o, )
(2) regaa(a,p) = (a,p)
(3) regaLa(a,—0) = (a-a,—),
where rega a(€,9) = (01, )
(4) regaia(0, 1A G2) = (a-az-a2, W1 AY2),
where rega a(€,91) = (01, P1) and rega 4 (€, 02) = (a2, YP2)
(5) regaa(a,Ko) = (a-a1,Ky),
where rega a(€,¢) = (a1, )
(6) regara(a;['91]d2) = (a-az-oz, ['P1]d2),
where rega a(€,91) = (a1, P1) and rega 4 (€, 92) = (a2, o)
(7) regaca(a,[P=01]¢p2) = (a-a1-az2-K(Xp < Y1), Ya[Xp\p)),
where regaa(€,¢1) = (01, Y1) and reg 4 (€, 92) = (a2, Y2)
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The crucial point is Clause 7, that applies Theorem 28. Nwéethere, and in the
other clauses, exponential blowup is avoided by startintherinnermost assign-
ment and then simply concatenating the conjunctions ofriplcations one after
another. Also note that the bi-implications do not need tceleiced since they link
formulas inLpay .

For example, consider the valid formylg|[p:=—p|K =p, which means that after
the announcement ¢f and then toggling its truth value, the agent knows et
false. We have

regppLa([!'PJ[P:==pIK—p) = K (xp < —p) A[Ip]K =Xp.
The steps are below.

regoa A (€, P) = (& p)

regbaca (€ —p) = (€,7p)

regeaia(€,K—p) = (€,K-p)

regaia (€, [Pr==pK=p) = (K (Xp < —p),K=p[Xp\p])
regeapa (& ['Pl[P:=—p|K—=p) = (K(Xp < =p), [ pIK =Xp)

THEOREM 30 regpy, A is @ polynomial transformation that preserves satisfigbili
of formulas.

PROOF Satisfiability-equivalence follows from Theorem 28.

Concerning the length of the translated formulas:$idbe a formula ofLpaa,

and let rega a(€,9) = (a,Y). Note that the length oy is bounded by lef®),
becausap is obtained fromp by dropping its assignments and substituting some
of its subformulas by propositional letters. To simplifyethbresentation suppose
that the assignments ih are singletons, i.e., there are no assignments in parallel.
In the sequel we show that lem) < 2 x len($)?, which implies that regh o ($) =

O(len($)?).

The proof is by induction on the the maximal number of nestzigament op-
erators ind, i.e., theassignment deptbf ¢. For the induction base, suppose that
the assignment depth df is 0. That is,p € Lpa . Then clearly lefa) = 0, be-
cause Clause 7 is never triggered. The induction hypotl&sisthe assignment
depth of¢ is at mosm, then lerfa) < 2n x len(¢). For the induction step, suppose
that the assignment depth éfis n+ 1, and let the formulap:=¢1]|$, be a sub-
formula of ¢ such thatp, or ¢» have assignment depth equalrtoand such that

regoaia(91,€) = (01,P1) and regu a($2,€) = (a2,W2). By induction hypothesis
len(ay) < 2nxlen(¢p1) and analogously for Ida2). Then lerfa) + len(ay) <
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2n x len(¢), because lef;) +len(dp2) < len(¢). Therefore:

len(a) + len(az) +len(K (xp < Y1))

<len(a)+len(az) +1+2x (3+len(W)))) (because- is an abbreviation)
<len(ay) +len(az) +1+2xlen(¢1)) (because lefd1) > 4+ len(Wy))
<len(ay) +len(az) +2 x len(¢) (because lefd) > 1+ len(¢1))
=2(n+1) xlen() (by the observation above).

And therefore lefo) < 2 x len(¢)?, becausep has at most lef®) subformulas
containing assignments.

5.2 Eliminating announcements

Once assignments are eliminated, we can eliminate annowemts by Lutz’ proce-
dure that we recall here. First we compute the set of conaéstibformulas which
is inductively defined as follows:

Sub(p) = {(¢,p)}
Sub(—¢) = Sub(¢) U {(e,~¢)}
Sub(¢ A ) = Sub(¢) U Sub(y) U{(e, ¢ AW)}
Sub(K¢) = Sub(¢) U{(e,K¢)}
Sub([!¢]W) = Sub(¢) U{(¢-a,x) | (o, X) € Sub(w)} U{(e, ['¢])}

Intuitively, Sub(¢) is the set of “relevant” subformulas ¢f together with the se-
quence of announcements in the scope of which they ogeup) € Sub(¢p) means
that the subformulg of ¢ is in the scope of the sequenc®f announcements.

Let ¢ be formula whos@AL satisfiability is to be decided. We introduce a set of
fresh propositional Ietteﬂ?b {X} : (a, ) € Sub(¢) }. Then the reduction df is:

regoaL (¢) = ( A KB%) A X
(a,w)eSub(¢)
where the bi-implicationBSJ are inductively defined as follows:
Bp =xpop
Yo =X o
Biry = Xpnp = (6 AXG)
Bko =Xk¢ < KI( /\ueme(a)xﬁ/a — %)
o = Xy = 06 =39
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and where pr@) is the set of true prefixes of, andy/a is the leftmost symbol of
a that is not inp. When the sequenaeis empty, then the conjunction collapses to
T.

Intuitively Bf, guarantees thafj is true exactly wherey is true. For example, con-
sider the inconsistent formutg{! p|K p. The set of its relevant bi-implications is:

Xfp (Xs_”(Kp)
XKFF)) (X%—)X% )7
X“P e p,

X —p}

S[plkp 7 ﬁxs

Then rega (—['PIK P) = (AyeX) AK (AxerX) Axi“ ok pr Which successively
impliesx5, —x b, and—K (x§ — ;). The latter is inconsistent witk (P < p)
andK (x¢ < p) WhICh are the last two bi-implications prefixed Ky

THEOREM 31 (Lutz, 2006) regy, is a polynomial transformation that preserves
satisfiability of formulas.

5.3 Complexity results

Via Theorems 26, 27, 30 and 31 we obtain our second main result

THEOREM 32 LetO® be a basic action theory satisfying the finite change coinstra
and letp € LES be a ground box-free formula. The problem of checking emziits
O gs ¢ is NP-complete.

We thus do much better than the regression method of Theoteand the reduc-
tion method of Theorem 21, which both may cause exponertaiup.

This results also apply to th@an verification problenfcalled projection problem
in (Scherl and Levesque, 2003, p.22)).

6 Multiagent extensions

We now show that the results of the previous section can kendgd straightfor-
wardly to the multiagent case.
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6.1 Background: multiagent epistemic logics

As for the monoagent case, Rjbe a countable set of propositional letters, and let
N be a nonempty finite set of agents. So far we have investighéechse wherbl
is a singleton.

The language of multiagent epistemic logic with common kieolge L, c is the
set of formulash defined by the following BNF:

o:=p|-¢ oA |Kid[Ect|Cch
wherep ranges ovePy, i ranges oveN, andG ranges ovell (N). Thelanguage of
multiagent epistemic logic without common knowledgg is obtained from., c
by dropping operator€g. (We useEL in both the monoagent and the multiagent
case in order to simplify notation.)
The formulaK¢ reads ‘agentknows thatp’, The formulaEg¢ reads ‘all agents in
groupG know that’, and the formulaCg¢ reads ‘all agents in grou commonly
know that¢’.
Eéq) abbreviates thé-fold nestingEg . . . Eg¢.

A multiagent epistemic modi a tuple(W, R,V) whereW andV are as in Defini-
tion 13, and:

e R:N—[O(W x W) associates an equivalence relati{n) to eachi € N.
For convenience, instead Bfi) we write R;.

We have the usual truth conditions fél, plus

M,w = Kid iff Ri(w) C [¢]m
M,w = Ecd iff U Ri(W) C [¢]wm
ieG .
M.w = Cod it (UR) ociom
ieG

where 4’ is transitive closure. Truth in a model, validity and séibility are de-
fined as usual.

If the set of agentdl contains at least two elements then the problem of deciding

satisfiability is PSPACE-complete farg, -formulas, and EXPTIME-complete for
L, c-formulas (Halpern and Moses, 1992).
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6.2 Syntax and semantics of multiagBAL AT and PALAT®

The language of multiagefALAT extends that of multiageriL by announce-
ments, assignments and test operators.

Models for multiagenPALAT are just multiagent epistemic models of the previous
section. The truth conditions for the epistemic operatoestlose for multiagent
epistemic logic, and the truth conditions for the dynamierapors are those for
monoagenPALAT, the only difference being that we have to manage the agent-
subscripts of accessibility relations. Thus for exampéeabcessibility relatioﬁei“I>

of M'® isR N ([¢]m x [¢]m). Validity and satisfiability are defined as before.

MultiagentPALAT can be axiomatized by means of reduction axioms just as monoa
gentPALAT. As we have announced in Section 3, there are formplabose mul-
tiagentEL-equivalent is exponentially longer than(Lutz, 2006, Theorem 2).

ExXAMPLE 33 (Theorem 2 of Lutz, 2006) Suppose the underlying episténgic
is notS5 butK, i.e. accessibility relations are not necessarily eqeived relations.
Consider the following family of formulas of multiagePAL.

Po=T
Oni1 =12 ['on]Ki-TIK L

EveryEL-formula that is equivalent td, has length at least exponentialrin

It follows thatPAL is more succinct thaBL.
6.3 Complexity results

In the monoagent case we had eliminated assignments byngrévat aLpa;a
formula¢ is PALA satisfiable if and only if:

K <1</k\<n(xpk H<|>|<)> AY

is PALA satisfiable. In multiagerRALA, the same result is obtained by replacing
the operatoK by the ‘everybody knows’ operatdy. In this case, however, we
need to iterate the operator up to the horizon of the formula.

THEOREM 34 Let¢ be aPALA formula, and letp,, ¢ andy be as in Theorem
28. Thend is PALA satisfiable if and only if

( A E’N( A (ka‘_>¢k)))/\w

£<md(¢) 1<k<n
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is EL satisfiable, where @) is the modal depth o (the maximal number of
nested modal operatorsr).

If the common knowledge operator is available then a singigunct suffices.

THEOREM 35 Let¢ be aPALA® formula, and lekp,, ok andy be as in Theorem
28. Theng is PALAC satisfiable if and only if

CN< /\ (Xp < ¢k)) AY

1<k<n

is ELC satisfiable.

Both equivalences lead to polynomial transformatién¥hen Lutz’s reduction
method for multi-agenPAL can be applied. In other words, we again obtain an
optimal theorem proving method.

7 Discussion and conclusion

We have modelled the frame problem in a dynamic epistemiic log providing
counterparts for situation calculus style ontic and sapsictions, and we have
given complexity results using that translation. As far askmow, this is the first
optimal decision procedure for a Reiter-style solutiorti® frame problem.

A similar approach for epistemic actions has been propasg@didrzig et al., 2000b).
The logic for epistemic tests therein has an operator thagsponds to the public
announcement operator. However, that logic has no oniioregstand the regression
procedure is suboptimal. In addition, the complexity regiven there is restricted
to non-nested tests, while here we permit any formula urftestope of the dy-
namic operators.

Scherl&Levesque’s epistemic extension of Reiter’'s sotutillows for sensing ac-
tions !¢, which test whether some formuais true. Such sensing actions can be
viewed as abbreviating the nondeterministic compositibtwo announcements,
and we could have defined them ash ¥ (1¢U!—-¢), whereU is nondeterminis-
tic choice. The expansion of such abbreviations howevelsléa an exponential
blowup, which does not allow to extend our approach to irgegprimitive sensing

3 Note that it is crucial that the ‘everbody knows’ operatopi@mitive in the language

LpaLa: if we had defined it as an abbreviation
def
Ecd = AicgKit
then we would get an exponential blowup in the reduction. fgegrateful to Balder ten
Cate for pointing this out to us.)
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actions. It is not clear for us how the associated successt& axiom (cf. axiom
SSAK in Section 2):

Mo]Kip < (¢ — Ki(d — [M¢]w)) A (=6 — Ki(=¢ — [1$]W)))

could be integrated into the polynomial transformationsasftions 5 and 6. Further
evidence that the presence of sensing actions increasgdecodty is provided by
the result in (Herzig et al., 2000a) that plan verificatiothis case iflg-complete.
We therefore leave integration of sensing actions to futtoe.

The present article also shows that research carried outiiagion calculus and dy-
namic epistemic logic communities go into the same direct@@ose similarities
between situation calculus and dynamic epistemic logiesaéso outlined by van
Benthem (2007). We believe that this kind of work can aid tadpabout advance-
ments on both sides. For example, Scherl&Levesque do now dbir epistemic
operators in the formulagposd @), dsr(a), Y (ai, p) andy (&, p) of basic action
theories, while both the announcemegitand the assignmemt:=¢ may contain
such operators. Another example are non-public actioey. Were studied exten-
sively in dynamic epistemic logics, while there is onlyléttvork in the situation
calculus framework. For integrating such actions one cpuédteed as in (Baltag
et al., 1998; Baltag and Moss, 2004) and add so-called evedels that represent
the agents’ perception of events. The resulting logic comtsa reduction method
that extends the one in Theorem 21. One could also use existidel checkers for
PALA such as DEMO (van Eijck, 2004) or MCK (Gammie and van der Mayde
2004).

Going into the other direction, we can cite the high expkégsof the entire lan-
guage of situation calculus (and als§). With the argument of keeping decidabil-
ity and elegance, the dynamic epistemic logics commurggydently avoids adding
guantifiers, predicates, functions, etc, to its formalisRester’s, Scherl&Levesque’s
and Lakemeyer&Levesques’s approaches show that, undsmable restrictions,
these components can be added and even be used in practioeeas the GOLOG
programming language (Levesque et al., 1997). Our optiyasults could be im-
plemented in order to improve GOLOG's efficiency.
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A Proof of Theorem 26

THEOREM 26 Let® be a basic action theory satisfying the finite change coinstra
and letd € L. Then® =¢s ¢ if and only if =papaT trae(d).

PROOF We take advantage of both regression and reduction: by réhedl,
O |=es ¢ iff =g rege(9); by Theorem 21j=paaT trae(9) iff =g redtras(9)).

It remains to prove thatg regg(9) iff =g redtrag(¢)). To that end we prove
that =gs regg(¢) < redtrag(¢)) by induction on the length af, where the case
[a)¢ is decomposed into subcases. Our proof extensively usésliinging lemma.

LEMMA 36 If =paiaT 01 < §2 then|=gs red$1) — red(¢2).

PROOF Suppose thatpaiat $1 < ¢2. By the Reduction Theorem 2k5paLaT
$1 < red¢1) and=paLat 2 < red¢2). Therefore=paat red(d1) < red(dz).

The formula redd,) < red($,) being in the language dEL we use that both
PALAT andES are conservative extensions Bf: first, =g red¢1) < red¢z)
by Proposition 19, and seconégs red ¢1) < red(¢2) by Proposition 151

Let us now prove thalt=gs regy($) < red(trag(¢)) by induction on the length of
¢. We analyze the possible cases and subcases concernirgrthefi.

(1) F=es regs(p) < redtras(p))
This clearly holds, given that regdp) = p = trag(p) = red(trag(p)).

(2) Fesregg(ar = a) < redtrag(ag = a))
This can be proved by checking the cases wiagranda, are (syntactically)
equal, and where they are different.

(3) [=es regs(—Y) < redtrag(—y))
We have reftrag(—))) = red(—trag(P)) = —~redtrag(Y)). By induction hy-
pothesis (and by the rule of substitution of equivalentE®)fthe latter isES
equivalent to-regy(W). Finally, ~regy (W) = regy(—W).

(4) [=es reds(WAY) — redtrag (WA W)
Similar to the case of negation.

(5) Fes regp([ap) < redtrag([alp))
We have

reg([alp) = (a=a1 AY" (a1, p)) V-~V (@=an AY" (an, p)) V
(pA-(a=a) Ay (a1, p)) A--- A-(a=an AY (8, P)))

The latter isES equivalent to:
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e p if pg Eff (a) UEffT(a);

o y'(a,p)Vvp if peEff*(a)\Eff(a);

e pA-y (a,p) if pe Eff~(a)\Efff(a);

o Y (ap)V(pA-y (ap)) if peEff~(a)nEff"(a).

The latter are syntactically equal & (p), whereoy is as in Definition 24.
Now o,(p) = red(oa(p)) because,(p) is a Boolean formula. For the same
reason, by Proposition 18 we haivgaat 0a(p) < [!dse(a)|oa(p). There-

fore =paLat redoa(p)) < red[!! dse(a)][oa] p). Finally, the latter is nothing
but redtrag([alp)).

(6) [=es regg([alag = ap) < redtrag([aja; = ap))
Straightforward by checking the cases.
(7) Fes regs([al—p) < red(trag([a] )
Straightforward by the induction hypothesis and using thas([a]—y) <

trag(—[a]p) holds (because tests and assignments are both determanisiti
executable by Proposition 18).

(8) [=es rege([a(WAW)) — redtrag([a] (WA Y')))
Straightforward by applying the induction hypothesis ahd equivalence
[a(WAY) < ([aJyA[a]y’) that is bothES andPALAT valid.

(9) Fes rege([a]K W) — red(trag([a]K )
We regress the left hand side: gg¢p/K g) is ES equivalent to

rego((Psr(a) — K(dsr(@) — [aw)) A (—dsr(@) — K (—dsr(@) — [aly)))

which isES equivalent to

(dsr(a) — K(dsr(a) — regy([aw)))A
(—dsr(a) — K (—dsr(a) — reg([aw)))

becauseésr(a) is Boolean.

We reduce the right hand side by meang$®&quivalences, using the above
Lemma 36:

redtrag([a]K Y)) < red([!! dsr(a)][oa]K )
—red['¢sr(a)]K [0a]W)
—red['9sF(a)|K [0a]W A ['—dsF(a)|K [0a] )
—dsr(@) — Kred[!dsr(a)][0a] @) A
—0sr(a) — K red([!—~dsr(a)][0a] )
—odsr(a) — K(dpsr(a) — [Mdsr(a)][oa]y) A
—0sr(a) — K (-dsr(a) — ["dsr(a)][oa]W)
—0sr(@) — K(dsr(a) — trag([ajy)) A
=dsr(a) — K (=psr(a) — trag([ay))

The last but one step uses that by Proposition 18 announdgrem be de-
fined by means of tests.
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Finally, by induction hypothesis the regressed left hadd and the reduced
right hand side are equivalent.

This ends the prool

B Proof of Theorem 27

THEOREM 27 Let® be a basic action theory satisfying the final change comstrai
and let € L2. Then lerftrag(¢)) < O(len(©) x len(p)).

PROOF We prove by induction on the structure ¢fthat ler{trag(¢)) < 3 x
len(©) x len(¢).

(1) len(trag(p)) =len(p) =1 <3 xlen(©)

(2) len(trag(ar =a2)) <5< 3xlen(®) x 3
This can be proved by analyzing the two possible caseg¢ia= T and
trag(¢) = L. (Note that lef®) > 1, and remember that and L are ab-
breviations.)

(3) len(trap(Posga)) = len(¢posda)) < len(O)

(4) len(trag(SF(a)) = len(¢s(a)) < len(O)

(5) len(trag(—01)

= len(~trag(¢1))

= 1+len(trag(91))

< 3xlen(©) +len(trag(¢1)) (because k 3 x len(©))
<3xlen(®)+3xlen(©) xlen(¢$1) (by induction hypothesis)

=3xl1en(®©) x (1+len($y))
=3 xlen(®) x len(—¢1).

(6) len(trag(d1 A d2)) <3 xlen(®) x len(d1 A d2)
Similar to the case of negation.

(7) len(trag(K$1)) < 3xlen(®) x len(K¢1)
Similar to the case of negation.

(8) len(trap([al¢1))
= len([!! ¢sr(a)][0a] trae (¢1))
= 2+ len(¢sr(a)) + len(aq) + len(trag (¢1))

< 2+len(©) +1len(©) +len(trag(¢1))

<3xlen(®)+len(trag(¢1)) (because lef®) > 3 since® is not empty)
< 3xlen(®)+3xlen(®) x len(¢1) (by induction hypothesis)
=3xlen(®) x (1+len(dy))

<3xlen(®©) x (2+len(dq))

=3 xlen(©) x len([a]¢1).

This ends the prool
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