
Increasing the Accuracy of Convolutional Neural
Networks with Progressive Reinitialisation

Craig Atkinson
Department of Computer Science

University of Otago
Dunedin, New Zealand

Email: atkcr398@student.otago.ac.nz

Brendan McCane
Department of Computer Science

University of Otago
Dunedin, New Zealand

Email: mccane@cs.otago.ac.nz

Lech Szymanski
Department of Computer Science

University of Otago
Dunedin, New Zealand

Email: lechszym@cs.otago.ac.nz

Abstract—This article introduces a training technique called
progressive reinitialisation. This technique involves training a
Convolutional Neural Network layer by layer. This is achieved
by training the whole network and progressively freezing lower
layers’ weights until the whole network is frozen. When a layer
is frozen, all weights in higher layers (unfrozen layers) are
reinitialised before training continues. This training procedure
is shown to boost the final network’s performance by about 2%
on CIFAR-10 and 1% on SVHN when image augmentation has
not been used.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) are a network
architecture proposed by LeCun et al. [1] for character recog-
nition and since then have been successfully applied to a wide
range of classification tasks, with the majority of research
focusing on image classification. Standard CNNs comprise of
a number of convolution and max-pooling layers, followed
by at least one fully-connected layer and then a softmax
layer. Typically, the weights in all layers are initialised before
training begins and then modified each mini-batch to minimise
the network’s error on the problem.

Previous research has shown that during training, early
layers can be frozen before later layers because they converge
on their feature detectors earlier in the training procedure
compared to later layers [2]. This article reports on a variation
of this scheme, which freezes consecutive weight layers and
reinitialises all unfrozen weights such that the layers in the
network are learnt in a forward order.

A. Related Work

CNNs are generally trained via stochastic gradient descent
which changes the network’s weights in the direction that
minimises the error on a dataset, according to your cost
function. This is often paired with techniques such as mo-
mentum which allows each weight to be changed by a very
different amount than other weights in the network. However,
it has been observed that when using these techniques it is
common for all weights in a layer to take approximately the
same sized step, which is not the case between layers [3].
Therefore, Singh et al. [3] proposed that you should have
an adaptive learning parameter which controls the step size
for all units in a layer and thus, reduces the number of
learning parameters consuming memory during the training of

a CNN. This technique even increased the network’s accuracy
compared to the other methods tested. This article suggests
that the procedure for training weights on one layer should
differ to that on other layers.

In CNNs, weights in each of the network’s layers become
feature detectors which recognise patterns in the input images.
Features detected by early layers are basic (e.g. lines and dots),
whereas features detected by later layers are more complex
(e.g. eyes and ears) [4]. Brock et al. [2] suggested that early
layers converge on their feature detectors earlier than later
layers because they are learning simpler patterns. This means
that during training you can freeze earlier layers before later
ones. This reduces the number of parameter updates being
made and thus, reduces the training time of a CNN without
having a major impact on the network’s accuracy. This is
important as it conveys that it is possible to finish training
earlier layers of a network before later ones.

Researchers have also constructed algorithms which train
random subsets of a CNN’s layers such that collectively the
layers are an effective classifier [5]. This was achieved by
using an architecture called ResNet [6] which essentially has
each layer output:

o = ReLU(bF (x) + x),

where the output o is equal to the activation function ReLU
applied to the layer’s input x, summed with the result of
applying the layer’s convolutional operation to the input F (x).
The only difference between a standard ResNet and the one
used by Huang et al. [5] is that b, which is just a random
boolean (0 or 1), is introduced into the latter. If this value
is 0 the layer is skipped and no learning occurs and if it is
1 the layer’s convolutional operation is not skipped and the
network’s weights are updated. This technique allowed them
to train a very large CNN by training subsets of it at one time
and this network outperformed the state of the art solution
on the image recognition dataset CIFAR-10. For this training
procedure to be effective the probability that each layer was
skipped (i.e. b = 0) was very small for the initial layers of
the network and then larger for later layers. This suggests that
it was important to train these earlier layers before significant
training occurred in the later layers.



Image augmentation involves applying random variation
to your training set such that every image presented to the
network is ”never” the same. This can be implemented through
a number of ways, including randomly cropping the image and
applying random contrast and brightness adjustments. Train-
ing a neural network with images that have been randomly
augmented (distorted) is beneficial because it discourages the
network from over-fitting [7]. This is because the random
variations in the training examples force the network to learn
the general patterns in the data and not the specifics of each
individual image.

B. Progressive Reinitialisation

Currently the standard practice for training CNNs is to train
all weights in the network at once, regardless of which layer
they belong to. However, this paper investigates whether it
can be beneficial to learn one layer at a time, starting with
the first layer. This is done by training the whole network
until it converges and then freezing the first layer’s weights to
the values that produced the lowest error on the validation
set. All other weights in the network are reinitialised and
training continues until convergence. At this point, the next
layer’s weights are also frozen and this process continues
until all layers in the network are frozen as the best weights
found during training. It is hypothesised that this training
procedure will result in a network that outperforms the same
network trained with standard stochastic gradient descent. This
paper will also investigate why this result might have occurred
through a number of experimental conditions.

II. METHOD

A. Dataset

The dataset the experiments were carried out on was
CIFAR-10 and SVHN. The CIFAR-10 dataset comprises of
60,000 coloured images of the following classes; airplane,
automobile, bird, cat, deer, dog, frog, horse, ship and truck.
Each image’s dimension is 32 × 32 and the goal for the
network is to determine which of 10 possible classes the image
belongs to. The CIFAR-10 dataset was split up such that
37,500 images were used for training, 12,500 for validation
and 10,000 for testing the network. The only preprocessing
done on images was centre cropping them such that their
dimensions were reduced to 24 × 24 and then applying per
image standardisation.

The SVHN dataset comprises of 99,289 coloured images
of the digits 0-9 taken from street addresses. Each image’s
dimension is 32 × 32 and the goal for the network is to
determine which of 10 possible classes the image belongs to.
This dataset was split up such that 54,942 images were used
for training, 18,315 for validation and 26,032 for testing the
network. The only preprocessing done on images was applying
per image standardisation.

B. Architecture

Two network architectures were tested; one architecture was
used exclusively for tests on the CIFAR-10 dataset and the

TABLE I
ARCHITECTURE OF THE TWO CNNS TESTED. CONV-n REPRESENTS A

CONVOLUTIONAL LAYER WITH n FILTERS, FC-m REPRESENTS A
FULLY-CONNECTED LAYER WITH m UNITS AND SM REPRESENTS THE

SOFTMAX LAYER WITH 10 UNITS.

CIFAR-10 SVHN
Conv-64 Conv-64
Conv-64 Conv-64

Conv-64
max-pool max-pool
Conv-128 Conv-128
Conv-128 Conv-128
max-pool max-pool

Conv-256
Conv-256
max-pool

FC-384 FC-192
FC-192

SM SM

other exclusively on the SVHN dataset. A summary of these
architectures can be found in Table I. All convolutional layers
apply 3 × 3 filters with a stride of 3 and all max-pooling
layers apply a 3 × 3 window with a stride of 2. All neurons
in the convolutional and fully-connected layers use the ReLU
activation function. L2 regularisation with a scale of 0.004 is
applied to every layer in the network (except the softmax layer
and bias weights).

When initialising and reinitialising layers’ weights, all con-
volutional layer weights are randomly set from a normal
distribution with a mean of 0 and a standard deviation of
0.05, except for bias weights which are set to the value 0.1.
Fully-connected layers’ bias weights are also set to the value
0.1 and the neurons’ weights are randomly set from a normal
distribution with a mean of 0 and a standard deviation of 0.004.
Finally, the softmax weights are randomly set using a normal
distribution with a mean of 0 and a standard deviation of 1/192,
except for bias weights which are set to the value 0.

C. Training and Evaluation

The networks are built, trained and evaluated using the
Python library Tensorflow [8]. Networks are trained with the
Adam optimiser [9], using a learning rate of 0.001, first
moment decay rate of 0.9, second moment decay rate of
0.999 and an epsilon of 1e-08. The network is trained on the
training examples using a mini-batch size of 512 and after
each epoch the current network’s loss is recorded for the
validation examples. After training is completed, the network
at the epoch with the lowest validation loss is evaluated on
the test examples. This process is repeated 10 times for each
condition and the mean result is compared using Welch two
sample t-test.

D. Experimental Conditions

The reinit condition trains using the procedure specified
in section I-B where the freezing and reinitialisation occurs
after every 40 epochs of training for a total training time of
280 epochs. 40 epochs is chosen, as the network’s weights



Fig. 1. Average accuracy of networks produced by the various conditions.

converge well before this point. The std condition trains
the network for the same number of epochs as the reinit
condition, i.e. 280 epochs, but does not freeze or reinitialise
any weights and thus, carries out standard stochastic gradient
descent.

The rev reinit condition is identical to the reinit condi-
tion except the freezing of layers begins at the last layer of
the network and stops at the first layer of the network with
reinitialising occurring on all weights that are not frozen. The
rand reinit condition freezes the layers in a random order,
while reinitialising all weights in layers that are not frozen.

The reinit w/o freezing condition does not freeze any
weights but every 40 epochs it reinitialises its weights. Reini-
tialisation begins for all weights except the first layer and then
all weights except those in the first two layers and so on.

The reinit aug condition is the same as the reinit condi-
tion, except that it freezes and reinitialises every 256 epochs
for a total of 1792 epochs and is trained on the augmented
dataset. 256 epochs is chosen because the network has con-
verged well before this point. The std aug condition is the
same as the std condition, except it trains for 1792 epochs
and also learns from the augmented training dataset. The
reinit aug and std aug conditions are run 3 times each and
it is only the training data which is augmented each epoch.

Finally, the reinit svhn and std svhn conditions are
identical to the reinit and std conditions respectively, except
training and testing is done on the SVHN dataset with a larger
network architecture. The reinit svhn condition applies its
freezing and reinitialisation every 40 epochs for 360 epochs
and thus, the std svhn condition trains for a total of 360
epochs.

E. Image Augmentation

The image augmentation applied by the reinit aug and the
std aug conditions involves cropping random 24×24 images
from the training set, randomly flipping images left or right,
adjusting brightness randomly between -63 and 63, randomly
adjusting contrast between 0.2 and 1.8 and then applying per
image standardisation.

III. RESULTS

The results of all the conditions are summarised in Fig. 1.
The mean accuracy for the reinit condition was 77.22%,
whereas the mean accuracy across the std condition was only

75.15%. The p-value for the difference between these two
means was 0.000. Because p < 0.025 we conclude that the
reinit training procedure resulted in a network which per-
formed significantly more accurately than the std condition.

The mean accuracy for the rev reinit condition was
75.26%, whereas the mean accuracy for the rand reinit
condition was 76.50%. The p-value for the difference between
the rev reinit and reinit condition was 0.000. The p-value
for the difference between the rand reinit and reinit con-
dition was also 0.000. Because p < 0.025 in both cases,
we conclude that the reinit training procedure produces a
significantly more accurate network than both the rev reinit
and rand reinit conditions.

The mean accuracy for the reinit w/o freezing condition
was 76.79%. The p-value for the difference between the
reinit w/o freezing and reinit condition was 0.121. Be-
cause p ≮ 0.025 we conclude that the reinit w/o freezing
training procedure resulted in a network which did not perform
significantly different to the reinit condition.

The mean accuracy for the reinit aug condition was
85.09%, whereas the mean accuracy across the std aug condi-
tion was 84.87%. The p-value for the difference between these
two means was 0.395. Because p ≮ 0.025 we conclude that
there is no significant difference between the two conditions.

The mean accuracy for the reinit svhn condition was
94.72%, whereas the mean accuracy across the std svhn
conditions was 93.45%. The p-value for the difference be-
tween these conditions was 0.000. Because p < 0.025 we
conclude that the reinit svhn training procedure resulted in
a network which performed significantly more accurately than
the std svhn condition.

IV. DISCUSSION

The aim of the reinit and std conditions was to deter-
mine whether the performance of a CNN could be improved
by freezing and reinitialising sequential layers. The results
demonstrate that the reinit condition significantly outperforms
the std condition. This confirms the hypothesis that the
performance of a CNN can be improved by freezing and
reinitialising sequential layers.

However, these results are limited as they do not determine
why this procedure outperforms the other. This leaves unan-
swered questions such as:

• Is the order of freezing and reinitialisation important to
the performance of the network?

• Is the freezing of layers necessary to progressive reini-
tialisation or is it solely the reinitialisation which results
in these performance gains?

The rev reinit and the rand reinit conditions were in-
troduced to determine whether the order of reinitialisation
was important and the reinit w/o freezing condition was
introduced to determine whether freezing is important to
progressive reinitialisation.

The reinit condition significantly outperformed both the
rev reinit and the rand reinit conditions which confirms
that the order of freezing and reinitialisation does matter



for progressive reinitialisation. More specifically, it is more
advantageous to start freezing weights and stop reinitialising
weights from the beginning of the network compared to
reversing this order or freezing and reinitialising weights in
a random order.

Progressive reinitialisation essentially learns the final
weights for a single layer in a CNN at one time. More
specifically, the procedure begins training the whole network
but only freezes the best set of weights for the first layer
and then reinitialises all others. Then the network trains all
remaining layers and freezes the best set of weights found
for the second layer and so on. This means that the network
is essentially learning the best set of weights for early layers
before later layers. Therefore, our results suggest that perhaps
CNNs should not be trained all at once as they are currently,
but rather in this forward order.

From Brock et al. [2] we can hypothesise that the freezing
of early weights to later weights is not necessary to progres-
sive reinitialisation. The results of the reinit w/o freezing
condition compared to the reinit condition supports the idea
that the freezing of weights does not significantly increase
the error of the network. This demonstrates that it is only the
reinitialising of layers that produces the performance increase.

Although progressively freezing layers of weights did not
improve the accuracy of the CNN, it did not decrease its
accuracy either. This is important as freezing the weights has
another benefit; it reduces the training time of the network.
This is because, when a layer is frozen, its weights do not
need to be changed and errors do not need to be propagated to
that layer and therefore, the computations involved in training
are reduced. This results in the training time being reduced by
about 30% and thus, freezing layers should still be used with
progressive reinitialisation.

The results of the reinit aug and the std aug conditions
show no significant difference. Therefore, the freezing and
reinitialisation done by progressive reinitialisation was not
beneficial for training on this dataset when image augmenta-
tion was being used. However, it should be noted that progres-
sive reinitialisation did not perform worse than the standard
procedure and therefore, can still be used with augmentation,
without decreasing the network’s accuracy.

Because progressive reinitialisation does not improve the
network’s accuracy when image augmentation is used, it
suggests that image augmentation provides one of the same
benefits as progressive reinitialisation. To help identify what
this benefit might be, we plotted the network’s validation
error for progressive reinitialisation vs. the standard training
procedure when image augmentation was and was not used.
Fig. 2 and Fig. 3 display these results for a single trial. Fig. 2
demonstrates that the std condition is over-fitting at around
epoch 25 as its validation error begins to increase. The reinit
condition also begins over-fitting, however this is periodically
counteracted (every 40 epochs) by reinitialisation which forces
the later layers to relearn their weights. The weights that the
later layers learn generally cause the validation error to reach
a new minimum, reiterating that learning the weights of later

Fig. 2. Validation error for each epoch of the reinit and std conditions. The
validation error is the average cross entropy loss across the mini-batches.

Fig. 3. Validation error for each epoch of the reinit aug and std aug
conditions. The validation error is the average cross entropy loss across the
mini-batches.

layers after earlier layers is more effective for minimising the
network’s error. To our knowledge there is no other research
suggesting that earlier layers of a neural network should be
trained before its later layers and thus, future research is
possible in this area.

Fig. 3 demonstrates that the neural network does not suffer
from over-fitting when image augmentation is used. This is
a well known principle, as image augmentation enlarges your
training dataset such that the network cannot over-fit by learn-
ing the correct classification to the individual training images.
We believe that image augmentation stops the later layers
of the network from over-fitting so that they can continue
effectively learning once the earlier layers have converged on
their feature detectors. Therefore, explicitly forcing later layers
of the network to learn their weights after earlier layers is not
necessary when image augmentation is being used.

Because image augmentation boosted the performance of
the CNN from 75% to 85%, image augmentation should defi-
nitely be preferred over progressive reinitialisation. However,
CNNs can be applied to tasks not involving images and thus,
image augmentation is not always an option. It is in these
cases where progressive reinitialisation might be preferred over
image augmentation as a method to boost the performance of
a CNN during training.

Finally, the reinit svhn condition was found to out-



perform the the std svhn condition by at least 1% on the
SVHN dataset. This demonstrates that the improved perfor-
mance gained from progressive reinitialisation is not limited
to a single architecture or dataset.

V. CONCLUSION

In conclusion, this article demonstrated that progressive
reinitialisation can be used to increase the accuracy of various
CNN architectures on CIFAR-10 and SVHN. Progressive
reinitialisation involves freezing the network’s layers, starting
from the beginning of the network and reinitialising all layers’
weights that are not frozen every 40 epochs. Experiments
demonstrated that the freezing of layers did not produce the
increase in accuracy, but was advantageous as it reduced
training time by about 30%, whereas reinitialising layers was
important for increasing the accuracy of the network. It was
also demonstrated that the order of this reinitialisation was
important, and that early layers should stop being reinitialised
before later layers.

Progressive reinitialisation was also tested with image aug-
mentation. In this experiment, progressive reinitialisation did
not increase the network’s accuracy significantly. We sug-
gested that both progressive reinitialisation and image augmen-
tation is beneficial because it allows later layers in the network
to learn their final feature detectors after earlier layers have
finished learning theirs. We identified that image augmentation
was more beneficial than progressive reinitialisation. However,
input to a CNN can be any type of data with spatial structure,
not just images. In some cases, the application of augmen-
tation is not clear and therefore, progressive reinitialisation
might be useful as an alternative method for boosting your
network’s performance. Therefore, future research might in-
vestigate whether progressive reinitialisation is effective on
other datasets, more specifically datasets which do not lend
well to augmentation.

ACKNOWLEDGMENT

We gratefully acknowledge the support of NVIDIA Corpo-
ration with the donation of the TITAN X GPU used for this
research.

REFERENCES

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[2] A. Brock, T. Lim, J. Ritchie, and N. Weston, “Freezeout: Accelerate train-
ing by progressively freezing layers,” arXiv preprint arXiv:1706.04983,
2017.

[3] B. Singh, S. De, Y. Zhang, T. Goldstein, and G. Taylor, “Layer-specific
adaptive learning rates for deep networks,” in Machine Learning and
Applications (ICMLA), 2015 IEEE 14th International Conference on.
IEEE, 2015, pp. 364–368.

[4] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” in European conference on computer vision. Springer, 2014,
pp. 818–833.

[5] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep
networks with stochastic depth,” in European Conference on Computer
Vision. Springer, 2016, pp. 646–661.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[7] S. C. Wong, A. Gatt, V. Stamatescu, and M. D. McDonnell, “Understand-
ing data augmentation for classification: when to warp?” in Digital Image
Computing: Techniques and Applications (DICTA), 2016 International
Conference on. IEEE, 2016, pp. 1–6.

[8] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:
Large-scale machine learning on heterogeneous systems,” 2015, software
available from tensorflow.org. [Online]. Available: http://tensorflow.org/

[9] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.


