
Increasing the Accuracy of Convolutional Neural
Networks with Progressive Reinitialisation

Craig Atkinson
Department of Computer Science

University of Otago
Dunedin, New Zealand

Email: atkcr398@student.otago.ac.nz

Brendan McCane
Department of Computer Science

University of Otago
Dunedin, New Zealand

Email: mccane@cs.otago.ac.nz

Lech Szymanski
Department of Computer Science

University of Otago
Dunedin, New Zealand

Email: lechszym@cs.otago.ac.nz

Abstract—This article introduces a training technique called
progressive reinitialisation. This technique involves training a
Convolutional Neural Network layer by layer. This is achieved
by training the whole network and progressively freezing lower
layers’ weights until the whole network is frozen. When a layer
is frozen, all weights in higher layers (unfrozen layers) are
reinitialised before training continues. This training procedure
is shown to boost the final network’s performance by about
2% on CIFAR-10 and 1% on SVHN in the absence of image
augmentation.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) are a network
architecture proposed by LeCun et al. [1] for character recog-
nition and since then have been successfully applied to a wide
range of classification tasks, with the majority of research
focusing on image classification. Standard CNNs comprise of
a number of convolution and max-pooling layers, followed
by at least one fully-connected layer and then a softmax
layer. Typically, the weights in all layers are initialised before
training begins and then they are updated each mini-batch to
minimise the network’s error on the problem.

Previous research has shown that during training, early
layers can be frozen before later layers because they converge
on their feature detectors earlier in the training procedure
compared to later layers [2]. This article reports on a vari-
ation of this scheme, which freezes consecutive layers and
reinitialises all unfrozen weights before continuing training
on the unfrozen weights. This results in the network’s layers
being learnt in a forward order.

A. Related Work

CNNs are generally trained via stochastic gradient descent
which changes the network’s weights in the direction that
minimises the error on a dataset, according to a cost function.
This is often paired with techniques such as momentum which
allows each weight to be changed by a very different amount
than other weights in the network. However, it has been
observed that when using these techniques it is common for
all weights in a layer to take approximately the same sized
step, which is not the case between layers [3]. Therefore, an
adaptive learning parameter was proposed to control the step

size for all units in a layer and thus, reducing the number
of learning parameters. This technique even increased the
network’s accuracy compared to the other methods tested,
suggesting that different layers can have different training
requirements.

In CNNs, weights in each of the network’s layers become
feature detectors which recognise patterns in the input images.
Features detected by early layers tend to be basic (e.g. lines
and dots), whereas features detected by later layers are more
complex (e.g. eyes and ears) [4]. Brock et al. [2] suggested
that early layers converge on their feature detectors earlier than
later layers because they are learning simpler patterns. This
means that during training you can freeze earlier layers before
later ones. This reduces the number of parameter updates being
made and thus reduces the training time of a CNN without
having a major impact on the network’s accuracy. This is
important as it conveys that it is possible to finish training
earlier layers of a network before later ones.

Researchers have also constructed algorithms which train
random subsets of a CNN’s layers such that collectively the
layers are an effective classifier [5]. This was achieved by
using an architecture called ResNet [6] which essentially has
each layer output:

o = ReLU(bF (x) + x), (1)

where x is the input to the layer, o is the output of the layer
and F (x) represents the convolutional operation that applies
the layer’s weights to the input. The only difference between a
standard ResNet and the one used by [5] is that b, which is just
a random boolean (0 or 1), is introduced into the latter. If this
value is 0 the layer is skipped and no learning occurs and if it
is 1 the layer’s convolutional operation is not skipped and the
network’s weights are updated. This technique allowed them
to train a very large CNN by training subsets of it at one time
and this network outperformed the state of the art solution
on the image recognition dataset CIFAR-10. For this training
procedure to be effective the probability that each layer was
skipped (i.e. b = 0) was very small for the initial layers of
the network and then larger for later layers. This suggests that
it was important to train these earlier layers before significant
training occurred in the later layers.978-1-5386-4276-4/17/$31.00 ©2017 IEEE

B. Progressive Reinitialisation

Currently the standard practice for training CNNs is to train
all weights in the network at once, regardless of which layer
they belong to. However, this paper investigates whether it
can be beneficial to learn one layer at a time, starting with the
first layer. This is done by training the whole network until
it converges and then freezing the first layer’s weights to the
values that produced the lowest error on the validation set.
All other weights in the network are reinitialised and training
continues until convergence. At this point, the next layer’s
weights are also frozen and this process continues until all
layers in the network are frozen. The motivation for this work
was the hypothesis that this training procedure will result in
a network that outperforms the same network trained with
standard stochastic gradient descent. We present experiments
to show this is indeed the case, and also experiments that
attempt to illuminate why this is the case.

II. METHOD

A. Dataset

Experiments have been performed using the CIFAR-10
and SVHN datasets. The CIFAR-10 dataset comprises 60,000
coloured images of the following classes; airplane, automobile,
bird, cat, deer, dog, frog, horse, ship and truck. Each image’s
dimension is 32 × 32 and the goal for the network is to
determine which of 10 possible classes the image belongs to.
The CIFAR-10 dataset was split up such that 37,500 images
were used for training, 12,500 for validation and 10,000 for
testing the network. Images were cropped to 24 × 24 and
standardisation was individually applied to each image.

The SVHN dataset comprises 99,289 coloured images of the
digits 0-9 taken from street addresses. Each image is 32× 32
and the goal for the network is to determine which of 10
possible classes the image belongs to. This dataset was split
up such that 54,942 images were used for training, 18,315 for
validation and 26,032 for testing the network. Standardisation
was individually applied to each image.

B. Architecture

Two network architectures were tested; one architecture was
used exclusively for tests on the CIFAR-10 dataset and the
other exclusively on the SVHN dataset. A summary of these
architectures can be found in Table I. All convolutional layers
apply 3 × 3 filters with a stride of 3 and all max-pooling
layers apply a 3 × 3 window with a stride of 2. All neurons
in the convolutional and fully-connected layers use the ReLU
activation function. L2 regularisation with a scale of 0.004 is
applied to every layer in the network (except the softmax layer
and bias weights).

When initialising and reinitialising, all convolutional layer
weights are randomly sampled from a normal distribution
with a mean of 0 and a standard deviation of 0.05, except
for bias weights which are set to the value 0.1. For the
fully-connected layers, weights are randomly sampled from a
normal distribution with a mean of 0 and a standard deviation
of 0.004 and the biases are set to 0.1. Finally, the softmax

TABLE I
ARCHITECTURE OF THE TWO CNNS TESTED. CONV-n REPRESENTS A

CONVOLUTIONAL LAYER WITH n FILTERS, FC-m REPRESENTS A
FULLY-CONNECTED LAYER WITH m UNITS AND SM REPRESENTS THE

SOFTMAX LAYER WITH 10 UNITS.

CIFAR-10 SVHN
Conv-64 Conv-64
Conv-64 Conv-64

Conv-64
max-pool max-pool
Conv-128 Conv-128
Conv-128 Conv-128
max-pool max-pool

Conv-256
Conv-256
max-pool

FC-384 FC-192
FC-192

SM SM

weights are randomly sampled from a normal distribution with
a mean of 0 and a standard deviation of 1/192 and biases
are set to 0. These values are recommended by Tensorflow’s
CIFAR-10 example.

C. Training and Evaluation
The networks are built, trained and evaluated using the

Python library Tensorflow [8]. Networks are trained with the
Adam optimiser [9], using a learning rate of 0.001, first
moment decay rate of 0.9, second moment decay rate of 0.999
and an epsilon of 1× 10−8. The network is trained on the
training examples using a mini-batch size of 512 and after
each epoch the current network’s loss is recorded for the
validation examples. After training is completed, the network
at the epoch with the lowest validation loss is evaluated on
the test examples. This process is repeated 10 times for each
condition and the mean result is compared using Welch two
sample t-test with a significance level of 5× 10−2.

D. Experimental Conditions
1) Without Image Augmentation: The reinit condition

trains using the procedure specified in section I-B where the
freezing and reinitialisation occurs after every 40 epochs of
training for a total training time of 280 epochs. 40 epochs is
chosen, as the network’s weights converge well before this
point. The std condition trains the network for the same
number of epochs as the reinit condition, i.e. 280 epochs, but
does not freeze or reinitialise any weights and thus, carries out
standard stochastic gradient descent.

The rev reinit condition is identical to the reinit condi-
tion except the freezing of layers begins at the last layer of
the network and stops at the first layer of the network with
reinitialising occurring on all weights that are not frozen. The
rand reinit condition freezes the layers in a random order,
while reinitialising all weights in layers that are not frozen.

The reinit w/o freezing condition does not freeze any
weights but every 40 epochs it reinitialises its weights. Reini-
tialisation begins for all weights except the first layer and then
all weights except those in the first two layers and so on.

TABLE II
RESULTS FOR CONDITIONS THAT WERE TRAINED ON THE CIFAR-10

DATASET, WITHOUT IMAGE AUGMENTATION. THE ∗ REPRESENTS
CONDITIONS THAT PRODUCED NETWORKS WHOSE ACCURACIES WERE

SIGNIFICANTLY DIFFERENT TO THE reinit CONDITION.

Conditions Test Accuracy (%) P-value (vs. reinit)
reinit 77.2
std 75.2 0.00*

rev reinit 75.3 0.00*
rand reinit 76.5 0.00*

reinit w/o freezing 76.8 0.12

TABLE III
RESULTS FOR CONDITIONS THAT WERE TRAINED ON THE SVHN
DATASET, WITHOUT IMAGE AUGMENTATION. THE ∗ REPRESENTS

CONDITIONS THAT PRODUCED NETWORKS WHOSE ACCURACIES WERE
SIGNIFICANTLY DIFFERENT TO THE reinit svhn CONDITION.

Conditions Test Accuracy (%) P-value (vs. reinit svhn)
reinit svhn 94.7
std svhn 93.4 0.00*

Finally, the reinit svhn and std svhn conditions are
identical to the reinit and std conditions respectively, except
training and testing is done on the SVHN dataset with a larger
network architecture. The reinit svhn condition applies its
freezing and reinitialisation every 40 epochs for 360 epochs
and thus, the std svhn condition trains for a total of 360
epochs.

2) With Image Augmentation: The reinit aug condition is
the same as the reinit condition, except that it freezes and
reinitialises every 256 epochs for a total of 1792 epochs and
is trained on the augmented dataset. 256 epochs is chosen
because the network has converged well before this point. The
std aug condition is the same as the std condition, except it
trains for 1792 epochs and also learns from the augmented
training dataset. The reinit aug and std aug conditions are
run 3 times each and it is only the training data which is
augmented each epoch.

The image augmentation applied by the reinit aug and the
std aug conditions involves cropping random 24×24 images
from the training set, randomly flipping images left or right,
adjusting brightness randomly between -63 and 63, randomly
adjusting contrast between 0.2 and 1.8 and then individually
applying standardisation to the images.

TABLE IV
RESULTS FOR CONDITIONS THAT WERE TRAINED ON THE CIFAR-10

DATASET, WITH IMAGE AUGMENTATION. THE ∗ REPRESENTS CONDITIONS
THAT PRODUCED NETWORKS WHOSE ACCURACIES WERE SIGNIFICANTLY

DIFFERENT TO THE reinit aug CONDITION.

Conditions Test Accuracy (%) P-value (vs. reinit aug)
reinit aug 85.1
std aug 84.9 0.40

Fig. 1. Average accuracy of networks produced by the various conditions.

III. RESULTS

The results of the exhaustive conditions tested are displayed
in Table II-IV and summarised in Fig. 1. Results in Table II
displays the reinit condition significantly out-performing all
other conditions, except for the reinit w/o freezing con-
dition, on CIFAR-10 when image augmentation was absent.
Table III displays the reinit svhn condition significantly out-
performing the std svhn condition and Table IV conveys
no significant difference between the reinit aug and the
std aug condition on CIFAR-10 when image augmentation
was present.

IV. DISCUSSION

The aim of the reinit and std conditions was to deter-
mine whether the performance of a CNN could be improved
by freezing and reinitialising sequential layers. The results
demonstrate that the reinit condition significantly outperforms
the std condition. This confirms the hypothesis that the
performance of a CNN can be improved by freezing and
reinitialising sequential layers.

However, these results are limited as they do not determine
why this procedure outperforms the other. This leaves unan-
swered questions such as:

• Is the order of freezing and reinitialisation important to
the performance of the network?

• Is the freezing of layers necessary to progressive reini-
tialisation or is it solely the reinitialisation which results
in these performance gains?

The rev reinit and the rand reinit conditions were in-
troduced to determine whether the order of reinitialisation
was important and the reinit w/o freezing condition was
introduced to determine whether freezing is important to
progressive reinitialisation.

The reinit condition significantly outperformed both the
rev reinit and the rand reinit conditions which confirms
that the order of freezing and reinitialisation does matter
for progressive reinitialisation. More specifically, it is more
advantageous to start freezing weights and stop reinitialising
weights from the beginning of the network compared to
reversing this order or freezing and reinitialising weights in
a random order.

Progressive reinitialisation essentially learns the final
weights for a single layer in a CNN at one time. More
specifically, the procedure begins training the whole network

Fig. 2. Validation error for each epoch of the reinit and std conditions. The
validation error is the average cross entropy loss across the mini-batches.

but only freezes the weights for the first layer and then
reinitialises all others. Then the network trains all remaining
layers and freezes the weights found for the second layer and
so on. This means that the network is essentially learning the
best weights for early layers before later layers. Therefore, our
results suggest that perhaps CNNs should not be trained all at
once as they are currently, but rather in this forward order.

From [2] we can hypothesise that the freezing of early
weights to later weights is not necessary to progressive reini-
tialisation. The results of the reinit w/o freezing condition
compared to the reinit condition supports the idea that the
freezing of weights does not significantly increase the error of
the network. This demonstrates that it is only the reinitialising
of layers that produces the performance increase.

Although progressively freezing layers of weights did not
improve the accuracy of the CNN, it did not decrease its
accuracy either. This is important as freezing the weights has
another benefit; it reduces the training time of the network.
This is because, when a layer is frozen, its weights do not
need to be changed and errors do not need to be propa-
gated to that layer and therefore, the computations involved
in training are reduced. More specifically, the 10 trials for
the reinit condition took 175 minutes to train, whereas the
reinit w/o freezing trials took 254 minutes. This is about a
30% reduction in training time and thus, freezing layers should
still be used with progressive reinitialisation.

The reinit svhn condition was found to out-perform the
the std svhn condition by at least 1% on the SVHN dataset.
This demonstrates that the improved performance gained from
progressive reinitialisation is not limited to a single architec-
ture or dataset.

The results of the reinit aug and the std aug conditions
show no significant difference. Therefore, the freezing and
reinitialisation done by progressive reinitialisation was not
beneficial for training on this dataset when image augmenta-
tion was being used. However, it should be noted that progres-
sive reinitialisation did not perform worse than the standard
procedure and therefore, can still be used with augmentation,
without decreasing the network’s accuracy.

Because progressive reinitialisation does not improve the

Fig. 3. Validation error for each epoch of the reinit aug and std aug
conditions. The validation error is the average cross entropy loss across the
mini-batches.

network’s accuracy when image augmentation is used, it
suggests that image augmentation provides one of the same
benefits as progressive reinitialisation. To help identify what
this benefit might be, we plotted the network’s validation
error for progressive reinitialisation vs. the standard training
procedure when image augmentation was absent vs. present.
Fig. 2 and Fig. 3 display these results for a single trial. Fig. 2
demonstrates that the std condition is over-fitting at around
epoch 25 as its validation error begins to increase. The reinit
condition also begins over-fitting, however this is periodically
counteracted (every 40 epochs) by reinitialisation which forces
the later layers to relearn their weights. The weights that the
later layers learn generally cause the validation error to reach
a new minimum, reiterating that learning the weights of later
layers after earlier layers is more effective for minimising the
network’s error. To our knowledge there is no other research
suggesting that earlier layers of a neural network should be
trained before its later layers and thus, future research is
possible in this area.

Currently freezing and reinitialisation occurred every 40
epochs. Fig. 2 demonstrates that it does not take the whole
40 epochs for the network to reach its minimum validation
error. This is especially noticeable at epoch 200 and 240 where
it takes the network only a couple of epochs to reach the
minimum error after freezing and reinitialisation had occurred.
This demonstrates how the speed of this algorithm could be
increased if freezing and reinitialisation occurred when the
network’s error converges at its minimum rather than naively
occurring every 40 epochs.

Fig. 3 demonstrates that the neural network does not suffer
from over-fitting when image augmentation is used. This is
a well known principle, as image augmentation enlarges the
training dataset such that the network cannot over-fit by learn-
ing the correct classification to the individual training images.
We believe that image augmentation stops the later layers
of the network from over-fitting so that they can continue
effectively learning once the earlier layers have converged on
their feature detectors. Therefore, explicitly forcing later layers
of the network to learn their weights after earlier layers is not

necessary when image augmentation is being used.
Because image augmentation boosted the performance of

the CNN from 75% to 85%, image augmentation should
definitely be preferred over progressive reinitialisation as a
technique for increasing a network’s accuracy. However, CNNs
can be applied to tasks not involving images and thus, image
augmentation is not always an option. It is in these cases where
progressive reinitialisation might be preferred over image
augmentation as a method to boost the performance of a CNN
during training.

Finally, given that the progressive reinitialisation condition
did not perform significantly different to the standard condition
when image augmentation was present, it could still be benefi-
cial to use progressive reinitialisation as this improves training
time without sacrificing accuracy. For example, the training
time for the reinit aug condition was 2100 minutes, whereas
the std aug condition was 2242 minutes. This is about a 6%
saving1.

V. CONCLUSION

In conclusion, this article demonstrated that progressive
reinitialisation can be used to increase the accuracy of various
CNN architectures on CIFAR-10 and SVHN. Progressive
reinitialisation involves periodically freezing the network’s
layers, starting from the beginning of the network and reini-
tialising all layers’ weights that are not frozen. Experiments
demonstrated that the freezing of layers did not produce the
increase in accuracy, but was advantageous as it reduced
training time by about 30%, whereas reinitialising layers was
important for increasing the accuracy of the network. It was
also demonstrated that the order of this reinitialisation was
important, and that early layers should stop being reinitialised
before later layers.

Progressive reinitialisation was also tested with image aug-
mentation. In this experiment, progressive reinitialisation did
not increase the network’s accuracy significantly. We sug-
gested that both progressive reinitialisation and image aug-
mentation is beneficial because it allows later layers in the
network to learn after earlier layers have finished learning.
We identified that image augmentation was more beneficial
than progressive reinitialisation. However, input to a CNN can
be any type of data with spatial structure, not just images.
In some cases, the application of augmentation is not clear
and therefore, progressive reinitialisation might be useful as
an alternative method for boosting your network’s perfor-
mance. Therefore, future research might investigate whether
progressive reinitialisation is effective on other datasets, more
specifically datasets which do not lend well to augmentation.

ACKNOWLEDGMENT

We gratefully acknowledge the support of NVIDIA Corpo-
ration with the donation of the TITAN X GPU used for this
research.

1This saving is not as substantial as the saving between the reinit and the
reinit w/o freezing conditions because the augmentation introduced is a
relatively expensive operation.

REFERENCES

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[2] A. Brock, T. Lim, J. Ritchie, and N. Weston, “Freezeout: Accelerate train-
ing by progressively freezing layers,” arXiv preprint arXiv:1706.04983,
2017.

[3] B. Singh, S. De, Y. Zhang, T. Goldstein, and G. Taylor, “Layer-specific
adaptive learning rates for deep networks,” in Machine Learning and
Applications (ICMLA), 2015 IEEE 14th International Conference on.
IEEE, 2015, pp. 364–368.

[4] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” in European conference on computer vision. Springer, 2014,
pp. 818–833.

[5] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep
networks with stochastic depth,” in European Conference on Computer
Vision. Springer, 2016, pp. 646–661.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[7] S. C. Wong, A. Gatt, V. Stamatescu, and M. D. McDonnell, “Understand-
ing data augmentation for classification: when to warp?” in Digital Image
Computing: Techniques and Applications (DICTA), 2016 International
Conference on. IEEE, 2016, pp. 1–6.

[8] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:
Large-scale machine learning on heterogeneous systems,” 2015, software
available from tensorflow.org. [Online]. Available: http://tensorflow.org/

[9] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

