
Pseudo-Recursal: Solving the Catastrophic
Forgetting Problem in Deep Neural Networks

Craig Atkinson
Department of Computer Science

University of Otago
Dunedin, New Zealand

Email: atkcr398@student.otago.ac.nz

Brendan McCane
Department of Computer Science

University of Otago
Dunedin, New Zealand

Email: mccane@cs.otago.ac.nz

Lech Szymanski
Department of Computer Science

University of Otago
Dunedin, New Zealand

Email: lechszym@cs.otago.ac.nz

Anthony Robins
Department of Computer Science

University of Otago
Dunedin, New Zealand

Email: anthony@cs.otago.ac.nz

Abstract—In general, neural networks are not currently ca-
pable of learning tasks in a sequential fashion. When a novel,
unrelated task is learnt by a neural network, it substantially
forgets how to solve previously learnt tasks. One of the original
solutions to this problem is pseudo-rehearsal, which involves
learning the new task while rehearsing generated items represen-
tative of the previous task/s. This is very effective for simple tasks.
However, pseudo-rehearsal has not yet been successfully applied
to very complex tasks because in these tasks it is difficult to
generate representative items. We accomplish pseudo-rehearsal
by using a Generative Adversarial Network to generate items
so that our deep network can learn to sequentially classify
the CIFAR-10, SVHN and MNIST datasets. After training on
all tasks, our network loses only 1.67% absolute accuracy on
CIFAR-10 and gains 0.24% absolute accuracy on SVHN. Our
model’s performance is a substantial improvement compared to
the current state of the art solution.

I. INTRODUCTION

Deep Neural Networks (DNNs) are currently the state of the
art solution to many machine learning problems. However, they
cannot be trained on a new task while retaining knowledge
of previously trained tasks. This is known as Catastrophic
Forgetting (CF) [1] and is a problem that needs to be solved
for continuously learning artificial agents - so called lifelong
learners.

Solutions to CF can be aligned with the biological learning
notions of synaptic stability and plasticity [2]. The synaptic
stability hypothesis states that memory is retained by fixing the
weights between the units that encode it. The synaptic plasticity
hypothesis states that weights between units can change as
long as memory is retained such that the output units still
recreate the correct pattern of activity.

Recent focus on overcoming CF has introduced Elastic
Weight Consolidation (EWC) [3]. In EWC, the loss function
is augmented by the importance of weights to previously
learnt tasks. This measure encourages weights that are very
important to the previous task to retain similar values, whereas
less important weights can be more significantly altered to
learn the new task. EWC is aligned with the synaptic stability

hypothesis because it tries to reduce significant changes to
important weights which would impair the functionality of
the network and thus, its performance on the previous task.
However, constraining each of the important neurons in the
network to retain similar weights has a number of disadvantages.
Predominantly, if a group of neurons’ function in the network
can be compressed into a smaller group of neurons (to make
room for new information), EWC will not find this solution.
Another disadvantage with EWC is that two task specific
parameters were needed per unit to allow this method to work
on challenging problems such as playing Atari 2600 games.

Pseudo-rehearsal [4] has been proposed as a solution to
CF and thus, life long learning in neural networks. When
the network needs to be trained on a new task, pseudo-
rehearsal protects prior learning by generating samples of
the network’s behaviour which captures the structure of the
original task/s. This is done by randomly generating input
samples and assigning their target outputs by passing them
through the network. These input-output pairs can then be
rehearsed while learning items from the new task. Pseudo-
rehearsal constrains the changes to the network’s function so
that it remains approximately the same for the input space of
previously learnt tasks while the function changes for the input
space of the new task. Pseudo-rehearsal is aligned with the
synaptic plasticity hypothesis because the weights of individual
neurons encoding the previous task can change as long as the
network’s overall functionality remains consistent.

II. PSEUDO-RECURSAL

Let’s begin with formalising pseudo-rehearsal. Let x ∈ Rd

and a neural network of a chosen architecture with its function
given as hw : Rd 7→ Rk, where w is the set of all trainable
parameters. Let yt be a one-hot encoded vector indicating the
assignment of one class in task t, with all zero vectors for
other classes across all tasks t = 1, ..., T .

Given the set of parameters wt, which minimises some loss
function L (hwt(xt),yt) for task t, we want to next train the



network on task t + 1 and find an optimal set of weights
wt+1 that minimises loss L

(
hwt+1(xt+1),yt+1

)
while still

performing well on the previous task, i.e. hwt+1(xt) ≈ hwt(xt).
Now, if we were to rehearse the previous tasks while learning
task t+ 1 we would need to minimise the following:

Jr =

t+1∑
i=1

L
(
hwt+1

(xi),yi

)
(1)

It’s problematic, because it needs all the data from the
previous tasks.

In pseudo-rehearsal, the same can be achieved by minimising:

Jp = L(hwt+1 (xt+1),yt+1) +

t∑
i=1

L
(
hwt+1(x̃i), ỹi

)
, (2)

where x̃i is a pseudo-vector generated randomly and ỹi =
hwt

(x̃i) is the output of the network at state wt, before learning
task t+ 1.

The problem is that for image datasets, random vector x̃i is
not representative of the input xi.

A. Generating Representative Pseudo-Images 

Airplane 

Automobile 
 

Bird 

Cat 

Deer 

Dog 

Frog 

Horse 

Ship 

Truck 

Fig. 1. Pseudo-images generated by a uniform distribution [0, 255]. These
images are labelled by our classification network. Images are black when no
instances of that class occurred after 2048 generations.

In [4], pseudo-rehearsal was achieved by generating pseudo-
items using a random distribution. However, in deep learning,
the problems are much harder and thus, pseudo-vectors gener-
ated purely at random are not likely to be good representations
of the training data. This is particularly obvious for images
because generating pseudo-images with a uniform distribution
produces static images which do not represent natural images
(see Figure 1). Furthermore, these static images poorly represent
the distribution of classes as, after 2048 generations, the
network believed almost all static images were either birds or
frogs. When these static images are used in pseudo-rehearsal,

CIFAR-10 SVHN MNIST

CIFAR-10 83.56% 13.12% 1.54%

SVHN 92.85% 0.00%

MNIST 99.27%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Te
st

 A
cc

u
ra

cy

Task Learnt

CIFAR-10 SVHN MNIST

Fig. 2. Average accuracy of a classification network when using pseudo-
rehearsal with pseudo-images generated by a uniform distribution [0, 255].
The x-axis represents the task that has just been learnt and the lines represent
the network’s test accuracy on the various tasks trained so far. Error bars
represent the standard deviation of each data point across the 3 trials. Non-
visible error bars have smaller standard deviations than their data point.

the network retains little knowledge of its previously learnt
tasks (see Figure 2).

The Generative Adversarial Network (GAN) [5] is a neural
network model which uses unsupervised learning to gener-
ate random images which are representative of the input
dataset. This is achieved by creating two network models;
a discriminative model and a generative model. The goal
of the discriminative model is to identify whether an input
image is a real image or a generated image, whereas the goal
of the generative model is to create images which fool the
discriminator. This results in the generator learning to create
images that represent the input images.

To confirm that a GAN can be used to generate pseudo-
images that look similar to real images, we applied a Deep
Convolutional Generative Adversarial Network (DCGAN) [6]
to the CIFAR-10 dataset1. Figure 3 (B) illustrates that the
generated images look similar to real CIFAR-10 images from
a distance, although differences emerge on close inspection.
Nevertheless, the generated images still contain class specific
features which the network can learn to retain.

B. Learning Process

Our GAN is trained on images from a previous task so that it
can be used to generate pseudo-images which are representative
of that task, without storing the actual dataset. This means that
when the classification network is trained on the first task (T1),
the GAN should also be trained on T1’s images. Then, when
the next task (T2) is learnt, the GAN can be used to generate
pseudo-images (which have their target labels assigned by the
previous classification network) which are rehearsed along with
T2.

The main complication is when a third task (T3) is introduced.
To retain knowledge of both T1 and T2 our pseudo-items must

1A few adaptations were made to this algorithm. These are described in
Section IV-B.



 
 

Airplane 

A B 

Automobile 
 

Bird 

Cat 

Deer 

Dog 

Frog 

Horse 

Ship 

Truck 

C 

Fig. 3. A: Real CIFAR-10 images. B: Pseudo-images generated by a GAN trained on CIFAR-10 images. C: Pseudo-images generated by a GAN trained on
images from CIFAR-10, followed by images from SVHN along with pseudo-images representing CIFAR-10. These images are labelled by our classification
network. The GAN from C generates images representing both SVHN and CIFAR-10, however only images representing (labelled by the classifier as)
CIFAR-10 are included in this figure.

now be representative of both tasks. A simple solution is to
train a second GAN to generate images from T2. This is
effective, but requires a new allocation of memory for every
task. A more elegant solution is to do pseudo-rehearsal on the
GAN as well. This allows the GAN to produce pseudo-items
from both T1 and T2 without requiring extra memory per task.
Pseudo-rehearsal on the GAN model can easily be achieved
by generating pseudo-images from the GAN and mixing them
with the current task’s images. This procedure can be repeated
recursively, every time a new task is present and thus, we term
our process pseudo-recursal.

To confirm that pseudo-rehearsal can be used on the GAN
to still generate pseudo-images that look similar to real images,
we train our GAN on CIFAR-10 and then SVHN while
rehearsing generated images that represent CIFAR-10. Figure 3
and Figure 4 illustrates that using pseudo-rehearsal on the
GAN causes it to generate images that represent the recent
task (SVHN) and the previously trained task/s (CIFAR-10).
Furthermore, in the case of SVHN, the pseudo-images do not
appear to be noticeably different from real SVHN images.

Originally, pseudo-rehearsal was applied to simple tasks
where the pseudo-items generated by a random distribution
covered the whole input space. This means that the pseudo-
items represent the network’s function over the whole input
space such that changes that are made to accommodate the
new task are as local as possible to the input space of the
new task [7]. However, we are using a GAN so that we only
generate pseudo-items near actual previous inputs in a much
larger / sparser space and thus, the network retains its mapping
only near previous inputs, and in other parts of the space, the
network is free to vary.

In summary, we achieve continuous learning by applying
pseudo-rehearsal to both a classification model and a GAN
model. This allows our DNN to overcome the CF problem
without requiring extra memory when a new task is presented.

Furthermore, our pseudo-recursal technique does not apply any
hard constraints on the function of intermediate neurons nor
the function of the network in irrelevant areas of the input
space.

III. RELATED WORK

Our aim is to develop a general purpose algorithm for
overcoming the CF problem in sequential task learning. We
believe that for this algorithm to be general purpose and scalable
to a large number of tasks, the following criteria should be
met:

1) It should be able to be applied to the entirety of a DNN
without any layers being pre-trained on similar tasks.

2) It should not require the memorisation of any past tasks’
items.

3) It should not grow in memory requirements with each
new task.

4) The function of intermediate neurons should not be
constrained so that they adhere to the synaptic plasticity
hypothesis.

Incremental learning is a field of research where a neural
network is required to learn a task’s classes sequentially. In
incremental learning, CF impairs networks’ ability to remember
previously trained classes. Our paper focuses on sequentially
learning different tasks. These tasks are generally dissimilar
and do not necessarily have to have the same modality (such
as visual or auditory). Although these two learning problems
differ, they have many similarities and therefore, methods from
one field are often applicable to the other.

Recently, pseudo-rehearsal has been applied to incremental
learning models. In [8], pseudo-rehearsal was used to sequen-
tially train a convolutional neural network to classify the first
5 digits of MNIST, followed by the remaining 5 digits. This
was achieved by using a recurrent neural network to generate
random images representative of the first 5 MNIST digits. These



 
 

D E 
1 

2 
 

3 

4 

5 

6 

7 

8 

9 

0 

Fig. 4. D: Real SVHN images. E: Pseudo-images generated by a GAN trained on images from CIFAR-10, followed by images from SVHN along with
pseudo-images representing CIFAR-10. These images are labelled by our classification network. The GAN from E generates images representing both SVHN
and CIFAR-10, however only images representing (labelled by the classifier as) SVHN are included in this figure.

images could then be rehearsed while learning the later 5 digits.
This work has a number of major limitations. Their generative
model requires each pixel’s mean value and standard deviation
to be stored for each of the classes learnt. This results in the
memory requirements of the model scaling with the number
of classes learnt. Furthermore, they must check each of the
generated images and discard any that the network is not 95%
confident in belonging to a learnt class. Finally, generating
random images that are representative of MNIST is a trivial
task because all images in a class are very similar to one
another, which is not the case for more difficult tasks such as
CIFAR-10 and to a lesser extent SVHN.

In [9], pseudo-rehearsal was also applied to incremental
learning in a model called FearNet. Their model has 3
components: short-term memory system, long-term memory
system and a system that determines whether the short-term
or long-term system should be used for classifying an item.
This model stores recent items in the short-term system and
pseudo-rehearsal is periodically used to train the long-term
system on these items, without forgetting its previously learnt
classes. The long-term memory system is implemented as an
autoencoder (encoder-decoder) where the output of the encoder
is passed through a final classification layer. The decoder is
used to generate pseudo-items, however it also requires the
storage of the mean and covariance matrix of the encoder’s
representation of each of the previous classes.

In [9], authors train FearNet’s long-term memory store with
a process called intrinsic replay [10]. This process is similar
to our recursive training method, where pseudo-items are

generated by the decoder and then rehearsed with the new items.
Our generative model is isolated from the classification network,
whereas FearNet combines these models. This means that when
the long-term system is being trained, the classification loss
and reconstruction loss are minimised concurrently. A further
difference is that the reconstruction loss is minimised across
each layer of the autoencoder. This limitation means that the
function of neurons in intermediate layers of the network are
being constrained.

FearNet was shown to counteract CF on supposedly complex
tasks such as CIFAR-100. However, FearNet was never trained
on the CIFAR-100’s raw images but rather the output of the first
49 weight layers (including the mean pooling layer) in ResNet-
50 [11] that had been pre-trained on ImageNet. This means
that the classification is done by a much smaller multi-layer
perceptron and the majority of the work has been pre-trained
into the ResNet architecture. Subsequently, the autoencoder is
not learning to reproduce CIFAR-100 images but rather the
items’ output from the ResNet architecture. Although this is
a more difficult task than training on MNIST, this method is
incomparable to training a convolutional neural network to
classify the task from raw input.

A recent review of methods for overcoming CF concluded
that current algorithms do not solve CF [12]. They also found
that EWC performed the best for learning multiple tasks
and thus, we compare pseudo-recursal to EWC. The main
contributions of our paper are; we show that pseudo-recursal
can be used to overcome the CF problem in DNNs, sequentially
learning CIFAR-10, SVHN and MNIST and we demonstrate



TABLE I
HYPER-PARAMETERS FOR THE CLASSIFICATION MODEL.

Parameter Value Description

initial lr 1× 10−3 Learning rate used when the network is training on only the first task’s dataset.
later lr 1× 10−4 Learning rate used when the network is being trained on any later task.

minibatch size 512 The number of items trained from during each mini-batch.
patience 10 Training is stopped when the network has not improved in its validation error for this number of epochs.

β1 0.9 First moment decay rate for the Adam optimiser.
β2 0.999 Second moment decay rate for the Adam optimiser.
ε 1× 10−8 Epsilon value for the Adam optimiser.

p train size 37,500 Number of pseudo-items in the training portion of the pseudo-dataset.
p valid size 12,500 Number of pseudo-items in the validation portion of the pseudo-dataset.

that pseudo-rehearsal can be applied recursively to a separate
classification and generative model. This architecture also
satisfies the previously mentioned criteria. Although we limit
ourselves to image classification in this paper, our techniques
are applicable to other problems.

IV. METHOD

A. Datasets

In our experiments we train our classifier model sequentially
on the CIFAR-10, SVHN and MNIST datasets2. These datasets
have been chosen because they all comprise similar sized
images, the same number of classes and a range of similarities
and differences between the datasets’ tasks. CIFAR-10 contains
animals and types of transport which is dissimilar to SVHN
and MNIST which both contain the digits 0-9. All datasets
are divided so that there are 37,500 training, 12,500 validation
and 10,000 testing items.

For the classification network, all the tasks’ and pseudo-
datasets’ validation and test images are center cropped to 24×24
and then standardised. For the training images, distortions are
applied every epoch by randomly cropping the 32× 32 images
down to 24×24, flipping images left or right (only for CIFAR-
10), adjusting brightness between -63 and 63, adjusting contrast
between 0.2 and 1.8 and then standardising the images.

B. Network Architecture

The classification network we use is based on [13]. Our
network passes the input through two convolutional layers,
max-pooling layer, two more convolutional layers, max-pooling
layer and then 3 fully-connected layers. Convolutional layers
had 128, 128, 256 and 256 filters respectively and applied these
3× 3 filters with a stride of 1. Max-pooling layers applied a
3× 3 window with a stride of 2. The fully-connected layers
had 512, 384 and 30 units respectively, with the final 30 unit
layer being the softmax layer. All layers except the softmax
layer apply the ReLU activation function.

The GAN used in this paper is identical to DCGAN [6].
The only exceptions are the use of pseudo-rehearsal with a

2Other variations of this order were also tested and similar results were
found.

dataset size of 50,000 items and a mini-batch discrimination
layer (see [14]). The mini-batch discrimination layer reduces
the training time needed for the generator to produce visually
appealing images and helps stop the network from converging
at a point where it only outputs the same image.

C. Training and Evaluation

The classifier is trained using the hyper-parameters specified
in Table I. When the first task is being trained, all of the
mini-batch’s training examples come from the task’s dataset.
However, for later tasks, half of the examples come from the
task’s dataset and the remaining are from the pseudo-dataset.

The validation error is recorded after each epoch on both
the current task’s dataset and the pseudo-dataset (if one exists).
After training is completed, the network weights at the epoch
with the lowest validation loss are reloaded into the network
and it is evaluated on real test items from the current task and
all previously learnt tasks.

D. Experimental Conditions

Each experimental condition underwent 3 trials and results
were averaged. The experimental conditions are as follows:

• std: Learns the datasets individually in a sequence. This
is the lower bound on performance (CF).

• reh: Learns the datasets sequentially, while still rehearsing
all of the real items from previously learnt datasets. This
is the upper bound on performance, which the network
cannot improve.

• pseudo rec: Learns the datasets sequentially, while re-
hearsing pseudo-items representative of the previously
learnt datasets.

• ewc: Learns the datasets sequentially, while retaining past
knowledge with EWC and using task specific weights3.
EWC uses a λ parameter which we set to 270 after doing
a random search between [0, 1000) with 20 trials.

• ewc c10: When EWC was proposed, it was shown on
tasks that shared their output units, for example, in
reinforcement learning of Atari 2600 games, the buttons

3The network is correctly told which task it is classifying so that the correct
task specific weights are always applied. This gives EWC the best possible
chance at outperforming pseudo-recursal.



on the controller were consistent across games (with the
exception that a couple were not used for particular games).
In our classification problem this does not make sense, as
if the output neurons were shared between tasks, a separate
network would be required to determine the current task.
However, to determine whether EWC is more effective in
this scenario, we create a further condition which assumes
the current task is known and thus, the 10 output neurons
are shared between tasks. EWC’s λ parameter is set to
267 after doing a random search between [0, 1000) with
20 trials.

• rote learn: To confirm that using a GAN to generate
pseudo-items is more effective than using the same
allocation of memory to rote learn a subset of the
previous tasks’ items, we tested our model’s retention
when rehearsal was applied to the subset of items. The
number of free parameters in the generative model is
approximately 4.5m and thus, 1,500 images (and their
true labels) were randomly selected to be memorised from
past tasks. This condition learns the datasets sequentially,
while still rehearsing the memorised items. The images
are split between the training and validation sets in the
same 3:1 ratio as all other datasets and distortions are
also applied to the training images every epoch.

V. RESULTS

Although, the classification network we test is not the state of
the art network for any of these datasets, it can still be trained to
very respectable accuracy on all of the tasks (e.g. over 83% on
CIFAR-10) without using any special tricks. The results of all
the experimental conditions are displayed in Figure 5. The std
condition clearly shows CF because once a new task is learnt,
the network does not correctly classify any of the previous
tasks’ images. The fact that the accuracy drops straight to 0%
on previous tasks seems dramatic, however it is very logical for
a classification network that trains using cross-entropy because
when training, the previous tasks’ images do not appear at all
and thus, the output neurons representing those classes quickly
learn that they should never activate.

As expected, the reh condition does not demonstrate CF,
as the final task accuracies increased slightly from their initial
values. This condition demonstrates that our network has the
capacity to learn all three tasks to a high accuracy without
needing any additional units.

The pseudo rec condition also overcomes the CF problem
as it too does not experience a dramatic drop in the previous
tasks’ accuracy when it learns a new task. In fact, it loses
no more than 1.32% accuracy every time a new task is
presented and loses only 1.67% of CIFAR-10 test accuracy
after rehearsing both the other tasks. These differences in
accuracy are absolute differences, which will remain consistent
throughout this paper. For SVHN, pseudo-recursal resulted
in a 0.24% increase in accuracy after learning MNIST. This
conveys that our network has the capability to retain almost all
knowledge about the previous tasks without needing to store

previous data, but rather by generating approximations of it as
required.

The ewc condition is barely resistant to the CF problem,
managing to correctly classify 4.94% and 21.81% of the CIFAR-
10 and SVHN datasets after all three tasks have been learnt.
However, we hypothesised that this could be because each
of the tasks’ classes are represented by separate output units.
Output units that represent the first task are never active for
later tasks and thus, the pressure on these units to never activate
on later tasks is likely greater than the pressure on these units
to remember the previous task (from EWC). Therefore, in the
ewc c10 condition we allowed the tasks to share their output
units so that the units that are active for the first task are also
active on subsequent tasks. We found that this lead to a dramatic
improvement in EWC’s ability to retain knowledge of previous
tasks such that it could classify CIFAR-10 and SVHN to 55.45%
and 50.38% accuracy after learning all tasks. This suggests that
EWC is ineffective for learning tasks which do not share their
output representations but is moderately effective when they do.
We still find that pseudo-recursal clearly outperforms EWC as it
loses only 1.67% of CIFAR-10’s accuracy compared to EWC’s
28.72%. Furthermore, it should be noted that over the 3 trials
EWC’s retention varied fairly dramatically, however pseudo-
recursal consistently outperformed EWC across all trials by a
large margin.

Compared to EWC and standard pseudo-rehearsal, the main
disadvantage of this method is that a generative network is
required for pseudo-rehearsal to work on our deep network.
However, we also apply pseudo-rehearsal to the generative
model so that the size of this network is constant. Another
disadvantage of pseudo-recursal is that it takes considerably
more training time because the generator must also be trained.
Furthermore, the same number of pseudo-items as novel task’s
items are trained for both the classifier and the generator which
results in twice as many mini-batches per epoch. However, we
have not attempted to optimise the number of pseudo-items
required and such a large increase may not be necessary.

The results for the rote learn condition conveys that the
classifier can retain the majority of its knowledge of past tasks,
however pseudo-recursal still clearly outperforms it, retaining
9.6% more accuracy on CIFAR-10 and 13.11% more on SVHN.
This demonstrates that using the GAN model is more effective
than simply remembering past items.

VI. DISCUSSION AND CONCLUSION

We have demonstrated that combining GANs with pseudo-
rehearsal is an effective method for solving the CF problem.
Pseudo-recursal has major advantages over other methods such
as EWC because it does not require the network to grow
for each new task and the network does not have any hard
constraints on how individual neurons should learn the new
task. In future research we aim to apply pseudo-recursal to a
reinforcement learning task so that the network could learn to
play novel Atari 2600 games, while retaining its ability to play
previously trained games.



CIFAR-10 SVHN MNIST

CIFAR-10 83.77% 84.86% 84.58%

SVHN 91.26% 92.01%

MNIST 99.00%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Te
st

 A
cc

u
ra

cy

Task Learnt

reh

CIFAR-10 SVHN MNIST

CIFAR-10 SVHN MNIST

CIFAR-10 83.56% 0.15% 0.00%

SVHN 93.16% 0.00%

MNIST 99.16%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Te
st

 A
cc

u
ra

cy

Task Learnt

std

CIFAR-10 SVHN MNIST

CIFAR-10 SVHN MNIST

CIFAR-10 83.45% 82.13% 81.78%

SVHN 90.68% 90.92%

MNIST 99.09%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Te
st

 A
cc

u
ra

cy

Task Learnt

pseudo_rec

CIFAR-10 SVHN MNIST

CIFAR-10 SVHN MNIST

CIFAR-10 84.17% 72.46% 55.45%

SVHN 91.70% 50.38%

MNIST 98.92%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Te
st

 A
cc

u
ra

cy

Task Learnt

ewc_c10

CIFAR-10 SVHN MNIST

CIFAR-10 SVHN MNIST

CIFAR-10 84.61% 15.27% 4.94%

SVHN 92.15% 21.81%

MNIST 99.03%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Te
st

 A
cc

u
ra

cy

Task Learnt

ewc

CIFAR-10 SVHN MNIST

CIFAR-10 SVHN MNIST

CIFAR-10 83.80% 79.13% 72.18%

SVHN 84.75% 77.81%

MNIST 97.01%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Te
st

 A
cc

u
ra

cy

Task Learnt

rote_learn

CIFAR-10 SVHN MNIST

Fig. 5. Average accuracy of the classification network for the std, reh, pseudo rec, ewc, ewc c10 and rote learn conditions. The x-axis represents the
task that has just been learnt and the lines represent the network’s test accuracy on the various tasks trained so far. Error bars represent the standard deviation
of each data point across the 3 trials. Non-visible error bars have smaller standard deviations than their data point.

ACKNOWLEDGMENT

We gratefully acknowledge the support of NVIDIA Corpo-
ration with the donation of the TITAN X GPU used for this
research.

REFERENCES

[1] M. McCloskey and N. J. Cohen, “Catastrophic interference in connection-
ist networks: The sequential learning problem,” Psychology of Learning
and Motivation, vol. 24, pp. 109–165, 1989.

[2] W. C. Abraham and A. Robins, “Memory retention–the synaptic stability
versus plasticity dilemma,” Trends in Neurosciences, vol. 28, no. 2, pp.
73–78, 2005.

[3] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska et al.,
“Overcoming catastrophic forgetting in neural networks,” Proceedings of
the National Academy of Sciences, p. 201611835, 2017.

[4] A. Robins, “Catastrophic forgetting, rehearsal and pseudorehearsal,”
Connection Science, vol. 7, no. 2, pp. 123–146, 1995.

[5] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems, 2014, pp. 2672–
2680.

[6] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[7] A. Robins and M. Frean, “Local learning algorithms for sequential tasks
in neural networks,” Journal of Advanced Computational Intelligence
and Intelligent Informatics, vol. 2, no. 6, pp. 221–227, 1998.



[8] D. Mellado, C. Saavedra, S. Chabert, and R. Salas, “Pseudorehearsal
approach for incremental learning of deep convolutional neural networks,”
in Latin American Workshop on Computational Neuroscience. Springer,
2017, pp. 118–126.

[9] R. Kemker and C. Kanan, “FearNet: Brain-inspired model for incremental
learning,” arXiv preprint arXiv:1711.10563, 2017.

[10] T. J. Draelos, N. E. Miner, C. C. Lamb, J. A. Cox, C. M. Vineyard, K. D.
Carlson, W. M. Severa, C. D. James, and J. B. Aimone, “Neurogenesis
deep learning,” arXiv preprint arXiv:1612.03770, 2016.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of Computer Vision and Pattern Recognition,
2016, pp. 770–778.

[12] R. Kemker, M. McClure, A. Abitino, T. Hayes, and C. Kanan,
“Measuring catastrophic forgetting in neural networks,” arXiv preprint
arXiv:1708.02072, 2017.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, 2012, pp. 1097–1105.

[14] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training GANs,” in Advances in
Neural Information Processing Systems, 2016, pp. 2234–2242.


	Introduction
	Pseudo-Recursal
	Generating Representative Pseudo-Images
	Learning Process

	Related Work
	Method
	Datasets
	Network Architecture
	Training and Evaluation
	Experimental Conditions

	Results
	Discussion and Conclusion
	References

