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Abstract—In this paper, an emotional EEG-specific three-
dimensional Convolutional Neural Network, EmotioNet, is pro-
posed and implemented to accurately recognize emotion states.
For the first time, raw data in the benchmark emotional EEG
database, i.e. DEAP, are used as the input to a CNN architecture.
In order to investigate the spatio-temporal character of emotional
features, the effectiveness of 2-D and 3-D convolution kernels,
which extract spatial and temporal features separately and
simultaneously, are compared in detail. Furthermore, two major
problems of EEG-based emotion recognition, namely, covariance
shift and the unreliability of emotional ground truth, are de-
scribed, and the effectiveness of batch normalization and dense
prediction, which alleviate these problems respectively, are also
investigated. Experimental results show that 3-D kernels, batch
normalization, and dense prediction are all essential techniques
for the emotional EEG-specific CNN architecture. The proposed
EmotioNet, namely, a 3-D covariance shift adaptation-based CNN
with a dense prediction layer, achieves classification rates of
73.3% and 72.1% for arousal and valence, equivalent to the best
performance of several previous studies. Importantly, our results
are based on automatic feature extraction, which is in contrast
to previous handcrafted features. Therefore, EmotioNet provides
a new method for EEG-based emotion recognition.

Index Terms—Emotion recognition, EEG, 3-D CNN, spatio-
temporal emotional features, covariance shift, the unreliability
of emotional ground truth

I. INTRODUCTION

As a critical emotional modality, the electroencephalogram
(EEG) is capable of representing the inner emotional states
without the influence of subjective human control. Specifically,
an emotion-related process will involve a change in brain
activity which can be assessed by non-invasive low-cost scalp
EEG recordings [1] [2], thus providing a reasonable way to
recognize emotions.

DEAP, which is the benchmark dataset for EEG-based
emotion recognition, provides a standardized way to compare
the performance of different emotion recognition methods [3].
Several studies have been conducted on EEG-based emotion
recognition using DEAP. Conventionally, time or frequency
domain features in EEG were extracted manually. Mean-
while, classifiers such as Support Vector Machine (SVM)
and K-Nearest Neighbors (KNN) were implemented [4] [5]
[6]. Based on these studies, we propose an interesting and
challenging question: instead of using handcrafted emotional

features, can automatic feature extraction improve recognition
performance?

Theoretically, CNN could provide a promising performance
due to its advantages of automatic feature detection and
hierarchical feature extraction. Therefore, in this paper, we
propose EmotioNet, an emotional EEG-specific CNN archi-
tecture. Specifically, the network employs raw EEG signals
to automatically extract high-level features, and then utilizes
these features to predict emotion states. In order to obtain an
objective evaluation, the performance of EmotioNet is com-
pared with previous studies on DEAP. Generally, instead of
using handcrafted features, we expect EmotioNet to provide a
novel method by using automatic emotional feature detection.

To design the architecture of EmotioNet, there are three
critical problems that need to be solved, namely: 1) spatio-
temporal emotional feature extraction; 2) the covariance shift
problem in EEG scenarios; and, 3) the unreliability of emo-
tional ground truth.

Spatio-temporal emotional feature extraction. Only a hand-
ful of studies have focused on automatic EEG feature extrac-
tion using CNN. In particular, two generic architectures, i.e.
EEGNet [7] and Braindecode [8], were designed to extract and
classify features in Event Related potential (ERP) and Motor
Imagery (MI) EEG signals. Critically, an alternative feature
extraction scheme that extracts spatial and temporal features
separately was implemented in both architectures, which pro-
vided a reference for our emotional EEG feature extraction.
However, some studies also reported a simultaneous emotional
pattern variation in spatial and temporal domains [9] [10],
which presented another reference for the automatic emotional
feature extraction. Therefore, our question is: in terms of EEG-
based emotional feature extraction, should our network extract
spatial and temporal features separately or simultaneously?

In this paper, in order to investigate the spatio-temporal
character of emotional feature extraction, we implement a
two-dimensional Convolution Neural Network (2-D CNN)
according to EEGNet and Braindecode, which alternatively
extracts spatial and temporal features, and a three-dimensional
Convolution Neural Network (3-D CNN), which simultane-
ously detects spatial and temporal features.

The covariance shift problem in EEG scenarios. Theo-
retically, covariance shift, which describes different statistical
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distributions between training and testing datasets, affects the
performance of a recognition model [11]. In emotional EEG
scenarios, the influence might be even more severe due to
the EEG characteristics of non-stationarity and inter-subject
variability [12] [13]. To alleviate this problem, batch nor-
malization, which normalizes the distribution of each feature
in every layer [14], is embedded in the network and its
effectiveness is fully investigated in Section V.

The unreliability of emotional ground truth. In EEG
recognition tasks, in order to augment the amount of training
data, one EEG trial is often segmented into several input
epochs. In emotional EEG scenarios, for a certain trial, due
to the intensity fluctuation of the induced emotion [15],
different input epochs of this trial should correspond to their
ground truth intensity labels. However, practically only the
self-reported state, i.e. the average intensity, is recorded and
allocated to all the input epochs of the trial. Consequently, the
difference between the average and the ground truth intensity
causes the unreliability for each epoch, and influences the
training of the model.

To alleviate this problem, instead of training the network on
every single epoch and its unreliable label, dense prediction is
implemented to train a network on several sequential epochs
simultaneously with high efficiency [16]. Since these epochs
contain enough general emotion information of the trial, the
average prediction would represent the average intensity label
more accurately. The effectiveness of dense prediction is
presented in Section V.

In this paper, we introduce EmotioNet, a 3-D covariance
shift adaptation-based CNN architecture with a dense predic-
tion layer, to solve the specific problems in EEG scenarios.
We expect this system to provide a novel method for EEG-
based emotion recognition. The structure of the paper is as
follows: in Section II, a background is presented followed by
an introduction of the characteristics of emotional EEG signals
in Section III. In Section IV, two types of CNN architectures
are employed to recognize different types of emotional EEG
patterns, meanwhile, a covariance shift adaptation and dense
prediction are also described. The experimental results are
given in Section V followed by a discussion and a conclusion
in Section VI and VII.

II. RELATED WORKS

A. DEAP dataset

DEAP is the benchmark dataset for EEG-based emotion
recognition. Specifically, for each participant, 40 videos with
affective tags were presented in turn to induce specific emo-
tions. During each video, EEG, physiological and video signals
were collected, then, a self-reported emotion state using a
valence-arousal-dominance space [17] was evaluated immedi-
ately after the video. The preprocessing steps were conducted
after the data and label collection. Specifically, the data were
downsampled to 128Hz, and the electrooculogram (EOG)
artifacts were removed. Then the data were filtered in the
frequency range of 4.0Hz to 45.0Hz.

In our task, only EEG signals and their corresponding
valence-arousal states from 32 participants are taken as data
and labels. In detail, valence describes the extent of pleasant-
ness with regards to stimuli. It is presented by a continuous
value ranging from 1 (negative) through 5 (neutral) to 9 (posi-
tive). Meanwhile, arousal represents the degree of being awake
to stimuli, which has the same range where 1 and 9 indicates
passive and active respectively. According to Russell’s theory
[18], as depicted in Fig. 1, emotions can be expressed by using
these two orthogonal states. Therefore, instead of classifying
a specific emotion such as excited, valence and arousal are
usually taken as basic emotion components that need to be
recognized.

B. Emotion recognition using DEAP dataset

Several studies have been conducted on the DEAP dataset,
and feature extraction methods have been proposed with
different performance. For example, Chung and Yoon proposed
a Bayes classifier with a weighted-log-posterior function to
classify emotion states [19]. Spectral power features in theta
(4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma
(above 30 Hz) bands were used as emotion features. Results
showed that the classification rates were 66.6% and 66.4%
for valence and arousal respectively. Rozgic, Vitaladevuni and
Prasad proposed a segment-level feature extraction method
with segment-to-response level feature transformation [20]. By
using a SVM classifier, accuracies of 76.0% and 68.9% were
achieved for valence and arousal. In the study conducted by
Atkinson and Campos, the minimum-Redundancy-Maximum-
Relevance (mRMR) feature selection method was proposed,
and a SVM emotion classifier was implemented with the
performance of 73.14% (valence) and 73.06% (arousal) [21].
Gupta and Falk employed graph theoretical features with a
SVM classifier, with a mRMR algorithm to rank the features.
The accuracies for valence and arousal were 63% and 66%
[22]. In the work presented by Naser and Saha, a dual-tree
complex wavelet packet transform (DT-CWPT) was adopted
as feature extraction method, and a SVM classifier was used
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Fig. 1. Russell’s valence-arousal emotional model.
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Fig. 2. The segmentation of EEG trials for different participants.

with classification rates of 64.3% and 66.2% [23]. Above all,
manually extracted features were mainly adopted in EEG-
based emotion recognition in DEAP. However, the effective-
ness of automatic feature detection through a Deep Learning
architecture, e.g. CNN, still need to be investigated.

C. A generic CNN architecture for EEG pattern recognition

Generally, two successful EEG-specific architectures have
been proposed, i.e. EEGNet [7] and Braindecode [8]. In
EEGNet, for Layer 2 and 3, the performance of different
kernel shapes with the same learning ability (the same number
of trainable parameters) was compared in detail. Then, a
Spatial-Temporal-Spatial feature extraction architecture, which
performed best over four different datasets, i.e. ERP and motor
imagery datasets, was suggested by the authors. Meanwhile,
Braindecode aimed to detect motor imagery patterns in EEG
and employed a Temporal-Spatial-Temporal architecture. Ac-
cording to these studies, this EEG-specific modification in
alternate spatio-temporal detection significantly improves the
performance of recognition, which provides a reference for
our emotion-specific architecture.

III. THE CHARACTERISTICS OF EMOTIONAL EEG SIGNALS

A. Covariance shift

Covariance shift is a problem when the EEG pattern recog-
nition model is trained on one distribution and then tested on
another, which severely affects the performance of the model.

Conventionally, as shown in Fig. 2, in order to augment the
amount of data in EEG-specific recognition tasks, all the trials
need to be segmented into several input epochs with a given
time length, e.g. 4 seconds. The statistical distribution for any
epoch can be expressed as follows:

dpt,s (1)

where p is the participant number, t is the trial index and s is
the epoch index. The ranges for these values are p ∈ (1, 32),
t ∈ (1, 40), s ∈ (1, 10). For example, d31,5 represents the
statistical distribution of the 5th epoch in trial 1 for participant
3.

Ideally, all the epochs should have the same distribution,
however, due to two major issues, namely, non-stationarity and
inter-subject variability, different epochs may have different
distributions, which causes the covariance shift problem in
EEG recognition scenarios.

1) Non-stationarity: Non-stationarity is an issue when the
distribution of an EEG trial changes over time, as described
in (2).

dpt,si 6= dpt,sj (2)

where si 6= sj . It can be caused by mental changes of
a participant, e.g. fatigue, or technical changes, e.g. drying
electrode gel. Therefore, for any trial of any participant,
the distributions of different epochs might be different. For
example, we calculate the epoch distribution in the 3rd trial
of participant 18. Each epoch is a matrix with 32 channels and
512 time samples, i.e. a shape of 32 × 512, and data from all
the channels are used to calculate the distribution. As shown
in Fig. 3, the distribution of the 1st epoch changes gradually
to that of the 8th segment.

2) Inter-subject variability: Inter-subject variability de-
scribes the character that for different participants, the sta-
tistical distributions are different, as shown in (3).

dpi

t,s 6= d
pj

t,s (3)

where pi 6= pj , which means the distributions variant within
different participants. An example of inter-subject variability is
depicted in Fig. 4. We calculate the distribution of a participant
using all the data from all the 32 channels. As shown in the
figure, the calculated distributions for participant 12 and 10 are
significantly different. Assuming they are assigned to training
and testing datasets separately, it would severely affect the
performance of the model.

B. The unreliability of emotional ground truth

During the recording of a certain emotional EEG trial, a
visual stimulus with a specific affective tag was presented to
the participant. Ideally, the intensity of the induced emotion
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Fig. 3. An example of non-stationarity in DEAP dataset. For the 3rd trial of
participant 18, the distributions of the 1st and 8th epochs.
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Fig. 4. An example of inter-subject variability in DEAP dataset.

should be constant over time. However, practically due to the
subjective sensitivity to the stimulus, the intensity fluctuated
over time. A valence intensity fluctuation is shown in Fig. 5.

As illustrated in the figure, in terms of a segmented epoch,
the ground truth emotional label should be the averaged
intensity over the segmented period. However, conventionally
only the averaged intensity over the whole trial, i.e. the self-
reported general emotional state, was collected. Therefore,
instead of using the ground truth, the general emotional state
was allocated to the epoch unit. The intensity difference
between the ground truth emotional label and the general state
leads to the unreliability of emotional ground truth, which
affects the training of the model.

IV. METHODS

To solve the problems we address in Section I, 3-D CNN
architecture, covariance shift adaptation, and dense prediction
are described in this section. The architecture of EmotioNet,
which is based on these techniques, is depicted in Fig. 7.

A. 2-D and 3-D CNN architecture

First, a 2-D CNN architecture, which employs a Temporal-
Spatial-Temporal feature extraction scheme, is implemented.

Participant p
Trial q

0 time

Valence
intensity

Ground Truth
Labels used by each unit

Epoch 1

(Self-reported State)

Epoch 2 Epoch 3 Epoch 4 Epoch 5

Fig. 5. The unreliability of emotional ground truth.

In detail, the input data has a 2-D shape of channels ×
time samples. The kernel sizes of (1,10), (32,1), (1,10) are
set for Layer 1, 2, and 3 to extract temporal and spatial
features alternately. Basically, the 2-D CNN refers to the
alternative feature extraction scheme suggested by EEGNet
and Braindecode, except that the kernel sizes are different. We
take this 2-D architecture as a classic EEG feature extraction
scheme, which will be compared with our proposed 3-D
architecture in Section V.

In terms of the input dimension, intuitively, the 2-D input
format lost the topological position information of the elec-
trodes. To include this information in the input, we reshaped
the 2-D matrices (channels × time samples) to 3-D tensors
(2-D electrode topological structure × time samples), as
illustrated in Fig. 6. As we can see, for each time sample point,
the data from each electrode is relocated to its topological
position, which provides more information for the model.

Based on this 3-D input format, the 3-D CNN architecture is
proposed and implemented, as shown in Fig. 7. Specifically, in
Layer 1 and 2, 3-D convolution is utilized to extract spatial and
temporal features simultaneously, then, in Layer 3, a spatial
fusion, which combines all the spatial characters of these high-
level features, is employed. Consequently, the output of this
layer only has temporal character. In Layer 4 and 5, temporal
feature extraction is integrated in the network to explore
high-level temporal features. In Layer 6, an optional dense
prediction is embedded, then a Softmax layer is deployed
as the output. In each layer, batch normalization is taken
as an optional technique whose effectiveness is investigated.
Besides, dropout, which randomly drops out network units to
avoid overfitting, is employed in Layer 2, 4, and 5.

In terms of kernel sizes, the design idea is that, through
all the kernels in different layers, namely, from shallow to
deep layers, the coverage for the 2-D electrode topology
and the time domain of the input should increase gradually.
Specifically, for Layer 1, the kernel size is 2×2×10, which
means each spatio-temporal feature output of a kernel is
generated by using the input with a local topology of 2×2
and a short time period of 10 sample points. For Layer 2,
the kernel size is 2×2×10 with a stride of 2×2×1. However,

Fp1AF3 Fp2 AF4

F7 F3 Fz F4 F8

FC5 FC1 FC2 FC6

T7 C3 Cz C4 T8

CP5 CP1 CP2 CP6

P7 P3 Pz P4 P8

PO3 PO4O1 O2

2-D electrode topological plate

Fig. 6. The 3-D input structure.
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Fig. 7. The architecture of EmotioNet.

this kernel size and stride are based on the output of Layer
1. That means the kernel coverage for the input is broader
in both electrode topology and time domain, with a topology
coverage of 3×3 and a time domain coverage of 19 sample
points. For layer 3 with a kernel shape of 3×4×1, each kernel
combines all the spatio-temporal features generated from the
previous layer to form a high-level feature. For Layer 4 and 5,
a kernel size of 1×10 is used to gradually integrate the time
domain information and generate high-level features.

B. Covariance shift adaptation

In this paper, batch normalization is implemented in the
network to alleviate the covariance shift problem. Since nor-
malization is an effective data processing method for unifying
the feature distributions of the input, a layer-wise trainable
normalization, i.e. batch normalization, is also used to nor-
malize features for each layer. In this paper, the effectiveness
of batch normalization in emotional EEG recognition scenarios
is investigated in Section V.

C. Dense prediction

For emotional EEG recognition tasks, the input epochs with
longer segmented window sizes represent the self-reported
labels more accurately than the epochs with shorter window
sizes. Specifically, the long window sizes cover enough global
emotional information of the trials. However, the shorter win-
dow sizes only contain local emotional information. Therefore,
instead of using each local epoch and its unreliable label to
train the network, longer segmented epochs should be taken
into consideration. According to the research conducted by
Candra et al, the window size of four seconds should be a
reasonable length that contains enough emotion information
[24]. However, for our task, an input epoch with four second
time length would lead to a significant increase in trainable
parameters, resulting in overfitting and low training efficiency.

To address this problem, dense prediction is implemented
to efficiently provide the network with a general emotional
information. As shown in Fig. 8, the signal with a time length
of four seconds is taken as the input. However, instead of

predicting the emotional state using a fully-connected layer
directly, dense prediction layer is used to make a time-varying
emotion state prediction. Specifically, the receptive field of
each output of the dense prediction layer is a window with
about two seconds. Each output value of the dense prediction
layer, which is calculated on two second segment, can be
interpreted as the local prediction. Therefore, the outputs of the
dense prediction layer can be taken as a time-varying emotion
state. Finally, an average prediction is implemented to form the
general emotion state for four second EEG. Comparing with
the network using fully-connected layer, the network using
dense prediction only has 56562 trainable parameters, which
reduces 11858 trainable parameters and efficiently covers the
general emotional information of a trial.

V. RESULTS

In this section, we compare the performance of the 2-D and
3-D CNN architectures with different configurations, which
are implemented by using PyTorch1 and are deployed on a
GeForce GTX TITAN X GPU. Then, the performance of our
proposed EmotioNet is compared with previous work.

First of all, in order to investigate the effectiveness of
different techniques, i.e. 3-D CNN architecture, dense predic-
tion, and batch normalization, the architectures with different
configurations are tested on the DEAP dataset. The average
classification rates are shown in Table I. For arousal classi-
fication, batch normalization plays an essential role since it
increases the classification rates by about 10% in the 2-D and
3-D architectures with a dense prediction layer. Meanwhile,
applying dense prediction also shows a significant increase
of about 11% in both 2-D and 3-D architectures with batch
normalization. Furthermore, among all the configurations, the
2-D architecture without batch normalization and dense pre-
diction performs the worst with classification rate of 55.2%.
Critically, the 3-D CNN architecture with batch normalization
and dense prediction achieves the highest classification rate
of 73.1%. For valence classification, the same importance of

1https://github.com/WangYiOtago/EmotioNet



TABLE I
THE AVERAGE CLASSIFICATION RATES (%) OF ARCHITECTURES WITH DIFFERENT CONFIGURATIONS.

2-D CNN 3-D CNN

without DP with DP without DP with DP

without
BN with BN without

BN with BN without
BN with BN without

BN with BN

Arousal 55.2 58.1 60.5 69.5 59.4 62.5 61.7 73.1

Valence 57.0 57.5 55.2 66.8 56.1 57.2 56.6 72.1

Abbreviations: BN = Batch Normalization, DP = Dense Prediction.

4s

Receptive field

CNN

2s

Dense Prediction

Average 
Prediction

Fig. 8. The dense prediction layer.

batch normalization and dense prediction is observed. Conse-
quently, the best performance, i.e. 72.1%, is also obtained by
the proposed 3-D CNN architecture with batch normalization
and dense prediction.

According to our experimental results, we propose Emo-
tioNet, a 3-D covariance shift adaptation-based CNN architec-
ture with a dense prediction layer, which is shown in Fig. 7.

A brief comparison between our experimental results and
the previous studies is shown in Table II. According to the
table, comparing with the average result of the previous stud-
ies, the 2-D CNN, which is the classic EEG feature extraction
scheme, achieved a relative lower accuracy in valence classi-
fication and a higher accuracy in arousal classification. As for
the proposed EmotioNet, the valence and arousal classification
rates increase 5.3% and 3.5% relative to the 2-CNN model.
Comparing with previous studies, our arousal classification
rate equals the best and our valence classification rate is higher
than the average.

VI. DISCUSSION

According to these results, 3-D spatio-temporal architecture,
batch normalization, and dense prediction are all essential
techniques for our emotional EEG-specific CNN architecture.
Specifically, the 3-D architecture improves the performance
of the model by using a simultaneous temporal-spatial feature
detection. As for batch normalization, although only a slight

TABLE II
A BRIEF COMPARISON BETWEEN OUR

EXPERIMENTAL RESULTS AND PREVIOUS STUDIES

Papers Accuracy(%)

Valence Arousal

[22] 63.0 66.0

[23] 64.3 66.2

[19] 66.6 66.4

[20] 76.0 68.9

[21] 73.1 73.1

Average 68.6 68.1

2-D CNN 66.8 69.6

EmotioNet 72.1 73.1

Note: The results are ranked by the accuracy of
arousal.

improvement was reported in an analysis of EEGNet [7], in
our hands it significantly increases classification performance
in the emotion recognition scenario. Dense prediction is also
a crucial technique for emotion recognition since it enables
the network to train on a long EEG window with fewer
parameters, and so gather more general information in one
training process and alleviate overfitting.

Unlike EEGNet and Braindecode, which use a feature
extraction scheme that alternately extracts spatial and temporal
EEG features, EmotioNet uses three 3-D convolution layers
to extract the spatio-temporal emotional features and achieves
higher classification rates.

Although EmotioNet achieves similar accuracy to previous
methods, it has a clear advantage in not requiring handcrafted
features. Its capability of automatic emotional feature detection
provides a new method for EEG-based emotion recognition.

VII. CONCLUSION

In this paper, we propose EmotioNet, an emotional EEG-
specific 3-D CNN architecture. Experimental results show
that our model is capable of accurately recognizing emotions.
We also show that 3-D architecture, batch normalization, and
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dense prediction are critical techniques for an emotion recog-
nition network. Furthermore, the idea of automatic emotional
feature detection also provides a feasible way for emotion
recognition in clinical and practical applications.
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