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Abstract—Long-term potentiation (LTP) is a long-lasting en-
hancement in signal transmission between two neurons, and
represents a widely accepted experimental model for long-term
memory processes. Although it is now clear that the maintenance
of LTP requires new gene transcription, little is known on the
genetic mechanisms underlying these changes. We assume that
an LTP-related gene regulatory network has two equilibrium
states in terms of gene expression levels which correspond to a
pre- and post-LTP states. This network is shifted from the first
to the latter by means of a perturbation, which experimentally
corresponds to the high-frequency stimulus necessary to induce
LTP in vivo. Based on this assumption and by means of modeling
the transcriptional regulation with weight matrices, we study the
properties of the main LTP-related network recently proposed
in [1]. First, we classify the LTP-related genes according to their
relevance to the bistable dynamic output of the network. In
addition, we demonstrate how the LTP gene regulatory network
architecture holds a higher tendency towards bistable behaviours
than we should expect of a random network.

Index Terms—Biology and genetics, Computational neuro-
science, Systems theory.

I. INTRODUCTION

Memory processes in the brain are dependent on the ca-

pacity of neurons to undergo long-lasting enhancement of

synaptic effectiveness. Long-term potentiation (LTP) is one of

such mechanisms, providing a cellular model of associative,

specific, and long-lasting storage.

Although LTP is generally divided into three phases over

time only the intermediate- and late- phases (often referred as

LTP2 and LTP3 respectively), seem to be dependent on protein

synthesis. As well as long-term memory, the late-phase LTP

is dependent on both changes in gene expression and protein

synthesis [2]–[5].

The new transcripts and proteins that characterise the late-

LTP could be targeted to the specific synapses from the nucleus

by means of a synaptic “tag” generated at the potentiated

synapses [6]. A first wave of transcription brought about by the

activated constitutive transcription factors (TFs) would consist

of effector genes and inducible TFs which, in turn, would be

responsible for a second wave of transcription [1], [3].

Although several genes have been identified to belong to

some of those categories (see [3], [4], [7] for some examples) it

is unclear how do they coordinate in order to lead to the persis-

tence of LTP. Several efforts have been taken towards defining

a wider picture of the biochemical networks underlying the

maintenance of LTP [1], [8]–[11]. The pathways by which the

genomic response is elicited seem to be triggered by the acti-

vation by phosphorylation of cAMP response element-binding

protein (CREB) by the phosphorylated calcium-dependent and

cAMP-dependent kinase signaling pathways. CREB funtions

as a hub in the gene regulation. Its phosphorylation can be

driven by a plethora of different kinases [12] and in turn, its

activation leads to the expression of transcriptionally linked

genes.

Once phosphorylated, CREB acts as a TF stimulating the

expression of other TFs and other effector genes by binding

to the promoter CRE region. The transciptional response will

constitute a first wave of gene expression. Other TFs which

are constitutively expressed may also become active following

LTP induction (Elk-1 and Srf are among the candidates).

The first wave of de novo transcription brought about by the

LTP-activated TFs consists of activity-induced TFs, structural

proteins, signal transduction proteins, growth factors, and

enzymes. This set of genes has been referred to as immediate-

early genes (IEGs). Some of the induced TFs among the IEGs

are c-FOS, JUN, EGR1,2,3, genes from the AP1 family and

LIRF, which are believed to drive the expression of delayed

effector genes. Many other IEGs have been reported as “effec-

tor IEGs”– ARC, HOMER 1a, tPA, NARP, BDNF, Arcadlin,

and Rheb are just some examples (see [3], [4], [13], [14]

for comprehensive reviews). While different putative functions

have been proposed for these effector genes (gene expression

regulation, cellular growth and adhesion, cell cycle...), it seems

clear that they are part of the coordinated process of LTP

consolidation.

Several studies have more recently covered the gene ex-

pression activation with studies of corregulation based on

microarrays (see for example [1], [9]), identifying sets of

differentially expressed genes after the induction of LTP. It

appears that the expression state of the LTP-related transcrip-

tional regulatory network (LTP-GRN) shifts from a resting

state (pre-LTP state) to a post-LTP state, where LTP has

been induced via experimental high frequency stimulus (HFS).

These expression states have been measured experimentally

using high density arrays by Ryan et al. [1]. By using Ingenuity

pathway analysis (IPA) [15] with the set of differentially
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Fig. 1. LTP-GRN as reported in [1]. The colors in the nodes represent the knock-out effects on the bistable output frequency of the LTP-GRN – the shade of
red, indicates how the knock-out of that gene affects the ability of the network to reach bistable outputs (PB). Darker nodes are therefore of a crucial importance
for the network to show an expression landscape compatible with the two-attractors hypothesis. The EGR family seems to be of a fundamental importance
for the bistable properties of the LTP-GRN. (Red nodes, 0.01 < PB ≤ 0.03, Orange nodes, 0.03 < PB ≤ 0.05, Light orange nodes, 0.05 < PB < 0.08).

expressed genes, they identified biologically relevant networks

related with LTP. The IPA software queries a manually curated

database of functions and interactions obtained from scientific

literature.

Among the three highest scoring networks, their results

suggest that some genes may play central roles during LTP

induction without showing a significant alteration in their

expression levels (such is the case of NF-kB). Other genes

identified as major hubs in their LTP-regulated gene expression

networks were SRF, EGR1 and CREB. ERK also appears as

a central hub in the network and its activity seems regulated

by the phosphatase activity of DUSPs, which in turn appear

to have a coordinated upregulation. In addition, DUSP and

EGR families regulate the MAPK signaling pathway, which is

known to have an essential role in LTP.

In the present work, we analyse the most significant net-

work published in [1] to investigate its topological properties

from a dynamical perspective. We model the transcription

regulation through weight matrices as described by Weaver

et al [16], a methodology which can be regarded as a discrete

approximation of a Hopfield model with graded response (see

Section II-A). We show that the particular topology of the

LTP-GRN is more likely to hold bistability when compared

to random networks. On a similar perspective, we classify the

LTP-related genes according to their relevance to the bistable

output of the network.
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II. MATERIALS AND METHODS

A. Dynamics with weight matrices

Continuous models of GRNs based on differential equations

entail a main disadvantage compared to discrete-time ap-

proximations. Despite experimental evidence can be gathered

regarding the networks’ topology, there is a lack of quanti-

tative information in relation to the biochemical parameters

underlying gene interactions. In other words, the strength

of the interactions between genes and proteins are difficult

to measure. On the other hand, the widely-used Boolean

models for gene regulation might oversimplify the complexity

underlying biological interactions.

For this study, we have adopted the TReMM algorithm

(Transcription Regulation Modeled with Matrices) described

by Weaver et al. [16]. The TReMM methodology characterises

the gene expression values from a state of maximal expression

to a state of minimal repression. These intervals are gene-

specific, and during a simulation a gene can take any contin-

uous value in the range defined by its maximal and minimal

expression.

The gene expression state of a network is represented by

a vector u(t), where ui corresponds to the expression level

of the ith gene. The regulatory interactions between genes are

modeled with a weight matrix, W so that the effect of gene j

on gene i is the expression level of j (uj) times its regulatory

influence on i, wi,j . This regulatory influence can be either

activating (wi,j > 0), or repressing (wi,j < 0). The values of

wi,j = 0 correspond to the lack of experimental evidence for

the effect of gene j on gene i. Put differently, only the nodes

connected in Fig. I have nonzero values of W .

The total regulatory input to i, ri(t), is calculated by adding

all the genes which interact with it:

ri(t) =
∑

j

wi,juj(t) (1)

The expression ui(t+1) of a gene i to the regulatory input

ri(t) is “squashed” with a sigmoidal function,

ui(t+ 1) =
mi

1 + e−(αiri(t)+βi)
(2)

where mi corresponds to the maximal observed expression

level for the gene i, and the parameters αi ∈ R≤0, βi ∈ R, and

wi,j ∈ R correspond to the ith’s gene’s intrinsic response to the

regulatory inputs (or slope of the sigmoidal response function),

the gene’s basal expression level, and the relative weights of

the interactions respectively. Note that the αi constant can only

take positive values. The expression levels of all N genes ui(t)
are updated simultaneously in the time course experiments.

The simulations converge to a stable state of unchanging gene

expression or cyclical set of gene expression states. We show

in Fig. 2a only a subset of 11 genes of the whole network for

the sake of clarity.

This methodology can be regarded as a modification of

a recurrent Hopfield network with graded response and syn-

chronous updates. The mathematical condition for the weight
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Fig. 2. (a) Example dynamics of the LTP-GRN reaching a steady state at
t = 8. Only a subset of 11 genes from the total 35 genes is shown for the sake
of clarity. The vertical axis represents the level of gene expression u(t), the
horizontal axis represents iterations. (b) Schematic representation of a small
region in the gene expression states space. Each node represents a u(t) vector,
and the edges connect a state in time t with the state in time t + 1. Owing
to the deterministic nature of the dynamic modeling used in the study, if a
state u(t) is visited at any point during the simulation, only one transition is
possible for u(t + 1). In the scheme, two hypothetic attractors are depicted
(nodes marked with a and b), delimiting two basins of attraction (dashed line).
They represent a cyclic and a fixed point attractor respectively.

matrix imposed in the original Hopfield model (symmetric W

with zero diagonal) [17] is eliminated, allowing self-loops and

asymmetric interactions.

The convergence to a particular stable state is dependent on

the initial conditions u(t = 0), and on the gene expression

landscape described by the parameters α, β, and W for the

network studied. These landscapes are constituted by basins

of attraction, a set of states that are attracted to a fixed point,

and different set of parameters produce different basins of

attraction. We are interested in the existence of a particular

landscape for the LTP-GRN, where the basins of attraction

would represent the pre- and post-LTP cell states, potentially

accessible from different initial conditions as represented in

Fig. 2b. Those initial conditions could be specified by the cell’s

environment (such as the high frequency stimulation).

This view of a gene regulatory network is analogous to a

content-adressable memory (CAM), which restores the pre-

and post-LTP patterns by supplying some subpart of the

memory in the inherently noisy environment of the cell.

For a given network (either the LTP-GRN or a random

topology) the parameter space for α, β, and W is evenly

explored by 10,000 random tries. This procedure characterises

the network resulting in an average frequency of bistable

outputs (PB , see section II-C) which should be free of the bias
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introduced by the choice of a particular set of parameters.

The TReMM methodology have the advantage of represent-

ing gene regulation with a considerable degree of complexity

while still being computationally tractable for the size of the

network studied.

B. LTP-GRN and gene expression data

For this study we have chosen the highest scoring LTP-GRN

published in [1], constituted by a total of 35 genes (see Fig. I),

which was constructed using Ingenuity Pathway network anal-

ysis tools [15] and is based on biological information sourced

from literature references.

The initial conditions for the time course experiments,

u(t = 0), as well as the maximal expression levels m were

obtained from real expression data – the values for the post-

LTP state correspond to the microarray hybridized with tissue

where LTP was induced by high-frequency simulus (HFS),

whereas the pre-LTP state expression was obtained from the

control microarrays (no HFS).

C. Frequency of bistable outputs PB

We define as bistable a network dynamics which converges

onto two different asymptotic states when initialised with two

different sets of expression values. In this study, we have

set those starting expression values according to the LTP-

induced microarray data and the control microarray data,

namely, running for each network and each set of α, β, and

W parameters two parallel dynamics representing pre- and

post-LTP conditions respectively, as summarized in Fig. 2b. If

each of the two sets of initial conditions fall in different basins

of attraction, the dynamics will lead to different terminal

states. This cases are referred to as bistable outputs (B). We

have chosen the experimental expression values obtained by

Ryan et al. [1] since they represent real estimates of the gene

expression levels.

By sampling the space of parameters and testing whether the

output states of the pre- and post-LTP parallel dynamics reach

different points in the N-dimensional space, we calculate the

frequency of bistable outputs or PB , which characterises the

network’s expression state space around the pre- and post-LTP

initial conditions. In this work, we have randomly sampled the

space of parameters by 10,000 trials with wi,j ∈ [−1,+1],
βi ∈ [−1,+1], and α ∈ (0,+3].

The value of PB is free of the bias which a particular set

of parameters would introduce, and serves as a descriptor of

how a particular topology is likely to show a sensitivity to the

realistic initial conditions observed in the in vivo experiments.

Put differently, the attractors in the gene expresion states space

represent stable phenotypes, while W represents the neuron’s

genotype.

D. Random and knock-out networks

In order to characterise the LTP-GRN, we have constructed

a total of 100 random networks by preserving the same

number of nodes and edges as in the LTP-GRN and without

assuming any particular degree distribution. These random
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Fig. 3. Distribution of 100 random networks according to their bistable
output frequencies PB (10,000 simulations for each network in the parameter
space). The PB distribution for the random networks has µ = 0.031 and
σ = 0.011. The LTP-related network shows a much higer PB = 0.086,
which lies about 5 standard deviations away from the mean of the random
networks’ distribution (black arrow).

networks have been characterised in terms of their PB , and the

values are represented in Fig. 3. Then we run a set of 10,000

simulations with the LTP-GRN with the fixed topology shown

in Fig. I, with random values of weight coefficients W , α, and

β and we calculated PB .

Similarly, we have calculated the PB for the 35 networks

resulting from the knock-out of each gene in the LTP-GRN.

Some of these knock-out networks show an inferior propensity

to bistability (a lower PB), meaning that the removed gene has

a key role in the capacity of the LTP-GRN to reach bistable

outputs. The PB values for the removal of each gene are

represented in Fig. I, where a darker shade of red means higher

influence in the network’s bistability propensity.

III. RESULTS

A. LTP-GRN bistable frequency

The frequency of bistable outputs for the LTP-GRN (PB =
0.086) is in sharp contrast with the frequencies obtained for the
random networks with the same number of nodes and edges

(Fig. 3, avg. PB = 0.031). Furthermore, the value of the PB

for the LTP-GRN is higher than any of the random networks.

Assuming normality for the distribution of PB in the random

networks’ population, (p−value = 0.019, Shapiro-Wilk test),

the probabilty of a random network with a higher PB than the

LTP-GRN is extremely low (P < 3.65× 10−07).

B. Knock-out effects

For each ith gene of the N = 35 genes in the LTP-GRN, an

independent set of 10,000 knock-out runs were performed. In

these runs, the ith gene of the network was removed and not

considered in the simulations, setting the ith row and column

of W to zero. The resulting 35 networks with N = 34 were

characterized in terms of their frequency of bistable outputs,

PB .
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Fig. I summarises these results by showing in a red scale the

effect of removing that particular gene from the network. NF-

kB has a low influence on PB, while the EGR members appear

to be of a fundamental importance, which supports previous

findings [18]. Interestingly, the level of expression of NF-kB

does not change after LTP induction [1].

IV. DISCUSSION

Evolution has equipped cells with a robust and plastic

analog system which confers to living cells the ability to

respond in a graded manner to the environmental inputs.

However, some aspects of the cellular behaviour are of a

switch-like nature – this is the case of cell cycle checkpoints,

cell-fate transitions, and apoptosis to name a few. Likewise,

LTP as a long-lasting phenotypic phenomenon represents one

of such Boolean characteristics, and its maintenance relies on

gene expression.

Back in 1969, Stuart Kauffman proposed that cell types are

attractors in the gene expression state space [19]. Similarly,

our hypothesis extends this idea to the phenotypic pre- and

post-LTP neuronal states, complementing other genetic and

epigenetic effectors. The transition from one attractor to the

other would be driven by the HFS.

From such a perspective, we classify in this study the

LTP-related genes according to their relevance to the bistable

dynamic output of the network. It is noteworthy how the EGR

family stands out in Fig. I. Their role in LTP has been already

documented [18], [20], [21], and the results presented here

only stress their importance in the dynamic context of the other

genes. In particular, EGR2 appears to be the most determinant

gene for the network to show bistability. Note however that this

ranking only represents the relative importance of the genes for

the bistable behaviour. For example, NF-kB shows a relatively

low influence on the network’s PB , while it is believed to be

involved actively in LTP and synaptic plasticity [22], [23].

The low PB shown by NFkB is not trivial, since it also

constitutes a hub in the network, and a high dependance on

it for the bistable frequency might be expected. Interestingly,

NF-kB does not show an altered expression level after LTP

induction [1].

Since biochemical systems are impossible to be fully de-

scribed due to their inherent complexity and the lack of de-

tailed biochemical data, simplified representations are needed

to approach their study. In the present work the coarse repre-

sentation of the biochemical network is constituted by genes

and their causal relationships retrieved automatically from

databases of experimental evidences. Despite the limitations

of network reconstruction and modeling [24], GRNs have the

advantage of being constituted by genes, functional entities

which can be experimentally targeted. Predictions from the in

silico gene knock-out could be eventually tested in vivo.

In conclusion, the capacity of showing different stable

points in the gene expression state space must be of a crucial

importance for the GRNs involved in such step-like responses.

We show that this is the case for an LTP-related GRN by using

realistic expression values from microarray data.

Whether this property of the LTP-GRN extends to most bi-

ological networks or only to the networks involved in Boolean

decisions remains unclear and deserves further insight. Indeed,

a long-lasting cellular process such as LTP is expected to

function under a changing environment. Neurons are subject

to both internal and environmental noise, which compromises

the stability of the gene expression states. The role of gene

expression attractors in robustness and evolvability of biolog-

ical networks, from a more general perspective, emerges as

an interesting generalisation of this analysis, but beyond the

scope of this study and will be addressed in future work.
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