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Abstract. In order to speed up the learning time of large margin distri-
bution machine (LDM) and improve the generalization performance of
twin bounded support vector machine (TBSVM), a novel method named
twin bounded large margin distribution machine (TBLDM) is proposed
in this paper. The central idea of TBLDM is to seek a pair of nonparallel
hyperplanes by optimizing the positive and negative margin distribu-
tions on the base of TBSVM. The experimental results indicate that the
proposed TBLDM is a fast, effective and robust classifier.
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1 Introduction

Support vector machines (SVMs) [18] [3] are powerful tools for pattern clas-
sification and regression. For the classical binary classification SVM, the optimal
hyperplane can be obtained by maximizing a relaxed minimum margin, i.e., the
smallest distance from data point to the classification boundary. This optimi-
sation can be expressed as a quadratic programming problem (QPP). Margin
theory [17] provides good theoretical support to the generalisation performance
of SVMs and it has also been applied to many other machine learning approach-
es, such as AdaBoost [5]. There was, however, a long debate on whether margin
theory plays a significant role in AdaBoost [14, 2]. It had been believed that a
single-data-point margin such as minimum margin is not crucial [13, 19]. Gao
and Zhou [6] ended the long debate and showed that margin distribution, char-
acterized by margin mean and variance, is critical for generalisation in boosting.
Inspired by these results, Zhang and Zhou [23] first focused on the influence of
the margin distribution for SVMs and proposed large margin distribution ma-
chine (LDM). The margin distribution heuristic can also be applied to clustering
[24] and dimensionality reduction [9].

The twin support vector machine (TWSVM) proposed by Jayadeva et al. [7]
seeks for two nonparallel boundary hyperplanes and attempts to make each of
the two hyperplanes close to one class and far from the other as much as possi-
ble. TWSVM solves two smaller size QPPs instead of a single large QPP. This
results in TWSVM being faster than SVM. An improved version of TWSVM,
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called twin bounded support vector machine (TBSVM) was proposed by Shao
et al. [16]. TBSVM implemented the structural risk minimisation principle by
introducing a regularization term. Based on statistical learning theory, TBSVM
can improve the performance of classification of TWSVM. Recently, many ex-
tensions of TWSVM have been proposed, for details, see [15, 8, 12, 21, 20].

In this paper, we propose the twin bounded large margin distribution machine
(TBLDM). Similar to LDM, the margin distribution of TBLDM is characterised
by first and second order statistics and optimizing the margin distribution is
realized by maximizing the margin mean and minimizing the margin variance
simultaneously. However, TBLDM tries to optimise the positive and negative
margin distributions separately. This is different from LDM, which optimised
the whole margin distribution for all training points.

To begin with, we will first provide a brief background on SVM, TWSVM
and LDM in Section 2. Our novel approach TBLDM for classification problems
will be introduced in Section 3. In Section 4, we will make numerical experiments
to verify that our new model is very effective in classification. Discussions and
conclusions will be summarized in Section 5.

2 Notation and related work

Given the dataset T = {(xi, yi)}li=1, where xi ∈ Rn is the i-th input sam-
ple and yi ∈ {±1} is the class label of xi. Let l1 and l2 be the numbers of
samples belonging to the positive and negative classes, respectively, such that
l = l1 + l2. Denote X = [x1, · · · , xl] ∈ Rn×l, A = [x+1 , · · · , x

+
l1

] ∈ Rn×l1 and

B = [x−1 , · · · , x
−
l2

] ∈ Rn×l2 as the entire, positive and negative sample ma-
trices. Let k : Rn × Rn → R be a kernel function with reproducing kernel
Hilbert space (RKHS) H̃ and nonlinear feature mapping φ : Rn → H̃. De-
note φ(A) = [φ(x+1 ), · · · , φ(x+l1)], φ(B) = [φ(x−1 ), · · · , φ(x−l2)] as the positive and

negative mapped sample matrices, the kernel matrix K = φ(X)Tφ(X) where
φ(X) = [φ(x1), · · · , φ(xl)], KA = φ(A)Tφ(X) ∈ Rl1×l,KB = φ(B)Tφ(X) ∈
Rl2×l,K(x,X) = [k(x, x1), · · · , k(x, xl)] ∈ R1×l, ∀x ∈ Rn. and y = (y1, · · · , yl)T ∈
Rl. yA = (y+1 , · · · , y

+
l1

)T ∈ Rl1 , yB = (y−1 , · · · , y
−
l2

)T ∈ Rl2 .

2.1 Support vector machine (SVM)

SVM tries to find a hyperplane f(x) = wTφ(x) = 0, where f is linear and

w ∈ H̃ is a linear predictor. According to [3] and [17], the margin of the individual
sample (xi, yi) is defined as

γi = yiw
Tφ(xi), i = 1, · · · , l. (1)

In separable cases, all the γi will be non-negative. So we can get the geometric
distance from each xi to wTφ(x) = 0 by scaling each γi with 1/‖w‖:

γ̂i = yi
wT

‖w‖
φ(xi), i = 1, · · · , l.
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For the separable case, SVM maximizes the minimum distance:

max
w

γ̂

s.t. γ̂i ≥ γ̂, i = 1, · · · , l.

It can be written as

max
w

γ

‖w‖
s.t. γi ≥ γ, i = 1, · · · , l.

We can simply set γ as 1 since it doesn’t have influence on the optimization.
Note that maximizing 1/‖w‖ is equivalent to minimizing ‖w‖2, we can get the
classic formulation of hard-margin SVM as follows:

min
w

1

2
‖w‖2

s.t. yiw
Tφ(xi) ≥ 1, i = 1, · · · , l.

For non-separable case, SVM can be written as

max
w,ξi

γ0 − C̄
l∑
i=1

ξi

s.t. γi ≥ γ0 − ξi,
ξi ≥ 0, i = 1, · · · , l,

where γ0 is a relaxed minimum margin, ξi is slack variable and C̄ is the trading-
off parameter. The above formula can be rewritten as

min
w,ξi

1

2
‖w‖2 + C

l∑
i=1

ξi

s.t. yiw
Tφ(xi) ≥ 1− ξi,

ξi ≥ 0, i = 1, · · · , l,

where C is a trading-off parameter. We can see that SVMs for both separable and
non-separable cases consider only single-data-point margins but not the whole
margin distribution.

2.2 Twin bounded support vector machine (TBSVM)

Different from conventional SVM, TWSVM seeks for a pair of nonparallel
hyperplanes f+(x) = wT+φ(x) = 0 and f−(x) = wT−φ(x) = 0. As an improved
version of TWSVM, TBSVM consider the structural risk minimization principle
by adding a regularization term. The training time of TBSVM is approximately
four times faster than SVM. We introduce non-linear TBSVM in this subsection,
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for linear case and other details, see [7, 16]. The unknown vectors w+, w− ∈ Rn
of TBSVM can be obtained by solving the following two QPPs:

min
w+,ξ2

c1
2
||w+||2 +

1

2
||φ(A)Tw+||2 + c3e

T
2 ξ2

s.t. −φ(B)Tw+ + ξ2 ≥ e2, ξ2 ≥ 0, (2)

min
w−,ξ1

c2
2
||w−||2 +

1

2
||φ(B)Tw−||2 + c4e

T
1 ξ1

s.t. φ(A)Tw− + ξ1 ≥ e1, ξ1 ≥ 0, (3)

where c1, · · · , c4 > 0 are trade-off parameters, ξ1 ∈ Rl1 , ξ2 ∈ Rl2 are slack
variable vectors and e1 ∈ Rl1 , e2 ∈ Rl2 are vectors of ones. A new input x̃ ∈ Rn
is assigned the class k depending on which of the two hyperplanes it is closer to.

That is, the class label yx̃ can be obtained by yx̃ = arg min
k=±

|fk(x̃)|
||wk|| .

Similar to the definition of the margin of individual sample in (1), the positive
and negative margin of individual sample can be formulated as

γ+j = y+j f−(x+j ) = y+j w
T
−φ(x+j ), j = 1, · · · , l1, (4)

γ−j = y−j f+(x−j ) = y−j w
T
+φ(x−j ), j = 1, · · · , l2, (5)

respectively. We can see that TBSVM tries to maximize the minimal negative
margin between the negative samples and positive decision hyperplane by (2)
and maximize the minimal positive margin by (3).

2.3 Large margin distribution machine (LDM)

LDM tries to achieve a strong generalization performance by optimizing the
margin distribution of samples on the basis of soft-margin SVM. The margin
distribution is characterized by first- and second-order statistics. Optimizing
margin distribution is realized by maximizing the margin mean and minimizing
the margin variance simultaneously. Based on (1), the margin mean γ̄ and the

margin variance γ̂ can be calculated by γ̄ = 1
l

∑l
i=1 γi and γ̂ = 1

l

∑l
i=1(γi− γ̄)2.

The unknown w ∈ H̃ can be obtained by solving the following optimization
problem:

min
w,ξi

1

2
wTw + λ1γ̂ − λ2γ̄ + C

l∑
i=1

ξi

s.t. yiw
Tφ(xi) ≥ 1− ξi, ξi ≥ 0, i = 1, · · · , l,

where λ1, λ2 > 0 are the parameters for trading-off the margin variance, the
margin mean and the model complexity. It is obvious that LDM can be reduced
to soft-margin SVM when λ1 = λ2 = 0.
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3 Twin bounded large margin distribution machine
(TBLDM)

In this section, we will introduce our novel classification method named as
twin bounded large margin distribution machine (TBLDM). Based on the con-
cepts of positive margin and negative margin in (4) and (5), the positive mar-
gin mean γ̄+ and the positive margin variance γ̂+ can be calculated by γ̄+ =
1
l1

∑l1
j=1 γ

+
j = 1

l1
yTAφ(A)Tw−, and γ̂+ = 1

l1

∑l1
i=1(γ+i −γ̄+)2 = wT−φ(A)Q1φ(A)Tw−

respectively. Here Q1 =
l1Il1−yAy

T
A

l21
is a symmetric matrix. Since Q2

1 = 1
l1
Q1, it

can be concluded that Q1 is a symmetric nonnegative definite matrix. Similarly,
we can get the negative margin mean γ̄− and the negative margin variance γ̂−

by γ̄− = 1
l2
yTBφ(B)Tw+, γ̂

− = wT+φ(B)Q2φ(B)Tw+, where Q2 =
l2Il2−yBy

T
B

l22
is

also a symmetric nonnegative definite matrix.

3.1 TBLDM

Specifically, TBLDM seeks a pair of unknown vectors w+, w− ∈ H̃ by maxi-
mizing the positive and negative margin mean and minimizing the positive and
negative margin variance simultaneously, that is, by considering the following
two optimization problems:

min
w+,ξ2

c1
2
‖w+‖2 +

1

2
‖φ(A)Tw+‖2 − λ1γ̄− + λ2γ̂

− + c3e
T
2 ξ2

s.t. −φ(B)Tw+ + ξ2 ≥ e2, ξ2 ≥ 0, (6)

min
w−,ξ1

c2
2
‖w−‖2 +

1

2
‖φ(B)Tw−‖2 − λ3γ̄+ + λ4γ̂

+ + c4e
T
1 ξ1

s.t. φ(A)Tw− + ξ1 ≥ e1, ξ1 ≥ 0, (7)

where λ1, · · · , λ4 > 0 are the parameters for trading-off the margin variances,
the margin means and the complexity of models. It is obvious that TBLDM
can be reduced to the nonlinear TBSVM when λ1, λ2, λ3 and λ4 are equal to 0.
Substituting γ̄− and γ̂− into the models (6), we can get the following:

min
w+,ξ2

c1
2
‖w+‖2 +

1

2
‖φ(A)Tw+‖2 −

λ1
l2
yTBφ(B)Tw+ + λ2w

T
+φ(B)Q2φ(B)Tw+ + c3e

T
2 ξ2

s.t. −φ(B)Tw+ + ξ2 ≥ e2, ξ2 ≥ 0, (8)

Due to H̃ = span{φ(x1), · · · , φ(xl)}, we can let w+ = φ(X)β1 and w− = φ(X)β2,
where β1, β2 ∈ Rl are coefficient vectors, and then we can deduce that

‖w+‖2 = βT1 Kβ1, |w−‖2 = βT2 Kβ2,

φ(A)Tw+ = KAβ1, φ(B)Tw+ = KBβ1,

φ(A)Tw− = KAβ2, φ(B)Tw− = KBβ2,

f+(x) = wT+φ(x) = K(x,X)β1, f−(x) = wT−φ(x) = K(x,X)β2. (9)
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Substituting (9) into the models (8), we have

min
β1,ξ2

c1
2
βT1 Kβ1 +

1

2
βT1 K

T
AKAβ1 −

λ1
l2
yTBKBβ1 + λ2β

T
1 K

T
BQ2KBβ1 + c3e

T
2 ξ2

s.t. −KBβ1 + ξ2 ≥ e2, ξ2 ≥ 0, (10)

Let

G1 = c1K +KT
AKA + 2λ2K

T
BQ2KB ∈ Rl×l,

G2 = c2K +KT
BKB + 2λ4K

T
AQ1KA ∈ Rl×l.

Obviously, G1 and G2 are symmetric nonnegative definite matrices. The models
(10) can be rewritten as

min
β1,ξ2

1

2
βT1 G1β1 −

λ1
l2
yTBKBβ1 + c3e

T
2 ξ2

s.t. −KBβ1 + ξ2 ≥ e2, ξ2 ≥ 0, (11)

Considering the Lagrangian function of the model (11)

L1(β1, ξ2, α1, δ1) =
1

2
βT1 G1β1 −

λ1
l2
yTBKBβ1 + c3e

T
2 ξ2 − αT1 (−KBβ1 + ξ2 − e2)− δT1 ξ2,

where α1, δ1 ∈ Rl2 are nonnegative Lagrangian multipliers vectors, and letting
∂L1/∂β1 = ∂L1/∂ξ2 = 0, we get

G1β1 =
λ1
l2
KT
ByB −KT

Bα1,

c3e2 − α1 − δ1 = 0⇒ 0 ≤ α1 ≤ c3e2. (12)

Without loss of generality, we can assume that G1 is an invertible matrix; oth-
erwise, it can be regularized, that is, it can be replaced by the matrix G1 + t1Il,
where t1 > 0 is a small positive number called regularized coefficient. Conse-
quently, it can be deduced from (12) that

β1 = G−11 (
λ1
l2
KT
ByB −KT

Bα1). (13)

Submitting (13) and (12) into the Lagrangian function, we can obtain the Wolfe
dual form of the model (11):

min
α1

1

2
αT1H1α1 − (

λ1
l2
H1yB + e2)Tα1

s.t. 0 ≤ α1 ≤ c3e2, (14)

where H1 = KBG
−1
1 KT

B . Similarly, we can get

β2 = G−12 (
λ1
l1
KT
AyA +KT

Aα2), (15)
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and then the Wolfe dual form of the model (7) is:

min
α2

1

2
αT2H2α2 + (

λ3
l1
H2yA − e1)Tα2

s.t. 0 ≤ α2 ≤ c4e1, (16)

where α2 ∈ Rl1 is a nonnegative Lagrangian multipliers vector and H2 =
KAG

−1
2 KT

A . A new input x̃ ∈ Rn is assigned the class i (i = 1, 2 denotes the
positive and negative classes, respectively) depending on which of the two hyper-

planes is closer to, that is, label (x̃) = arg min
i=1,2

|K(x̃,X)βi|√
βiKβi

. The specific procedure

is listed in Algorithm 1.

Algorithm 1 TBLDM

Input: Training set T , testing sample x̃, kernel function k : Rn × Rn → R, mod-
el parameters λi, · · · , λ4 and ci, · · · , c4, regularized parameters t1, t2 and kernel
parameters;

1: Solve the QPP (14) and obtain the optimal solution α∗1;
2: Compute β∗1 by (13) with α1 = α∗1;
3: Solve the QPP (16) and obtain the optimal solution α∗2;
4: Compute β∗2 by (15) with α2 = α∗2;

5: For x̃, predict its label by label (x̃) = arg min
i=1,2

|K(x̃,X)β∗
i |√

β∗
iKβ

∗
i

.

3.2 TBLDM for large scale datasets

It can be seen that we need to compute G−11 and G−12 and kernel matrix
K,KA,KB before solving the dual problems (14) and (16). This is infeasible
when the number of samples is significantly large both in terms of memory and
computation. To effectively handle large scale problems, in this subsection, we
first choose a kernel approximation method, Nyström method [22] to explicitly
map features onto subspaces in the RKHS. In this case, the embedding features
are obtained without constructing the complete kernel matrix for the data set.
Given the kernel-specific embedding, we perform linear TBLDM. Because the
inverse matrices of AAT and BBT still need to be computed to get the dual
problem of linear TBLDM, we solve the primal problem of linear TBLDM here
with stochastic gradient descent (SGD) algorithm.

Linear TBLDM is a special case of TBLDM with linear kernel function
k(u, v) = 〈u, v〉 for any u, v ∈ Rn. In this case, the models (6) and (7) are
reduced into the following two QPPs:

min
w+,ξ2

c1
2
‖w+‖2 +

1

2
‖ATw+‖2 −

λ1
l2
yTBB

Tw+ + λ2w
T
+BQ2B

Tw+ + c3e
T
2 ξ2

s.t. −BTw+ + ξ2 ≥ e2, ξ2 ≥ 0, (17)
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min
w−,ξ1

c2
2
‖w−‖2 +

1

2
‖BTw−‖2 −

λ3
l1
yTAA

Tw− + λ4w
T
−AQ1A

Tw− + c4e
T
1 ξ1

s.t. ATw− + ξ1 ≥ e1, ξ1 ≥ 0. (18)

To solve formulas (17) and (18) in primal case, we express them equivalently as
two unconstraint optimization problems:

min
w+,ξ2

g1(w+) =
c1
2
‖w+‖2 +

1

2
‖ATw+‖2 −

λ1
l2
yTBB

Tw+ + λ2w
T
+BQ2B

Tw+

+c3

l2∑
i=1

max{0, 1 + wT+x
−
i }, (19)

min
w−,ξ1

g2(w−) =
c2
2
‖w−‖2 +

1

2
‖BTw−‖2 −

λ3
l1
yTAA

Tw− + λ4w
T
−AQ1A

Tw− +

c4

l1∑
i=1

max{0, 1− wT−x+i }. (20)

If examples (x+i , y
+
i ), (x+j , y

+
j ), (x+k , y

+
k ) are randomly sampled from the positive

training set and (x−i , y
−
i ), (x−j , y

−
j ), (x−k , y

−
k ) are randomly sampled from the

negative training set independently, it is straightforward to prove that

∇g1(w+, x
+
i , x

−
j , x

−
k ) = c1w+ + l1x

+
i x

+
i

T
w+ + 2λ2x

−
j x
−
j

T
w+ − 2λ2x

−
j x
−
k

T
w+

+λ1x
−
j + c3l2x

−
j I(j ∈ I1), (21)

∇g2(w−, x
−
i , x

+
j , x

+
k ) = c2w− + l2x

−
i x
−
i

T
w− + 2λ4x

+
j x

+
j

T
w− − 2λ4x

+
j x

+
k

T
w−

−λ3x+j − c4l1x
+
j I(j ∈ I2). (22)

are the unbiased estimation of ∇g1(w+) and ∇g2(w−) respectively. I(·) is the
indicator function that returns 1 when the argument holds, and 0 otherwise.
I1, I2 are the index sets defined as I1 = {j|wT+x−j > −1}, I2 = {j|wT−x+j < 1}.
So we can update w+, w− by w+ ← w+ − r1∇g1(w+, x

+
i , x

−
j , x

−
k ) and w− ←

w− − r2∇g2(w−, x
−
i , x

+
j , x

+
k ), r1, r2 are learning rates for each iteration of SGD

algorithm. The detailed procedure is listed in Algorithm 2.

4 Experiments and results analysis

In order to demonstrate the effectiveness of TBLDM, a series of comparative
experiments with SVM, TBSVM and LDM are performed. The experiments fo-
cus on the aspects of classification accuracy and computational time on sixteen
regular scale datasets and four large-scale datasets. These datasets are taken
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Algorithm 2 Nyström + linear TBLDM for large scale problems

Input: Positive training set A, negative training set B, testing sample x̃, model pa-
rameters λ1, · · · , λ4 and c1, · · · , c4 and learning rates r1, r2;

1: Get data embedding Ae, Be and x̃e by Nyström method;
2: while w+, w− not converged do
3: Randomly select a mini-batch x+b = {x+i , x+j , x+k } and a mini-batch x−b = {x−i ,

x−j , x−k };
4: for x+b ⊂ Ae and x−b ⊂ Be do
5: Compute the gradient ∇g1(w+, x

+
i , x

−
j , x

−
k ) by (21);

6: Compute the gradient ∇g2(w−, x
−
i , x

+
j , x

+
k ) by (22);

7: w+ ← w+ − r1∇g1(w+, x
+
i , x

−
j , x

−
k );

8: w− ← w− − r2∇g2(w−, x
−
i , x

+
j , x

+
k );

9: end for
10: end while
11: For x̃, predict its label by label (x̃) = arg min

i=±

|wT
i x̃e|
‖wi‖

.

from UCI database [4] and real-world databases1, respectively. All the compu-
tational time involved is the sum of the training time and the testing time and
all the classification accuracy involved is the testing accuracy, that is, the clas-
sification accuracy on testing sets.

4.1 Experiments on regular-scale datasets

The statistics of the regular-scale datasets are listed in the first four rows in
Table 1, where l and n denote the number and the dimensionality of samples, re-
spectively. Gaussian radial basis function (RBF) kernel k(u, v) = exp(−‖u− v‖2/γ)

Table 1. Statistics of datasets

Data set l n Data set l n Data set l n Data set l n

australian 690 14 parkinsons 195 22 bupa 345 6 ringnorm 400 20
ecoli 336 7 sonar 208 60 german 1000 24 spect 80 22
haberman 306 3 transfusion 748 4 heart 270 13 twonorm 400 20
ionosphere 351 34 wdbc 569 30 monks2 432 6 wpbc 198 32
cod-rna 216948 8 ijcnn1 141691 22 skin 245057 3 w8a 64700 300

for u, v ∈ Rn is selected and SMO [11] algorithm is used for SVM, where γ > 0 is
a kernel parameter. We use SOR solver [10] for fast training TBSVM; the source
code of Zhang and Zhou [23] for LDM; for TBLDM, the ‘quadprog’ toolbox in
MATLAB [1] is used to solve QPPs (14) and (16). All the experiments are op-
erated in MATLAB. For the convenience of computation, we take all the model
parameters C, c1, c2, c3, c4 = 1, the kernel parameter γ and λ1, λ2 are chosen

1 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/



10 H. Xu et al.

from [2−6, 26] by using 5-fold cross validation method. Experiments are repeat-
ed for 5 times with random data partitions to calculate the average accuracies
and variances. The experimental results are listed in Table 2, from which we can
see that for computational time, TBLDM is obviously faster than LDM except
on spect and wpbc datasets, and faster than TBSVM on 12 datasets and similar
on the remaining 4 datasets. For classification accuracy, TBLDM is higher than
LDM on 11 datasets and same on wdbc data set, and is higher than TBSVM on
13 datasets. In addition, SVM only gets the highest classification accuracy on
wdbc data set although its computational time is the fastest.

Table 2. Experimental results with regular size datasets

SVM TBSVM LDM TBLDM

DATASETS acc(mean±std) time(s) acc(mean±std) time(s) acc(mean±std) time(s) acc(mean±std) time(s)

australian 0.8565±0.0262 0.0353 0.8574±0.0360 0.2015 0.8557±0.0258 1.4757 0.8672±0.0194 0.1500
bupa 0.6736±0.0591 0.0292 0.6986±0.0495 0.0818 0.6980±0.0542 0.1893 0.7014±0.0366 0.0820
ecoli 0.9637±0.0264 0.0189 0.9648±0.0331 0.0743 0.9672±0.0232 0.1785 0.9637±0.0175 0.0939
german 0.7224±0.0367 0.0611 0.7510±0.0211 0.5345 0.7590±0.0186 4.9356 0.7724±0.0223 0.4213
haberman 0.7333±0.0235 0.0241 0.7210±0.0203 0.1320 0.7353±0.0344 0.1337 0.7380±0.0396 0.0805
heart 0.8333±0.0367 0.0220 0.8356±0.0567 0.0577 0.8326±0.0461 0.0948 0.8363±0.0464 0.0491
ionosphere 0.9345±0.0327 0.0233 0.9248±0.0224 0.0688 0.9441±0.0254 0.2189 0.8872±0.0308 0.0511
monks2 0.7940±0.0450 0.0330 0.8065±0.0212 0.0595 0.8074±0.0391 0.3659 0.8320±0.0448 0.0509
parkinsons 0.9159±0.0387 0.0270 0.8995±0.0386 0.0399 0.9344±0.0421 0.0451 0.9415±0.0378 0.0358
ringnorm 0.9530±0.0273 0.0270 0.9560±0.0226 0.0594 0.9675±0.0189 0.3284 0.8485±0.0337 0.0448
sonar 0.8066±0.0460 0.0245 0.8489±0.0480 0.0467 0.8568±0.0519 0.0592 0.8738±0.0449 0.0296
spect 0.6900±0.1119 0.0217 0.6875±0.0633 0.0213 0.7025±0.1094 0.0038 0.7025±0.1033 0.0214
transfusion 0.7348±0.0262 0.0487 0.7628±0.0175 0.8928 0.7939±0.0264 1.8919 0.7839±0.0249 0.6641
twonorm 0.9725±0.0186 0.0195 0.9720±0.0158 0.0647 0.9695±0.0205 0.2988 0.9730±0.0165 0.0636
wdbc 0.9761±0.0116 0.0215 0.9708±0.0119 0.1345 0.9743±0.0146 0.8451 0.9743±0.0148 0.1185
wpbc 0.7627±0.0118 0.0306 0.7697±0.0176 0.0420 0.7988±0.0472 0.0428 0.8002±0.0405 0.0439

4.2 Experiments on large-scale datasets

The statistics of the large-scale datasets are listed in the last row of Table
1. All of these four large-scale datasets are split into training and test parts.
To compare with our method, we employ linear SVM, linear LDM and lin-
ear TBLDM after Nyström method. We choose Liblinear for linear SVM; the
source code of Zhang and Zhou [23] for linear LDM. A nonlinear SVM also
runs directly on these large-scale datasets. For the convenience of computation,
C, c1, c2, c3, c4, λ1, λ2, λ3, λ4 are all set to 1, γ that used for nonlinear SVM and
Nyström method is set to the average squared distance between data points
and the sample mean. The number of landmark points of Nyström method is
chosen as m = 50, 100. Table 3 tells us that all linear classifiers running after
the Nyström method can get a close classification accuracy result compared to
nonlinear SVM, even with such small number of landmark points m. However,
we can see from Table 4 that the running time of all linear classifier frameworks
plus Nyström method are much faster than that of nonlinear SVM. Moreover,
we can see that TBLDM is the fastest if we only compared the time running by
three linear classifiers. In addition to nonlinear SVM, all classifiers labelled as
SVM, LDM and TBLDM in Table 3 and Table 4 are linear.
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Table 3. Classification accuracy results on 4 large-scale datasets

m=50 m=100

DATASETS Nonlinear-SVM SVM LDM TBLDM SVM LDM TBLDM

cod-rna 0.8778 0.8650 0.8542 0.8536 0.8651 0.8618 0.8541
ijcnn1 0.9840 0.9138 0.9050 0.9050 0.9357 0.9203 0.9159
skin 0.9756 0.9982 0.9972 0.9759 0.9985 0.9978 0.9807
w8a 0.9939 0.9696 0.9697 0.9698 0.9721 0.9709 0.9707

Table 4. Time (seconds) comparison on 4 large-scale data sets

m=50 m=100

DATASETS Nonlinear-SVM Nyström SVM LDM TBLDM Nyström SVM LDM TBLDM

cod-rna 358.88 0.41 0.50 0.49 0.33 0.71 0.55 0.53 0.34
ijcnn1 46.28 0.38 0.63 0.67 0.12 0.65 1.09 1.23 0.15
skin 1357.9 0.86 0.99 1.64 0.92 1.45 1.49 2.42 0.84
w8a 533.02 1.39 0.30 0.40 0.05 1.77 0.54 0.73 0.07

5 Conclusions

Inspired by the idea of LDM and TBSVM, in this paper, we introduce the
notions of positive margin and negative margin of samples and then present a
novel classification method, TBLDM, by optimizing the positive and negative
margin distributions. The experimental results on sixteen regular scale datasets
and four large scale datasets indicate that, compared with SVM, TBSVM and
LDM, the proposed TBLDM is a fast, effective and robust classifier. From the
derivation process in Section 3, we can see that the technique used in this paper
has a certain commonality. Therefore, it will be interesting to generalize the idea
of TBLDM to regression models and other learning settings, which will be our
next work.
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