
View-Oriented Parallel

Programming and its

Performance Evaluation on

Multicore Architectures

Kai-Cheung Leung (梁啟昌)

a thesis submitted for the degree of

Doctor of Philosophy
at the University of Otago, Dunedin,

New Zealand.

17th August, 2013



Abstract

Shared-memory multicore architectures have become pervasive, and there
is a pressing need for parallel programming models to facilitate both perfor-
mance and convenience. However, most existing shared-memory program-
ming models are tedious for programming and are prone to errors such as
data race, which are difficult to debug.

To solve this problem, this thesis proposes a data race prevention scheme
in the View-Oriented Parallel Programming (VOPP) paradigm. VOPP
was proposed for distributed shared memory systems. It is adapted to
shared-memory multicore architectures in this thesis. VOPP is a shared-
memory data-centric parallel programming model, which uses views to bun-
dle mutual exclusion with data access. In VOPP, programmers partition
the shared memory into “views”, which are non-overlapping sets of shared
data objects. The data race prevention scheme proposed for VOPP can
prevent data race through the memory protection mechanism while keep-
ing the extra overhead low.

To improve the programmability of VOPP, this thesis proposes an auto-
matic view access management scheme where a view is automatically ac-
quired upon its first access, and automatically released when no longer
needed, thus relieving programmers from arranging locks to protect critical
sections.

To further improve performance and programmability, this thesis proposes
the View-Oriented Transactional Memory (VOTM) system, which uses Re-
stricted Admission Control (RAC) to manage the number of processes hold-
ing each view according to its contention. In VOTM, RAC can restrict the
number of processes holding the view when its contention is high, and in
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extreme cases, RAC can fall back to the locking mode, in order to avoid
abort overheads of transactions. On the other hand, RAC allows unlimited
concurrent access to other low-contention views to maximize concurrency,
just as in transactional memory. Therefore, VOTM has the merits of both
the locking mechanism and the transactional memory (TM) and integrated
them nicely through RAC.

This thesis has also provided a theoretical analysis for RAC to investigate
factors that indicate performance gain by restricting admission to a view,
including disproportionately large portion of time spent in aborted trans-
actions due to high contention and excessive TM mechanism overheads.
Experimental results demonstrate that in many cases, RAC correctly re-
sponds to these situations by restricting admission to a view, thus improves
the performance.

Apart from the improvements of programmability in VOPP, this thesis has
done extensive experiments on two multicore architectures, a 16-core ma-
chine and a 64-core machine. Experimental results demonstrate that VOPP
can provide a data race free environment with low overheads on multicore
architectures, and VOTM outperforms both traditional transactional mem-
ory models and lock-based models in most benchmark applications.

iii



Acknowledgements

There have been many people who have helped me throughout my PhD
candidature. The completion of this thesis would not have been possible
without the support and guidance of Associate Professor Zhiyi Huang, my
primary supervisor. Throughout my time at the Department of Computer
Science, Professor Huang helped me to grow as both a researcher, and more
importantly, as an all-rounded person.

I am also very grateful to Dr Yawen Chen, who analyzed works carried in
this thesis with a fresh pair of eyes at the statistician’s point of view, and
collaborated with Professor Huang and me to develop the RAC theoretical
model.

I would also like to thank Dr Richard O’Keefe (my co-supervisor), Dr David
Eyers, Dr Haibo Zhang and Cameron Kerr for training my programming
skills and knowledge in operating systems, which are crucial in both this
thesis as well as my future career. In addition, I would like to thank my
postgraduate advisors Professor Mike Atkinson and Associate Professor Al-
istair Knott, and our Head of Department Associate Professor Brendan
McCane for their academic and career guidance.

During my time in this department, I was very fortunate to have Jason,
Manish, Qihang, Ayesha, Yan, Adeel, Bhaskar, Sheetal, Faisal, Jay, Umair,
Nabeel, Reece, Hamza, Lynn, Azam, Maryam, Jie, Nick and all the people
at the System Lab for all the advice, fun and great time shared.

Finally, I would like to acknowledge the love and support of my friends and
family, and particularly my parents while I pursued my extended education.
I cannot thank you all enough.

iv



Contents

1 Introduction 1
1.1 Concurrency Control in Shared Memory . . . . . . . . . . . . . . . . . 2

1.1.1 Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Taming the Data Race 9
2.1 Data Race Prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Performance Evaluation with Other Models . . . . . . . . . . . . . . . 14

2.2.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Advanced Features in Maotai 2.0 . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Deadlock Avoidance . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Producer/Consumer View . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 System Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Automatic Detection of View Access 26
3.1 The Programming Model and Implementation Details . . . . . . . . . . 27

3.1.1 Automatic Detection of View Access . . . . . . . . . . . . . . . 28
3.1.2 View Scope Construct . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.3 Deadlock Free Mode . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.4 The Maotai 3.0 API . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.5 Implementation Details and Overheads . . . . . . . . . . . . . . 37

3.2 Programmability of Maotai 3.0 and Transactional Memory Models . . . 39
3.3 Performance Evaluation and Discussion . . . . . . . . . . . . . . . . . . 43

3.3.1 Maotai 3.0 Outperforms TL-2 in High-Contention Cases TSP,
LL and BT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 PNN - Multiple Iteration Algorithm Updating a Shared Array . 45
3.3.3 Barnes-Hut, Raytrace and Mergesort - Low to Moderate Con-

tention Cases Shows Very Little Overhead in Maotai 3.0 Auto-
matic View Access Detection . . . . . . . . . . . . . . . . . . . 46

3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

v



4 View-Oriented Transactional Memory 50
4.1 The VOTM Programming Model . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 The VOTM Programming Interface . . . . . . . . . . . . . . . . 51
4.1.2 Restricted Admission Control (RAC) Scheme . . . . . . . . . . 54
4.1.3 Origin of Performance Gain in VOTM . . . . . . . . . . . . . . 56

4.2 Overview of Transactional Memory Algorithms . . . . . . . . . . . . . 57
4.2.1 The TinySTM Algorithm . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 NOrec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.1 How RAC Improves Performance . . . . . . . . . . . . . . . . . 73
4.4.2 View Partitioning Improves Performance . . . . . . . . . . . . . 75

4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Improvements on the RAC Algorithm 79
5.1 The Restricted Admission Control Theoretical Model . . . . . . . . . . 80
5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Eigenbench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.2 MultiRBTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.1 Performance of VOTM-OrecEagerRedo . . . . . . . . . . . . . . 89
5.4.2 Performance of VOTM-NOrec . . . . . . . . . . . . . . . . . . . 91

5.5 Refinements on the RAC Model . . . . . . . . . . . . . . . . . . . . . . 93
5.6 Experimental Results of the Refined RAC Model . . . . . . . . . . . . 95

5.6.1 Performance of VOTM-OrecEagerRedo . . . . . . . . . . . . . . 95
5.6.2 Performance of NOrec . . . . . . . . . . . . . . . . . . . . . . . 100

5.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Related Work 107
6.1 Programming Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1.1 Deterministic Parallel Java . . . . . . . . . . . . . . . . . . . . 107
6.1.2 Colorama . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.3 Dthreads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Concurrency Control Models in Modern Transactional Memory Systems 114
6.2.1 In-Transactional Conflict Resolution . . . . . . . . . . . . . . . 114
6.2.2 Transactional Scheduling . . . . . . . . . . . . . . . . . . . . . . 114
6.2.3 Adaptive Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2.4 Adaptive Transactional Memory . . . . . . . . . . . . . . . . . 116

6.3 Non-Blocking Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Conclusions and Future Work 119

References 123

A Contents of the Source Code CD-ROM 134

vi



List of Tables

2.1 Breakdown of view primitive costs (in µs) . . . . . . . . . . . . . . . . 13
2.2 Effects of memory protection on benchmark application speedups with

32 processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Requested vs actual VOPP shared size (in Kbytes) in different applications 14
2.4 Combined startup and finalization time (in ms) for different number of

processes/threads on a Sun T2000 server . . . . . . . . . . . . . . . . . 19

3.1 Breakdown of view primitive costs (in µs) . . . . . . . . . . . . . . . . 38

4.1 Application runtime (s) at N = 16 . . . . . . . . . . . . . . . . . . . . 71
4.2 Number of transactions and aborts at N = 16 . . . . . . . . . . . . . . 71
4.3 Performance of TSP at N = 16 . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Overhead of transactions with different sizes . . . . . . . . . . . . . . . 73
4.5 Runtime and number of aborts of Bayes at different Q . . . . . . . . . 74
4.6 Performance of VOTM and TinySTM + RAC at N = 16 . . . . . . . . 76

5.1 Eigenbench parameters for the 2-view version . . . . . . . . . . . . . . 87
5.2 Single-view applications with VOTM-OrecEagerRedo . . . . . . . . . . 90
5.3 Single-view applications in VOTM-NOrec . . . . . . . . . . . . . . . . 92
5.4 Single-view applications with VOTM-OrecEagerRedo . . . . . . . . . . 96
5.5 Eigenbench in VOTM-OrecEagerRedo . . . . . . . . . . . . . . . . . . 98
5.6 Intruder with VOTM-OrecEagerRedo . . . . . . . . . . . . . . . . . . . 98
5.7 MultiRBTree in VOTM-OrecEagerRedo . . . . . . . . . . . . . . . . . 100
5.8 Single-view applications in VOTM-NOrec . . . . . . . . . . . . . . . . 101
5.9 Eigenbench in VOTM-NOrec . . . . . . . . . . . . . . . . . . . . . . . 103
5.10 Intruder with VOTM-NOrec . . . . . . . . . . . . . . . . . . . . . . . . 103
5.11 MultiRBTree in VOTM-NOrec (In all RAC cases, all views settled to

the same Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

vii



List of Figures

1.1 Code snippet demonstrating data race bug in two non-atomic operations
not protected by a critical section . . . . . . . . . . . . . . . . . . . . . 3

1.2 Code snippet demonstrating a deadlock situation resulting from pro-
cesses acquiring locks in different orders . . . . . . . . . . . . . . . . . 4

2.1 An example of VOPP code . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Speedup of SOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Speedup of GE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Speedup of IS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Speedup of NN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Speedup of Mandelbrot . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Speedup of Mergesort . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8 Code snippet showing how multiple views are acquired together in VOPP 22
2.9 Speedup of SOR in VOPP . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.10 Speedup of GE in VOPP . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Code snippets comparing serial and Maotai 2.0 implementations of the
list traversal function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 A simple example illustrating when a view is automatically acquired
and released under Maotai 3.0 . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 List traversal in Maotai 3.0 . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Code snippet illustrating the inheritance of views acquired by VPP func-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Inheritance of views acquired by VPP functions . . . . . . . . . . . . . 31
3.6 An example illustrating how views acquired by a callee function can be

unwittingly released . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 A code snippet illustrating the use of a view scope to specify when a

view is acquired and released . . . . . . . . . . . . . . . . . . . . . . . 33
3.8 Inheritance of views acquired by VPP functions and view scopes . . . . 34
3.9 A deadlock between two processes accessing views in different orders . 35
3.10 List traversal in Maotai 2.0 . . . . . . . . . . . . . . . . . . . . . . . . 40
3.11 List traversal in Maotai 3.0 . . . . . . . . . . . . . . . . . . . . . . . . 41
3.12 List traversal in TM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.13 Speedup of TSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.14 Speedup of LL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.15 Speedup of BT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.16 Speedup of PNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

viii



3.17 Speedup of Barnes-Hut . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.18 Speedup of Raytrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.19 Speedup of Mergesort . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Code snippet of list initialization in VOTM . . . . . . . . . . . . . . . 52
4.2 Code snippet of list insertion in VOTM . . . . . . . . . . . . . . . . . . 53
4.3 Transactions T1 and T2 livelock in ETL . . . . . . . . . . . . . . . . . 58
4.4 Time wasted by ultimately-doomed transactions in CTL . . . . . . . . 59
4.5 TinySTM metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 TinySTM TxStart() pseudocode . . . . . . . . . . . . . . . . . . . . . . 60
4.7 TinySTM TxWrite() pseudocode . . . . . . . . . . . . . . . . . . . . . 61
4.8 TinySTM TxRead() pseudocode . . . . . . . . . . . . . . . . . . . . . . 62
4.9 TinySTM TxCommit() pseudocode . . . . . . . . . . . . . . . . . . . . 63
4.10 TinySTM TxAbort() pseudocode . . . . . . . . . . . . . . . . . . . . . 63
4.11 Pseudocode of the read-set validation algorithm of TinySTM . . . . . . 64
4.12 NOrec metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.13 NOrec TxBegin() pseudocode . . . . . . . . . . . . . . . . . . . . . . . 64
4.14 NOrec TxWrite() pseudocode . . . . . . . . . . . . . . . . . . . . . . . 65
4.15 NOrec TxRead() pseudocode . . . . . . . . . . . . . . . . . . . . . . . . 66
4.16 NOrec TxCommit() pseudocode . . . . . . . . . . . . . . . . . . . . . . 67
4.17 NOrec TxAbort() pseudocode . . . . . . . . . . . . . . . . . . . . . . . 67
4.18 Pseudocode of the read-set validation algorithm of NOrec . . . . . . . . 68
4.19 RAC implementation over TinySTM . . . . . . . . . . . . . . . . . . . 75

5.1 Pseudocode of the modified Eigenbench application . . . . . . . . . . . 88
5.2 Single-view applications in VOTM-OrecEagerRedo . . . . . . . . . . . 90
5.3 Single-view applications in VOTM-NOrec . . . . . . . . . . . . . . . . 91
5.4 TM mechanism overhead of Vacation in VOTM-NOrec . . . . . . . . . 94
5.5 Single-view applications in VOTM-OrecEagerRedo . . . . . . . . . . . 96
5.6 Two-view applications on VOTM-OrecEagerRedo . . . . . . . . . . . . 97
5.7 MultiRBTree in VOTM-OrecEagerRedo . . . . . . . . . . . . . . . . . 99
5.8 Single-view applications in VOTM-NOrec . . . . . . . . . . . . . . . . 101
5.9 Two-view applications in VOTM-NOrec . . . . . . . . . . . . . . . . . 102
5.10 MultiRBTree in VOTM-NOrec . . . . . . . . . . . . . . . . . . . . . . 104

6.1 Code snippet of a concurrent Pair class in DPJ [11] . . . . . . . . . . . 108
6.2 Code snippet of a concurrent binary search tree in DPJ using the region

path list [11] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3 Code snippet showing two tasks executed concurrently in a cobegin nd

block in DPJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.4 Automatic critical section inference in Colorama . . . . . . . . . . . . . 112

ix



List of Publications

Part of this manuscript have already appeared as:

Journal Papers

1. Huang, Z. and Leung, K. Performance Evaluation of View-Oriented Transactional
Memory. To appear in Parallel Computing.

2. Leung, K., Chen, Y., and Huang, Z. (2013). Restricted Admission Control in
View-Oriented Transactional Memory. The Journal of Supercomputing, 63(2),
348–366.

3. Leung, K., Huang, Z., Huang Q., and Werstein, P. (2010). Data Race: Tame the
Beast. The Journal of Supercomputing, 51(3), 258–278.

Conference Papers

1. Leung, K., Chen, Y., and Huang, Z. (2012). When and how VOTM can improve
performance in contention situations. In The Fifth International Workshop on
Parallel Programming Models and Systems Software for High-end Computing, in
Proceedings of the 41st International Conference on Parallel Processing.

2. Leung, K. and Huang, Z. (2011). View-Oriented Transactional Memory. In The
Fourth International Workshop on Parallel Programming Models and Systems
Software for High-end Computing, in Proceedings of the 40th International Con-
ference on Parallel Processing.

3. Leung, K. and Huang, Z. (2010). Maotai 3.0: Automatic Detection of View
Access in VOPP. In Proceedings of the 11th International Conference on Parallel
and Distributed Computing, Applications and Technologies.

4. Mair, J., Leung, K., and Huang, Z. (2010). Metrics and task scheduling poli-
cies for energy saving in multicore computers. In Proceedings of the 2010 11th

x



IEEE/ACM International Conference on Grid Computing, Brussels, Belgium,
October 25–29, 2010, 266–273. IEEE.

5. Leung, K., Huang, Z., Huang, Q., and Werstein, P. (2009). Maotai 2.0: Data
Race Prevention in View-Oriented Parallel Programming. In Proceedings of the
10th International Conference on Parallel and Distributed Computing, Applica-
tions and Technologies, 263–271. IEEE Computer Society.

xi



Chapter 1

Introduction

Parallel programming has become pervasive with the advent of multicore and chip-
multithreading (CMT) technologies [57, 90]. These technologies allow multiple proces-
sors to be packed into a chip, and multiple multicore chips often share memory and
cache. Apart from servers and workstations, multicore CPUs also become prevalent
in consumer devices, including laptops as well as mobile devices such as tablets and
smartphones [87]. However, to utilize the benefits of multicore architectures, there is
a pressing need for parallel programming models to facilitate both performance and
convenience.

Currently, there are two camps of parallel programming models – message passing
and shared memory. In the message passing paradigm, memory is private to each
process, and processes share data by sending and receiving messages. Examples of this
paradigm include PVM [36], MPI [3], Occam [16] and the Akka Framework [42] as well
as modern agent-oriented models such as Erlang [4] and Charm++ [55].

Message passing is an efficient means of communication between different com-
puting nodes in distributed environments such as cluster and grid where memory is
not physically shared across computers. It allows programmers to finely tune the al-
gorithm using the low-level message passing mechanism. Since there are no shared
variables between processes, message passing models are data race free. However,
models like MPI force the communication mechanism into the application algorithm,
which makes data sharing tedious due to message passing, especially when the number
of processes becomes large. Since programmers are forced to manually code the inter-
process communication protocol, errors in the communication protocol can easily lead
to communication deadlock, which can be difficult to debug [54, 68].

On the other hand, message passing is not the most efficient way for data sharing
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in multicore architectures with shared memory. In these increasingly prevalent archi-
tectures, message passing between processes residing on the same multicore machine
results in unnecessary memory copying, which can be eliminated when shared memory
is used for communication in the multicore architectures [108].

Due to these reasons, the scope of this thesis will focus on the issues such as data
race and concurrency control in shared memory parallel programming models which
share data directly through physical memory of the multicore architectures.

1.1 Concurrency Control in Shared Memory
In shared memory programming models, variables could be shared among processes.

However if multiple processes access a variable at the same time, and at least one of
the processes writes to the variable, such a so-called data race condition can incur
unexpected results [47].

For example, although incrementation is only a single statement:

x++;

If two processes increment the variable x concurrently, programmers would expect
that at the end, x would be incremented by 2. However, the incrementation is not
atomic. It is in fact carried out by the following three instructions:

load x R;
add 1 R;
store R x;

Since the two processes increment the variable x concurrently, the above instructions
from the two processes may interleave in an order as shown in Figure 1.1, where P2
reads x into its register R, before P1 updates x. However, after P1 updates x, the
register R of P2 still has the old value of x as 0, which it increments. When P2 writes
its R to x, it tramples the result calculated by P1, which results in a data race bug.
The final result of x is 1 in this scenario, rather than the expected 2.
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x = 0;

P1 P2
load x R; // P1's register R = 0 x = 0

load x R; // P2's register R = 0 x = 0
add 1 R; // P1's register R = 1 x = 0
store R x; // x = P1's register R (= 1)

add 1 R; // P2's register R = 1 x = 1
store R x; // x = P2's register R (= 1)

Figure 1.1: Code snippet demonstrating data race bug in two non-
atomic operations not protected by a critical section

The Sequential Consistency (SC) model requires that “the result of any execution
is the same as if the operations of all the processes were executed in some (global)
sequential order, and the operations of each individual process appear in this sequence
in the order determined by its (own) program” [60]. In the above case, “x++;” is
supposed to be an atomic operation, and SC requires that the effect of the parallel
execution be consistent with the result of a sequential execution of all operations. If
the operations of “x++;” were to be executed sequentially, the result of Figure 1.1
would be 2 regardless of which incrementation is executed first.

To guarantee the sequential order of the operations on the same variable or data
object, a critical section (also known as “atomic section” in transactional memory
models to be described shortly) is needed to make sure an operation be performed
atomically. The size of a critical section can range from a single statement, as in the
above example, to a large code block that may take a significant portion of program
execution time.

To implement the critical sections and guarantee their atomicity, traditionally there
are two approaches: locking and transactional memory (TM).

1.1.1 Locking

Traditionally locking [59, 77] is used for concurrency control, where multiple pro-
cesses 1 have to access a shared data object in an exclusive way. Locking is used in
many shared memory programming models, including Java [37], C# [38], Python [93],
Ruby [98], Scala [73, 91], Pthreads [72], Ada [17], Cilk [96], as well as modern parti-
tioned global address space (PGAS) models such as UPC [30] and Chapel [21]. Atomic

1In the rest of the thesis, we use “process” to mean both process and thread for simplicity since
they are identical in terms of concurrency control.
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access to a shared object is achieved through a locking mechanism. This lock-based
concurrency control is generally regarded as a pessimistic approach [97] where conflicts
are prevented before they are allowed to happen. Even though locking is an effective
mutual exclusive mechanism for concurrency control, it could result in the deadlock
problem if multiple objects are locked in different orders by multiple processes, as shown
in Figure 1.2.

P1 P2
acquire_lock(1);

acquire_lock(2);
acquire_lock(2);

acquire_lock(1);
/* here P1 holding lock 1 waits for lock 2

which is held by P2, but P2 will not
release lock 2 until it gets lock 1
----> DEADLOCK */
..... ......

release_lock(2); release_lock(1);
release_lock(1); release_lock(2);

Figure 1.2: Code snippet demonstrating a deadlock situation resulting
from processes acquiring locks in different orders

Moreover, apart from the deadlock problem, fine-grained locks are often tedious for
programming, while coarse-grained locks often suffer from poor performance due to lack
of concurrency, especially when a large portion of program execution is spent in critical
sections. For example, the Ruppert’s Algorithm [85] has a central lock that protects
a critical section which takes most of the execution time of the program. A total
redesign of the algorithm would be required to break the central lock into multiple
fine-grained locks to extract concurrency, which would require expert knowledge in
parallel programming.

In addition, when a lock is acquired very frequently, which is common in applications
with fine-grained locks, the lock itself can become a cache contention hotspot, especially
on hardware with a large number of cores. This locking hotspot can severely impact
the performance and scalability of an application [47].

1.1.2 Transactional Memory

To avoid the deadlock problem as well as to increase concurrency, Transactional
Memory (TM) [46, 66] was proposed for shared-memory programming. In TM, atomic
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access to shared objects is achieved through transactions. All processes can freely enter
a transaction, access the shared objects, and commit the accesses at the end of the
transaction. If there are conflicts of access among processes, one or more transactions
will be aborted and rolled back. TM will undo the effects of the rolled-back transactions
and restart them from the beginning. This transaction based concurrency control is
labelled as an optimistic approach [9, 58] where it is assumed nothing will go wrong,
and if it does go wrong deal with it later.

In terms of performance, both lock-based and TM-based approaches have their own
merits in different situations. When access conflicts are rare, the TM-based approach
has little roll-back overhead and encourages high concurrency since multiple processes
can access different parts of the shared data simultaneously. In this situation, however,
the lock-based approach has little concurrency due to the sequential access to the shared
data, which results in low performance. To increase concurrency and performance, the
programmer has to break the shared data into finer parts and use a different lock for
each part. This solution using fine-grained locks often complicates the already-complex
parallel programs and could incur deadlocks.

On the other hand, when access conflicts are frequent, the TM-based approach
could have staggering roll-back overheads and is not scalable due to a large number of
aborts of transactions. In the worst case, transactions can abort each other, and result
in livelocks [19, 63, 99]. In such a situation, it is more effective to use the pessimistic
lock-based approach to avoid the excessive operational overheads of transactions.

1.2 Motivation
This thesis investigates the issues of data race and concurrency control under the

View-Oriented Parallel Programming (VOPP) paradigm [49, 52, 108].
VOPP is a novel data-centric model that bundles mutual exclusion and data access

together. In VOPP, shared data is partitioned into non-overlapping views. The grain
(size) and content of a view are decided by the programmer as part of the programming
task, which is as easy as declaring a shared data structure or allocating a block of
memory space. Each view can be dynamically created, merged, and destroyed. The
most important property for views is that they do not intersect with each other. Before
a view is accessed (read or written), it must be acquired; after the access of a view, it
must be released. In this way, programmers only need to consider which data needed
to access atomically, acquire the view as needed and leave the underlying system to
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control the concurrency and grant access to the view.
Data-centric models like VOPP are safer for parallel programming. Traditionally

concurrency control in parallel programming is code-centric, where lock primitives are
used to demarcate critical code sections. Mistakes in the demarcation of critical sections
using locks can result in problems like data race. In contrast, data-centric models [20]
are only concerned with which shared object is used and thus lock it when it is being
used. Since the shared object to be locked is known, the locking process could be done
automatically by the underlying system.

For instance, since VOPP has the information of the views such as size and loca-
tion, it becomes possible to automatically detect accesses to them. In this way, the
programmability of VOPP can be improved. For example, a view can be automatically
acquired upon its first access, and later released when the control flow of the execution
leaves the scope of the view acquisition. This kind of extension of VOPP would relieve
programmers from manually acquiring/releasing the views, and avoid mistakes such as
missing acquiring/releasing primitives in the program and their related issues such as
data race and deadlock.

Moreover, since access control of each view is independent from each other, it also
becomes possible to individually control access of each view according to its own con-
tention to maximize the performance. For example, if a view has very high contention,
it can switch to the locking mode and only allow one process accessing it to stem the
contention overhead, while another view with low contention can allow concurrent ac-
cess by multiple processes without limitations, like traditional TM models, to maximize
concurrency.

This thesis will build upon the VOPP paradigm to investigate its strengths and
issues as a data-centric model, such as data race freedom, concurrency control, and
performance evaluation on multicore architectures.

1.3 Contributions of this Thesis
The VOPP paradigm was originally proposed for distributed shared memory sys-

tems [50–52]. Its features as a data-centric model have never been explored on shared-
memory multicore architectures.

This thesis first proposes a data race prevention scheme for VOPP, which can pre-
vent data race from occurring in the first place. The efficiency of the scheme is evaluated
experimentally against other parallel programming models. A shared-memory parallel
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programming system, called Maotai 2.0, is implemented for VOPP on multicore ar-
chitectures. Maotai 2.0 has enhanced VOPP with advanced features such as deadlock
avoidance and producer/consumer view.

To further improve the programmability of VOPP, this thesis proposes and im-
plements a scheme for automatic detection of view access, which no longer requires
programmers to use explicit view acquire/release primitives. A view is automatically
acquired when it is first accessed and released when the execution flow leaves the scope
of the view acquisition. The thesis shows the automatic detection scheme improves
the programming convenience of VOPP, and its programmability is similar to transac-
tional memory models in many cases. The parallel programming system with automatic
view detection is implemented and codenamed Maotai 3.0. Performance results show
that Maotai 3.0 has superior performance over transactional memory models like TL-2
0.9.6 [26].

Then this thesis proposes a novel View-Oriented Transactional Memory (VOTM)
paradigm that seamlessly integrates the merits of locking and TM into the same pro-
gramming model. VOTM is designed based on the generic principle of VOPP. This
data-centric model bundles concurrency control and data access together and therefore
relieves the programmer from controlling concurrent data access directly with either
locks or transactions. When a shared object (i.e. a view) is to be accessed, the pro-
grammer just simply uses acquire view to inform the system that the corresponding
view is going to be accessed. It is up to the system to decide whether the locking
mechanism should be adopted or a transaction should be started for the concurrent
access of the shared data.

This thesis also proposes an original Restricted Admission Control (RAC) scheme
for VOTM that can dynamically adjust the number of processes allowed to access the
same view. With the RAC scheme, a view in VOTM is restricted to be accessed by
a limited number of processes Q (called admission quota) whose value ranges from
1 to the maximum number of processes (N). If Q is 1, the processes access the set
of data objects sequentially as in the lock-based approach. If Q equals N , the RAC
scheme behaves like the conventional TM systems where any process is allowed to
start a transaction to access the data objects of the view. However, if Q is greater
than 1 but smaller than N , only Q processes are allowed to access the data objects
concurrently through transactions. If there are already Q processes accessing the data
objects inside uncommitted transactions, other processes are excluded from accessing
the set of data objects and have to wait until some existing transactions commit. In
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addition, RAC can flexibly adjust Q at runtime according to the contention situation,
e.g., the number of transactional aborts, to achieve optimal performance. This thesis
proposes a theoretical model for RAC to measure the contention levels and decide when
Q should be adjusted to achieve optimal performance for TM applications. As far as
we know, this is the first time that a theoretical analysis is applied to model admission
control of transactions. The RAC model is evaluated with microbenchmarks and show
the model can correctly decide if Q should be adjusted at various contention levels.
The experiment shows that this theoretical model is general enough to help measure
the contentions for various TM systems.

1.4 Thesis Structure
The rest of the thesis is organized as follows.
Chapter 2 presents the data race prevention scheme for VOPP. The scheme is

implemented using the memory protection mechanism (mprotect()) to guard against
improper access of shared data. Experimental evaluation is carried out to show the
performance of the scheme and its limitations.

Chapter 3 extends the VOPP paradigm with automatic view access semantics to
further improve programmability. It also provides an experimental evaluation on the
performance and programmability of this scheme.

Chapter 4 discusses the novel VOTM system, and presents a performance evaluation
on VOTM, lock-based, and TM-based systems. It also gives an analysis on the benefits
of VOTM over both lock-based and TM-based models.

Chapter 5 provides a theoretical analysis of the RAC algorithm used for concurrency
control in VOTM. It gives discussion on how the contention among transactions should
be modelled, in order to restrict the number of processes concurrently accessing the
same view by setting the proper admission quota to the optimal value.

Chapter 6 discusses related work on other data-centric programming models and
concurrency control mechanisms.

Finally, Chapter 7 concludes the thesis and sheds light on potential future work.
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Chapter 2

Taming the Data Race

As mentioned in Introduction, data race is an important problem in shared memory
programming models. A software bug caused by data race is often called Heisenbug [75]
because it often disappears when one attempts to find it. There have been many
studies on debugging data races. Some perform a post-mortem analysis based on
program execution traces [22, 31, 44, 70, 71], while others perform on-the-fly analysis
during program execution [8, 28, 69, 88]. Among modern shared-memory parallel
programming models [23, 72, 74, 80], only Cilk++ [23] provides a data race detector
called Cilkscreen [8, 23, 56].

Even though race detectors can help debug some data races, they often have the
following problems:

• Race detectors are often expensive to run, both in terms of computation and
memory space. For example, Cilkscreen can take up to 30 times the normal
execution time of the debugged program to run and the memory footprint can
be “several times” the memory footprint of the original application [23].

• Race detectors can only detect data races for one given input of a program. If
data races do not occur when the program is run with a given input, this does
not imply the program is data race free. The reason is that a different input may
result in threads being executed in different order, and the resultant interaction
may cause data races.

• To a novice programmer, race detectors can be difficult to use. For example,
Cilkscreen gives a detailed trace of memory addresses and their associated func-
tion names and line numbers, which can be very scary and confusing to inexperi-
enced programmers. In addition, this trace is of little help to programmers about
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the dynamic nature of the data races, e.g. when and how the data races happen.

Instead of data race detection, this chapter proposes a data race prevention scheme
in VOPP, which can prevent data races from occurring in the first place. It also
presents an implementation of VOPP, Maotai 2.0, with a data race prevention scheme
on multicore architectures.

The rest of this chapter is organized as follows: Section 2.1 describes a data race
prevention scheme that can eliminate data races in VOPP. Section 2.2 presents the
performance evaluation of Maotai 2.0 against other lock-based models including Cilk,
OpenMP and Pthreads. Section 2.3 briefly introduces the advanced features of Maotai
2.0 for improving programmability and performance. Finally, Section 2.4 concludes
this chapter.

2.1 Data Race Prevention
In VOPP, shared data is defined through views. Unlike most shared memory parallel

programming models, variables are private to a process by default in VOPP. Shared
objects must be explicitly defined as “views”.

Views can be created, destroyed, merged, or resized, but a process must acquire
a view (read-only or read-write) before accessing it and must release it after finishing
with the view. The current VOPP implementation adopts the Single-Writer Multiple-
Reader (SWMR) as its concurrency control model. At any given time, a view can
either be read/written by one process or allow read-only access to multiple processes.
In the current implementation, a view uses a contiguous memory space to store shared
variables. Below is a simple example of VOPP in C.
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typedef struct {int a[ARRAY_SIZE];
int result;} Foo;

Foo *ptr;
if (0 == Vpp_proc_id) {
/* master allocates view 0 with

type SWV, which is a shared object
with "Foo" type */

Vpp_alloc_view(0, sizeof(Foo), SWV);
}
Vpp_barrier();

...
ptr = Vpp_acquire_view(0);
ptr->result += do_work(ptr->a);
Vpp_release_view(0);

Figure 2.1: An example of VOPP code

As illustrated in Figure 2.1, if a data structure should be shared by multiple pro-
cesses, a view has to be created for it with Vpp alloc view. For exclusive access to the
view, the view type is SWV, which means “Single Writer View”. However, VOPP also
provides other advanced views to enhance the programmability and flexibility (refer to
Section 2.3).

If a process wants access to a view, the view must be acquired with Vpp acquire view
(or Vpp acquire Rview for read-only access). The view must be released with
Vpp release view after accessing it.

A summary of the VOPP API is shown below:

int Vpp alloc view(int vid, size t size, view type type)
Creates a view with ID vid, and size size. If vid is a negative value, the system
will allocate a free view ID. The view type type can be SWV (single writer view),
MWV (multiple-writer view) or PCV (producer-consumer view). MWV and PCV
will be discussed in detail in Section 2.3. This function will return the view ID
of the allocated view. On failure, this function will return −1.

void Vpp free view(int vid)
Frees the view vid.
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void *Vpp acquire view(int vid)
Acquires read-write access to the view vid and return its base address. Upon
failure, NULL will be returned.

void *Vpp acquire Rview(int vid)
Acquires read-only access to the view vid and return its base address. Upon
failure, NULL will be returned.

void Vpp release view(int vid)
Release access to the view vid.

void Vpp barrier()
Block the process until all processes reach this barrier.

2.1.1 Implementation

In the data race prevention scheme, data races are prevented by a memory pro-
tection mechanism available in most UNIX systems. All views are initially protected
from access using system calls such as mprotect(). mprotect() can deny access to a
page, or allows read-only access to a page, or allows read/write access to a page. This
mechanism is used to prevent a view from illegal accesses. Only after a view is acquired
is a process allowed to access the memory pages of the view via mprotect(). When a
view is released, the process is again denied access to the view.

If a process accesses a view before Vpp acquire view or after Vpp release view, the
pages of the view would not have the necessary access permission and thus a segmen-
tation fault will occur. The system will handle the fault, send a warning message to
the programmer that a view is accessed without acquisition, and quit the program
execution.

In this way, a view can either be written to by one process or read by multiple
processes at a time. Programmers do not need to worry about the data race bugs. If
a view is accessed by calling Vpp acquire view, mutual exclusion of the view access is
automatically done by the system. If a view is accessed without view acquisition, a seg-
mentation fault will occur, and the system will alert the programmer about which view
is accessed without acquisition. The programmer can easily fix the bug by inserting
Vpp acquire view and Vpp release view into the faulted code section.

The extra cost of this data race prevention scheme is the overhead of the
memory protection. In the VOPP implementation Maotai 2.0, this cost is very
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low. On a Sun T2000 Server equipped with a 1GHz UltraSPARC T1 processor [94],
micro-benchmarking results demonstrate that the overhead of memory protection
added to the view primitives is generally very low (around 2-3µs). The exception is
Vpp acquire view, requiring up to 35µs extra, which covers the essential overhead of
the memory protection mechanism(see Table 2.1). Note that Vpp acquire Rview and
Vpp release Rview means acquiring and releasing views as read-only.

Table 2.1: Breakdown of view primitive costs (in µs)
Primitive no prot prot cost
Vpp acquire view() 3.14 39.08 35.94
Vpp acquire Rview() 3.60 6.32 2.72
Vpp release view() 1.91 4.54 2.63
Vpp release Rview() 1.99 4.64 2.65

However, in application benchmarks, this overhead does not cause noticeable differ-
ence in application speedup. Table 2.2 shows the speedups (at 32 processes) of different
applications with and without memory protection in Maotai 2.0. This experiment has
six benchmark applications: Successive Over-Relaxation (SOR), Gaussian Elimination
(GE), Integer Sort (IS), Neural Network (NN), Mandelbrot, and Mergesort, which
typically represent a wide variety of parallel applications. For details of these applica-
tions, refer to Section 2.2. As we can see from Table 2.2, in all 32-process benchmark
cases, the difference is around 0.5%. Therefore, the overhead introduced by data race
prevention is trivial.

Table 2.2: Effects of memory protection on benchmark application
speedups with 32 processes

Application no prot prot
SOR 16.82 16.77
GE 22.41 22.36
IS 16.51 16.47
NN 16.98 16.92
Mandelbrota 7.61 7.60
Mergesort 12.52 12.50

aspeedup with eight processes

One issue about the implementation is that memory protection such as mprotect is
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page-based. Therefore, in order to protect view data properly, memory space allocated
to a view is aligned by pages. This can result in memory space wastage. Table 2.3
shows the requested and actual sizes of the memory space allocated by VOPP in the
benchmark applications. The page size is 8kB and 32 processes are used when the data
of the table are collected. From this table, it can be seen that some applications like
GE and Mandelbrot, which have many views that do not exactly fit a page, have a
higher proportion of memory wastage (up to 51%), though other applications have less
than 7% wastage. However, this memory wastage is much smaller than the memory
footprint of race detectors, which can be “several times” the memory footprint of the
original applications.

Table 2.3: Requested vs actual VOPP shared size (in Kbytes) in
different applications

Algorithm Requested Actual Wasted Percent wasted
SOR 4,097,024 4,194,304 97,280 2.32
GE 64,016,004 98,328,576 34,312,572 34.9
IS 4,194,304 4,194,304 0 0
NN 271,612 294,912 23,300 7.90
Mandelbrot 2,000,000 4,096,000 2,096,000 51.2
Mergesort 1,600,001,280 1,600,274,432 273,152 0.0171

Fortunately, with architectural support of variable-size pages [15, 104], this memory
wastage can be greatly reduced.

2.2 Performance Evaluation with Other Models
This section compares the performance of Maotai 2.0 with other modern shared

memory parallel programming models OpenMP and Cilk. These models are evalu-
ated in benchmark applications from the SPLASH-2 benchmark suite [105] including
Successive Over-Relaxation (SOR), Integer Sort (IS), Gaussian Elimination (GE), Neu-
ral Network (NN) and Mandelbrot, as well as Mergesort adapted from the Cilk-5.4.6
benchmark [96].The SPLASH-2 benchmark suite represent different classes of parallel
algorithms commonly found in real-life applications. The experiments are carried out
on a Sun T2000 server with an UltraSPARC T1 processor and 16GB memory. The
UltraSPARC T1 has eight cores, each of which is clocked at 1GHz and supports four
hardware threads. In total, the UltraSPARC T1 processor supports up to 32 hard-
ware threads [94]. Linux kernel 2.6.24-sparc64-smp and the compiler gcc-4.4 are used
during benchmarking. The benchmark applications are implemented on Maotai 2.0,
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Cilk-5.4.6 [96], and OpenMP 3.0 [74], respectively. All programs are compiled with
the optimization flag “-O2”. In each case, speedup is measured against the serial im-
plementation of the benchmark algorithm. The elapsed time calculated in each case
excludes initialization and finalization costs, because they are one-off and are difficult
to measure within the program in models that involve source-translation, such as Cilk
and OpenMP. Instead, startup and finalization times for each model are measured
separately. Runtime of functions that are irrelevant to the original application, such
as generation of random sequences and result-verification, are also excluded.

Successive Over-relaxation (SOR) is a multiple-iteration algorithm where each el-
ement is updated by the values of the neighbouring elements from the last iteration.
In this experiment, the implementation is adapted from [108]. Matrix size is set to
8000× 4000 and 40 iterations are performed.

The Integer Sort (IS) algorithm used in this experiment is based on the NPB ver-
sion [101]. This is a counting-sort algorithm. In this experiment, the problem size is
226 integers with a Bmax of 215 and 40 repetitions are performed.

The Gaussian Elimination (GE) implementation from [108] is used in this experi-
ment and the matrix size is set to 4000× 4000.

The parallel Neural Network (NN) algorithm is based on [78]. This algorithm
trains a back-propagation neural network in parallel using a training data set. In this
experiment, the size of the neural network is set to 9×40×1 and the number of epochs
is set to 200.

The Mandelbrot algorithm is embarrassingly-parallel. However, the workload of
pixels is extremely uneven, and thus requires a load-balancing mechanism to prevent
process starvation [39, 103]. In this experiment, the size of the screen is set to 500×500,
the maximum number of iterations is set to 500 and each pixel is calculated 5000 times.
The maximum number of processes / threads is set to eight for this experiment because
hyperthreading relies on memory latency. Since this application has very few memory
accesses, there is little speedup when more processes / threads than the number of
CPU cores are used (The UltraSparc T1 has eight cores).

The parallel Mergesort algorithm is recursive [61, 96] and is implemented verbatim
in Cilk and OpenMP to test performance of the newly-available task-parallelism feature
in OpenMP [7]. The array consists of 200 million integers. This algorithm is converted
to the iterative version for VOPP. The iterative version requires the number of processes
to be a power of 2. This version first divides the array equally between the processes
and each process sorts its own subarray. Then the merge procedure largely models the
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recursive version of the parallel merge algorithm.
Since the UltraSPARC T1 has only one floating-point unit, all floating-point cal-

culations in the above algorithms are converted to integer calculation to avoid the
bottleneck at the floating-point unit. Removal of floating point calculations is done in
all implementations and does not affect the scalability of the algorithm or the fairness
of the comparison.

2.2.1 Experimental Results

The experimental results are illustrated with speedup curves. Speedup curves on
Maotai 2.0, Cilk, and OpenMP are given for each application. In the discussion below,
n refers to the number of processes / threads.

Speedup is calculated by:

speedup =
timeserial implementation

timeparallel implementation
(2.1)

To ensure fair comparison, the same serial implementation of each benchmark ap-
plication is used as a baseline for calculating speedups of all parallel programming
models.

For SOR (Figure 2.2), Maotai 2.0 has the best performance. At n = 32, Maotai 2.0
is 13.6% better than Cilk and 17.9% better than OpenMP.
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Figure 2.2: Speedup of SOR

For GE (Figure 2.3), Maotai 2.0 again has the highest speedup. At n = 32, Maotai
2.0 is 7.4% better than Cilk and 33% better than OpenMP.
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Figure 2.3: Speedup of GE

In IS (Figure 2.4), there are less variations in speedups in different models. However
at n = 32, Maotai 2.0 is 5% faster than Cilk and 15% faster than OpenMP.
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Figure 2.4: Speedup of IS

In NN (Figure 2.5), all models have similar speedups. Maotai 2.0 is 3.1% faster
than OpenMP, but it is 1.8% slower than Cilk.
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Figure 2.5: Speedup of NN

In Mandelbrot (Figure 2.6), there are relatively little differences between speedups
of different models. At n = 8, Maotai 2.0 is 0.8% faster than Cilk and 7.2% faster than
OpenMP.
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Figure 2.6: Speedup of Mandelbrot

For Mergesort, Figure 2.7 shows speedup of Maotai 2.0 is relatively slower. This
issue will be addressed in Section 2.2.2.
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Figure 2.7: Speedup of Mergesort

Note that, in the above collected results, the standard deviations of the elapsed
time at n = 32 for Maotai 2.0 and Cilk cases are less than 0.1s, but the standard
deviations of the elapsed time for OpenMP are between 0.2 to 0.5s, which may be due
to the random nature of the OpenMP task scheduler.

Table 2.4 presents the startup and finalization time of each system. As expected,
startup and finalization costs for thread-based models including Cilk and OpenMP are
lower than process-based system like Maotai 2.0.

Table 2.4: Combined startup and finalization time (in ms) for different
number of processes/threads on a Sun T2000 server

1 2 4 8 16 24 32

Cilk 2 2 2 2 2 2 2
OpenMP 2 2 2 2 2 2 2
Maotai 2.0 9 10 11 13 15 19 22
Serial 2

All thread-based models have the same combined startup and finalization
time as the serial version regardless of the number of threads. Maotai 2.0 has a
startup/finalization cost of 9ms (at n = 1) and the cost grows to 22ms at n = 32,
almost linear to the number of processes. Despite Maotai 2.0 having a larger
startup/finalization overhead, the 22ms is still negligible compared to the time
consumed in n = 32 cases, which is at least 10 seconds. Also the startup/finalization
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time in Maotai 2.0 is only a one time event, therefore, this overhead should have
negligible effect on the speedup curves.

2.2.2 Discussion

The following is an analysis on why Maotai 2.0 performs better or worse than other
systems.

The producer/consumer view (PCV) in Maotai 2.0 enhances both programmability
and performance of SOR and GE. In SOR, PCV is used to pass boundary rows to
neighbour processes, thus allowing the natural expression of the message-passing rela-
tionship without the use of barrier, which would hold up irrelevant processes. Apart
from programmability, the resultant performance gain is reflected in Figure 2.9, where
the PCV VOPP version is 11.2% faster than the barrier-based SOR version. More
detailed reason regarding why PCV is more efficient than barrier will be explained in
Section 2.3.2.

Similarly in GE, PCV is used to broadcast the pivot row and the swap index, which
improves programmability by mimicking the broadcasting semantics in the parallel
algorithm. Also the removal of barriers by PCV improves the VOPP performance by
4.2% (Figure 2.10). Time is saved by replacing lock and barrier primitives with a PCV
primitive.

Multiple-Program Multiple-Data (MPMD) models such as Cilk/Cilk++ and
OpenMP do not have barriers because in this case, the parallel calculation part is
conveniently expressed by parallel for-loop (or in case of Cilk, spawn recursive task
decomposition threads and sync at end of parallel calculation) and the pivot part is
run serially. Synchronization is implicit in the parallel for-loop construct, where tasks
are forked at the beginning of the loop and joined at the end of the loop, therefore
these fork-join actions are essentially barriers and have the similar overhead to the
barriers in VOPP. In multiple-iterative cases such as GE and SOR, the cumulative
task scheduling and synchronization overheads can be considerable. Therefore, the
Maotai model would be more suited for these problems.

Mandelbrot is an embarrassingly-parallel algorithm. This application demonstrates
the slight performance advantage of the VOPP single-program multiple-data (SPMD)
model, in which a task queue is used to balance workload in the program, instead
of using general runtime schedulers as in OpenMP and Cilk. This result has also
demonstrated that the implementation of the system queue is efficient.

In IS, the performance advantage seen in Maotai 2.0 over other models can be
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attributed to the split of global keyden array into N views, where N is the number
of processes. In the global keyden construction step, each process updates all global
keyden parts in the round-robin fashion, starting from the proc idth part. Here, the
SWMR view access pattern removes the need for barriers for preventing data race due
to multiple processes updating an element simultaneously. This removal of barriers
can contribute to the performance gain by the VOPP program.

In NN, since multiple items are updated by multiple processes at the end of the
iteration, barriers are still used in the VOPP program. Therefore, it has the same
synchronization overhead of other models. However the performance of Maotai 2.0
is still comparable to other models, which shows that being data race free has little
impact on performance.

However, the SWMR model in VOPP does have its limitations in cases where the
access pattern changes in every iteration. In those cases, view data must be copied
to a local buffer of a process, where the process works on the data. After the data is
processed, the view is acquired again by the process and the results copied back to the
view. In applications tested in this chapter, Mergesort is such an example. In Merge-
sort, the resultant excessive memory-copying renders the implementation unscalable
(Refer to VOPP-SWV in Figure 2.7). For this application, VOPP does trade off some
programming convenience and performance for data race prevention. However, Maotai
2.0 has provided a Multiple Writer View (MWV) to offer the programming convenience
for experienced programmers. A MWV is a view that can be accessed at different lo-
cations simultaneously by multiple processes. Therefore, it is up to the programmer to
make sure there is no data race in a MWV. In contrast to other programming models,
the data races of a MWV are confined inside the view should they occur. This alter-
native MWV implementation allows multiple processes to work directly on the view
and avoid memory copying. With MWV, the speedup of Mergesort in Maotai 2.0 is
comparable to other shared-memory models. Figure 2.7 shows, at n = 32, Maotai 2.0
(refer to VOPP-MWV) is 1% faster than OpenMP, but 9% slower than Cilk.

Cilk performs very well in cases like Mergesort and NN. This can be attributed to
its recursive task decomposition that ensures cache locality [61].

The parallel for-loop in OpenMP allows easy specification of data-parallelism. How-
ever, it would introduce a task-scheduling cost, especially when the workload is fixed
and no load-balancing is required. The lower speedups of GE, SOR and NN of OpenMP
can be attributed to this parallel for-loop overhead. Although Cilk++ cannot be bench-
marked in this experiment because it does not support sparc64-smp, its equivalent
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construct cilk for can also have the similar task-scheduling overhead.

2.3 Advanced Features in Maotai 2.0
In addition to data race prevention, Maotai 2.0 also offers primitives for acquiring

multiple views in order to avoid deadlocks, producer/consumer views, and system
queues to enhance programmability and performance. These features are discussed
below.

2.3.1 Deadlock Avoidance

Similar to data race, deadlock is another pain that can happen easily but is difficult
to debug in shared-memory parallel programming. In VOPP, deadlock can happen if
views are acquired in a nested way and different processes acquire them in different
orders.

To avoid deadlocks due to acquiring multiple views in different orders, Maotai 2.0
offers primitives for acquiring multiple views. Programmers can list all views to be
acquired with these primitives which will acquire the views in a specific, same order.
In this way, there is no chance for deadlocks to happen.

An example illustrating the use of the primitives for acquiring multiple views is
shown in Figure 2.3.1

/* acquire access to both view 0 and 1 */
Vpp_acquire_multiviews(0, &ptr0, 1, &ptr1);
ptr0->result += compute0(ptr0->a, ptr1->a);
ptr1->result += compute1(ptr1->a, ptr0->a);
Vpp_release_view(); /* release all views */

Figure 2.8: Code snippet showing how multiple views are acquired
together in VOPP

In the above example, the process acquires both view 0 and 1 with
Vpp acquire multiviews which puts the view base addresses into ptr0 and ptr1.
Finally the process releases both views with Vpp release view.

Note that the above solution cannot eliminate deadlocks from VOPP programs as
the data race prevention scheme does data races. There are two reasons: first, the
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programmer may choose not to use Vpp acquire multiviews for nested view acquisition;
second, even if the programmer would like to use the primitive, it is difficult to know
which views to acquire in advance in some programs where inner views can only be
decided after the outer views are processed.

Nevertheless, the above primitives provide an avenue for novice programmers to
avoid unnecessary deadlocks.

2.3.2 Producer/Consumer View

A Producer/Consumer View (PCV) is provided to allow direct expression of pro-
ducer/consumer relationships in parallel algorithms. Traditionally barriers are used to
synchronize the producers and the consumers in shared memory parallel programming.
Barriers are expensive because they make all processes wait, which causes unneces-
sary waiting in applications where producer/consumer processes can be individually
synchronized. Moreover, the cost of barriers would increase with increasing number of
processes. With the introduction of PCV, programming with producer/consumer prob-
lem is more straightforward and thus increases programmability. Additionally PCV can
avoid expensive synchronization overhead since a consumer process only synchronizes
with its producer process.

PCV is implemented as a queue. The producer enqueues a new version of the
view by acquiring the view, producing the data, and finally releasing the view. The
consumer dequeues a version of the view by acquiring read-only access to the view.
After it finishes with the view, it releases the view whose buffer may be recycled by
the producer.

In this experiment, the SOR and GE benchmark applications demonstrate that
PCVs give a better speedup than barrier based implementations. Figure 2.9 and 2.10
shows the speedup difference between applications using barriers and those using PCVs.
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Figure 2.9: Speedup of SOR in VOPP

Figure 2.9 shows the speedup of SOR which uses PCV to improve its performance.
Compared with its barrier implementation, the improvement of speedup is 11.2% at
32 processes.
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Figure 2.10: Speedup of GE in VOPP

Figure 2.10 shows the speedup of GE which uses PCV to improve its performance.
Compared with its barrier implementation, the improvement of speedup is 4.2% at 32
processes.
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2.3.3 System Queues

System queues are provided in Maotai 2.0 to store view IDs. This facility allows
easy implementations of task queues. Task queues are good for load balancing parallel
applications (e.g. Mandelbrot and tree search algorithms), where the data for each job
or node can be put in a view and its ID is simply enqueued in a system queue for other
processes to work on.

In Maotai 2.0, the enqueue and dequeue calls are efficient. In a microbenchmark
test on a Sun T2000 server, an enqueue call only takes 2.65µs and a dequeue call takes
2.56µs.

2.4 Concluding Remarks
The data race prevention scheme based on views is shown to be efficient and adds

little extra overhead to parallel programming systems. Though there is some mem-
ory wastage due to page alignment in the implementation, architectural support for
variable-size pages will significantly reduce the wastage. Even with a fixed page size,
view constructs are useful to remove data races. Moreover, “big data” applications tend
to have huge data sets, which means the size of a view will become much larger and can
easily surpass several pages. This trend will make the memory wastage proportionally
small.

With the advanced features in Maotai 2.0, the performance and programmability
of VOPP are enhanced. Though strict SWV views are rigid for some applications
like Mergesort, Maotai 2.0 offers MWV views to allow programmers to fall back to
traditional shared memory programming, with the risk of data races that are confined
in a single MWV view.

Performance results demonstrate that Maotai 2.0 is very competent among modern
parallel programming models, especially with the unique data race prevention scheme.

To further improve the programmability of VOPP, the next chapter will propose
an automatic detection scheme for view access, which will free the programmers from
manually acquiring/releasing views.
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Chapter 3

Automatic Detection of View
Access

As discussed in Chapter 2, Maotai 2.0 provides a data race free parallel program-
ming model based on VOPP. However, in Maotai 2.0, views must be explicitly acquired
before access and released after access. It is often troublesome to manage view acquir-
ing/releasing constructs.

For example, Figure 3.1 shows a serial version of a list traversal program and its
Maotai 2.0 version.
/* serial version */
typedef struct Node_rec Node;
struct Node_rec {
Node *next;
Elem elem;

};

Node *list_search(Elem elem, Node *list) {
while (NULL != list) {

if (elem == list->elem) {
return list;

}
list = list->next;

}
return NULL;

}

/* Maotai 2.0 */
typedef struct Node_rec Node;
struct Node_rec {

Node *next;
Elem elem;

};

Node *list_search(Elem elem, int vid) {
Node *list = Vpp_acquire_view(vid);

while (NULL != list) {
if (elem == list->elem) {

Vpp_release_view();
return list;

}
list = list->next;

}
Vpp_release_view();
return NULL;

}

Figure 3.1: Code snippets comparing serial and Maotai 2.0 imple-
mentations of the list traversal function
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In the above list traversal in Maotai 2.0, the view is first acquired by
Vpp acquire view, which returns the base address of the list, then the while loop
traverses the list until the element elem is found. When elem is found (within the
while loop), the view must be manually released by Vpp release view before returning
the current element. If the element cannot be found, then the view will be released
and the search function will return NULL. The code in the while loop is prone to error,
because it is easy to forget to release the view before calling return within the while
loop. If that happens, the next process that is acquiring the view will wait forever.

To solve this problem, this chapter proposes a scheme for automatic detection of
view access which has greatly improved the programming interface of VOPP (refer to
Section 3.1 for details), as VOPP no longer requires programmers to use explicit view
acquire/release constructs. In this scheme, a view is automatically acquired when first
accessed and released when leaving the scope of the view acquisition. The automatic
view access detection scheme is shown to improve the programming convenience of
VOPP, the programmability of which is similar to transactional memory models in
many cases.

This chapter presents the parallel programming system, Maotai 3.0, which is based
on the VOPP paradigm with the automatic detection scheme that supports both C and
C++. Performance results show that the cost for the automatic detection is relatively
small, and Maotai 3.0 has superior performance over transactional memory models like
TL-2 0.9.6 [26], which provides a similar programming interface as Maotai 3.0.

The rest of the chapter is organized as follows. Section 3.1 describes the automatic
detection scheme, the language constructs, and implementation details of Maotai 3.0.
Section 3.2 compares the programmability of Maotai 3.0 with transactional memory
models. Section 3.3 covers experimental results and performance evaluation. Finally,
Section 3.4 concludes this chapter.

3.1 The Programming Model and Implementation
Details

The introduction of automatic detection of view access helps remove the explicit
view acquiring and releasing, and thus greatly simplifies the programming interface
to shared data access in Maotai 3.0. It reduces extra code instrumentation needed
to parallelize existing serial code. This section will discuss the language constructs
and their semantics used in Maotai 3.0, as well as the implementation details of the
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automatic detection scheme.

3.1.1 Automatic Detection of View Access

In this scheme, a view is automatically acquired when its memory is first accessed.
Then the view is automatically released when control leaves the scope of view acquisi-
tion.

The scope of view acquisition is often the function that first accesses the view.
During the execution of such a function, the executing process acquires the view when
it is first accessed, and automatically releases the view when the function returns.
Applications in this experiment shows that, in most cases, this functional scope of
view acquisition is the intention of the programmer. Below is an example that shows
at what time a view, called foo, is acquired and released automatically in the function
func.

VPP void func(void) {
Foo *foo = Vpp_alloc_view(sizeof(foo[0]), SWV);

.....
foo->index = 5; /* view foo acquired */
printf("%d\n", foo->val);
....
....

} /* view foo released */

Figure 3.2: A simple example illustrating when a view is automati-
cally acquired and released under Maotai 3.0

Bearing in mind the above scope of view acquisition, the list traversal code becomes
as follows.
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/* Maotai 3.0 */

typedef struct Node_rec Node;

struct Node_rec {
Node *next;
Elem elem;

};

VPP list *list_search(Elem elem, Node *list) {
while (NULL != list) {

if (elem == list->elem) { /* view acquired */
return list; /* view released */

}
list = list->next;

}
return NULL; /* view released */

}

Figure 3.3: List traversal in Maotai 3.0

In the list traversal code above, there is very little code changes compared with the
original serial code. The only changes to the serial code are adding the keyword VPP
as an attribute of the function list search().

Compared with Maotai 2.0, the programmers do not need to keep track of view IDs
and the acquire/release statements.

The keyword VPP is used to declare that a function will have effect on the scope of
view acquisition. When a VPP function returns, it will automatically release all views
acquired during the execution of the function, including those views acquired in the
callee functions. Also the subsequent callee functions have access to the views once
they are acquired.

For example, in the example code below, func1 acquires view 1 and then calls func2.
func2 inherits the acquisition of view 1 throughout its scope (Figure 3.5).
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/* a third-party non-VPP library function */
void func3() { /* inherit v1 and v2 */
ptr_3->val = 0; /* acquire v3,
........ but v3 belongs to

immediate VPP ancestor (func2())
and will only be released
at the end of func2() */

}

VPP void func2(Object *ptr_1) { /* inherit v1 */
ptr_1->done = 1;
....
ptr_2->index = /* acquire v2 */

ptr_1->index + 1;
....
func3(); /* func3 inherits v1 and v2 */
....
....

} /* release v2, v3 */

VPP void func1() {
ptr_1->index = 0; /* acquire v1 */
....
func2(ptr_1); /* func2 inherits v1 */
....

} /* release v1 */

Figure 3.4: Code snippet illustrating the inheritance of views acquired
by VPP functions

Similarly, func2 acquires view 2 and calls func3. func3 inherits the acquisition of
view 1 and 2 throughout its execution.

However, since func3 does not have the VPP attribute, it has no effect on the scope
of view acquisition. Therefore, view 3 that is acquired during the execution of func3
will not be released when func3 returns. The scope of view acquisition for view 3 is
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view 3 is actually acquired by the non−VPP

function func3() called by func2()

view 3 is still considered to be acquired

by the VPP func2() and will remain

acquired until control leaves func2()

calls

calls

func3()

VPP func2()

VPP func1()view 1 acquired in this function

view 1 inherited from func1(),

so can be used directly by func2()

view 3

view 1,2 inherited from func2()

view 2

Figure 3.5: Inheritance of views acquired by VPP functions

func2, the immediate VPP ancestor of func3, which will release view 3 as well as view
2 when it returns.

From above, it can also be seen that the scheme supports recursive calls where
a new view is acquired in every recursive call, because views acquired by the callee
function still belong to the callee function, and is released when control leaves the
callee function even if it is the same function as the caller function.

In summary, if a view is acquired in a VPP function, it will be automatically released
when control leaves the scope of the VPP function. However, if a view is acquired in
a non-VPP function, then the view will belong to the immediate VPP ancestor of the
non-VPP function, and will be held until control leaves the scope of the immediate
VPP ancestor function.

3.1.2 View Scope Construct

The automatic view access detection model described above works well in most
cases. However, in some cases, a view acquired by a callee function is actually intended
to be held until the end of the current function. Even though this can be achieved
by making the callee function a non-VPP function, this restricts the use of the callee
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function as a VPP function. The following example illustrates this problem in more
details.

VPP void bar(char *shared_str) {
......
shared_str[0] = 'a'; /* view shared_str acquired */

.

.

.
} /* view shared_str released */

VPP void foo(char *shared_str) {
.....
bar(shared_str); /* view shared_str acquired and

released by bar, but
.... actually intended to be
.... acquired until end of foo() */
....
....
str[1] = str[0] + 1; /* RW access to view
.... shared_str reacquired */
....

} /* shared_str released */

Figure 3.6: An example illustrating how views acquired by a callee
function can be unwittingly released

In the example above, foo() intends to hold the view shared str during its execu-
tion, though it is acquired during the execution of bar(). However, since bar() is a VPP
function, and shared str is acquired during the execution of bar(), under the automatic
detection scheme, shared str will be released when bar() returns. Therefore, shared str
will be re-acquired when it is accessed again in foo(). In this situation, the view acqui-
sition of shared str is unwittingly fragmented. Though there is no data race involved
in this situation, it may affect the atomicity of the operation on shared str intended by
the programmer.

To address this problem, the view scope construct:
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VPP View(access type, pointer to view,...) {...}
is proposed to allow views to be automatically acquired at the beginning of the

declared scope, where access type can either be VPP RO or VPP RW, which stand for
read-only access and read-write access respectively. Programmers can use view scope
constructs to manually define the scope of view acquisition. Any views automatically
acquired within a view scope construct, including those acquired in non-VPP callee
functions, will be released when control leaves the declared view scope.

In summary, the view scope construct works according to the following rules:

1. A view scope construct acquires the listed views at the beginning of the scope
according to the listed order.

2. Within the scope, accesses of other unacquired views are still automatically de-
tected and acquired at their first access.

3. All views acquired within the view scope, including those acquired by the non-
VPP callee functions, will be released automatically when control leaves the view
scope construct.

With the view scope construct, the above example can be written as below to
achieve the programmer’s intended scope of view acquisition.

VPP void bar(char *shared_str) { /* view shared_str inherited*/
......
shared_str[0] = 'a';
......

}

VPP void foo(char *shared_str) {
.....
VPP_View(VPP_RW, shared_str) { /* view shared_str acquired */

bar(shared_str); |
.... |
str[1] = str[0] + 1; |
.... |

} /* view shared_str no longer needed, and is released at
the end of VPP_View scope instead of the end of foo()

/* more calculations.... */ in order to maximize the concurrency of view accesses */
........

}

Figure 3.7: A code snippet illustrating the use of a view scope to
specify when a view is acquired and released
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view shared_str

calls

view shared_str is acquired at the beginning of the scope

view shared_str inherited from view scope

VPP bar()

VPP_View(shared_str)

VPP foo()

Figure 3.8: Inheritance of views acquired by VPP functions and view
scopes

In the example above, a view scope construct is used to acquire the view shared str
in the caller foo(), as intended by the programmer, and the callee bar() inherits the
view shared str from foo() (refer to Figure 3.8 for the inheritance of views).

In addition, view scope constructs allow programmers to define exactly when views
are acquired and released, so views can be released as soon as they are not needed. In
this way, views are not unnecessarily held until the end of the function and thus do
not unnecessarily hinder concurrent accesses of views.

3.1.3 Deadlock Free Mode

The automatic view access detection scheme acquire views automatically as they
are first accessed, therefore views may be acquired in different orders by different
processes. As a result, the compiler cannot guarantee that views are acquired in a
consistent order, deadlock remains possible with the automatic detection scheme, as
shown in Figure 3.9.

In the example above, foo and bar are separate views. Process 0 (P0) acquires foo
and process 1 (P1) acquires bar first, then P0 tries to acquire bar, but bar is already
held by P1, so P0 blocks. At the same time, P1 tries to acquire foo, which is held
by P0 (also blocked). As a result, deadlock occurs. This scenario can happen when
inexperienced programmers fail to ensure that views are accessed in a consistent order.

To prevent deadlocks, deadlock-free mode is offered in Maotai 3.0. The deadlock-
free mode can be specified during initialization of a VOPP session and is effective for
the whole VOPP session. A VOPP program starts with serial execution. When par-
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Process 0 Process 1
{ {
/* foo acquired */
foo->index++;

/* bar acquired */
bar->index++;

/* acquire bar,
but held by P1 */

bar->val = foo->index;
/* acquire foo,

which is held by P0 */
/* DEADLOCK */
foo->next = bar->val;

} }

Figure 3.9: A deadlock between two processes accessing views in dif-
ferent orders

allel processing is desired, a VOPP session is started with Vpp session() which creates
multiple processes to execute the same function in parallel. When a VOPP session is
finished, the program reverts to serial execution, but can start another VOPP session
anytime later.

The following rules are applied in the deadlock-free mode to avoid deadlocks:

• Automatic detection of view accesses is disabled.

• All views must be explicitly listed in the VPP View(access type, ptr to view,...)
{...} view scope construct. The system will acquire the listed views at the begin-
ning of the view scope construct in the same system-determined order to prevent
deadlocks.

• Access to unacquired views will result in termination of the program and an error
message will be printed to notify the user where the violation occurs, as in Maotai
2.0.

• Nesting of view scope constructs and recursive call of VPP functions are forbid-
den.
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3.1.4 The Maotai 3.0 API

This section will describe the Maotai 3.0 API, which can be used on both C and
C++ code. The following constructs are related to program flow control:

int Vpp nprocs the number of processes.

int Vpp proc id the ID of the current process.

void Vpp startup(int nprocs) initializes VOPP with nprocs processes. VOPP API
can be used after calling this function.

void Vpp exit() performs the VOPP cleanup. VOPP API cannot be used after calling
this function.

void Vpp session(void *VPP func, void *args, bool deadlock free) starts a paral-
lel session by executing VPP func with all processes in parallel. VPP func must
be a VPP function. When deadlock free is set to true, the parallel session is dead-
lock free and all views must be explicitly acquired by the view scope construct
VPP View.

The following constructs are related to view creation and destruction:

view type type of view, can be SWV, MWV or PCV

void *Vpp alloc view(size t size, view type type) allocates a view with the specified
size and type. Returns a pointer to the allocated memory upon success, and NULL
upon failure.

void *Vpp alloc block(void *ptr, size t size) allocates a block with the specified size
to the view pointed by ptr. A call on this function is considered as a view access.
Returns a pointer to the allocated block upon success, and NULL upon failure.

void Vpp free block(void *ptr) frees the block pointed by ptr. A call on this function
is considered as a view access.

void Vpp free view(void *ptr) frees the view pointed by ptr.

The following constructs are related to the automatic view acquisition control:

VPP <function signature> declares the function as a VPP function.
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VPP View(access, void *ptr1,...) { ... } declares a view scope, where all listed
views are acquired at the beginning of the scope and released at the end of the
scope. Here, pointers pointing to each view to be acquired are listed, together
with the access requested, which can be one of read-only (VPP RO) or read-write
(VPP RW). View scopes can only be declared in VPP functions.

3.1.5 Implementation Details and Overheads

In the automatic detection of view access scheme, virtual memory protection (such
as mprotect()) is used to detect view access. Initially a view (consisting of a number
of pages) is protected against any access. When it is accessed, a page fault will occur
and the page fault handler will be invoked to process the fault.

A view is automatically identified and acquired when its memory is first accessed.
In this implementation, each view keeps track of a list of memory regions it owns in the
metadata, so when a memory access triggers a page fault, the page fault handler can
determine which view owns the faulting address, and subsequently acquires the view.

The view is automatically released when control leaves the scope of view acqui-
sition, as defined by either the control scope of the VPP function or the view scope
construct. In this implementation, the private metadata of each process keeps a stack
that records views acquired by each VPP function and each view scope in the call stack,
therefore when control leaves the scope of VPP function or a view scope, the system
can determine which views should be released. In this way, this implementation allows
recursive function calls, as each new call on a VPP function simply makes a new entry
on the metadata stack.

For the same reason, this implementation also supports object-oriented languages
such as C++. In C++, one method may call another via dynamic dispatch, and there-
fore the identity of the callee method (which may or may not be a VPP method) can
only be determined at runtime. However, the above implementation allows tracking
of views acquired by each VPP function dynamically, and if the callee method hap-
pens to be a non-VPP method, the view acquired in the non-VPP callee method scope
will be owned by the caller VPP method. Therefore, the dynamic dispatch mecha-
nism in object-oriented languages such as C++ does not interfere with the Maotai 3.0
automatic view acquisition mechanism in any way.

Like Maotai 2.0, view acquisition is lock-based and is implemented using Pthreads
rwlock [72], which is based on futex [34].

Therefore the overheads of Maotai 3.0 include:

37



• futex lock overhead

• virtual memory protection overhead

• view identification overhead (for calculating the view identity at runtime from
the accessed memory address)

• page fault handler overhead (only for automatic detection of view access)

The lock-based view acquisition itself incurs the futex lock overhead and virtual
memory protection overhead, the automatic detection of view access incurs the rest of
the listed overheads.

To examine these overheads, a microbenchmark is run on a Dell PowerEdge R905
server with four AMD Opteron 8380 quad-core processors running at 800MHz. Over-
head is measured for:

• basic pthread rwlock operations (pthread rwlock)

• explicit view acquire without runtime protection (still requires view identification
mechanism) (no prot)

• explicit view acquire with runtime protection (manual)

• automatic view access detection (automatic)

To amortize measurement errors, results are collected by first measuring the exe-
cution time of 100,000 sequentially-executed identical operations and then calculating
the average execution time of one operation. The results are presented in Table 3.1.

Table 3.1: Breakdown of view primitive costs (in µs)
Primitive pthread rwlock no prot manual automatic

a v() 0.08 0.94 4.15 15.24
a rv() 0.08 0.92 4.14 15.17
r v() 0.08 0.08 2.74 N/A
r rv() 0.08 0.08 2.73 N/A

Note: “a” stands for acquire; “r” stands for release; “v” stands for view and “rv” stands for

read-only view. In the pthread rwlock test, a v() stands for pthread rwlock wrlock(); a rv() stands

for pthread rwlock rdlock(); r v() stands for releasing the wrlock and r rv() stands for releasing the

rdlock.
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The above results show that automatic detection mechanism does incur runtime
computation overheads for view identification, virtual memory protection and the page
fault handler. In automatic detection mode, it takes 15µs to acquire a view, whereas it
only takes 80ns to acquire a pthread rwlock. The automatic detection overhead of 15µs
is small enough for most applications, as shown in performance comparison between
Maotai 2.0 (which has no automatic detection) and Maotai 3.0 in Section 3.3. However,
this overhead would make applications requiring fine-grain view partition and frequent
view accesses unscalable. Also, due to the page-based memory protection mechanism,
all view allocations must be page-aligned, which may waste memory space.

In the future, to reduce the runtime overheads and the waste of memory space,
compiler support of VOPP will be investigated to allow compile-time tracking of view
allocation and access, so that data race free feature in VOPP can be partially imple-
mented at compile time.

3.2 Programmability of Maotai 3.0 and Transac-
tional Memory Models

As mentioned earlier in this chapter, automatic detection of view access improves
programmability of Maotai by eliminating programming errors in Maotai 2.0 arising
from forgetting to release acquired views, especially when control leaves the scope not
at the end of the scope (e.g. by keywords such as break or return) as illustrated in the
list search example:
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typedef struct Node_rec Node;

struct Node_rec {
Node *next;
Elem elem;

};

Node *list_search(Elem elem, int vid) {
Node *list =

Vpp_acquire_view(vid);

while (NULL != list) {
if (elem == list->elem) {
Vpp_release_view(); /* the list will be held forever

by this process if forgotten
to be released */

return list;
}
list = list->next;

}
Vpp_release_view();
return NULL;

}

Figure 3.10: List traversal in Maotai 2.0

However, programming errors arising from forgetting to release views are eliminated
by automatic detection of view access in Maotai 3.0 (its code snippet is shown below),
since views are automatically acquired and released by the runtime system.
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typedef struct Node_rec Node;

struct Node_rec {
Node *next;
Elem elem;

};

VPP list *list_search(Elem elem, Node *list) {
while (NULL != list) {

if (elem == list->elem) { /* view acquired */
return list; /* view released */

}
list = list->next;

}
return NULL; /* view released */

}

Figure 3.11: List traversal in Maotai 3.0

Comparing the above two code snippets, it can be seen that the lines-of-code (LOC)
of the Maotai 3.0 version is around 20% fewer than the Maotai 2.0 version.

Moreover, as seen in the code snippets, converting a serial program to Maotai 3.0
requires very little code instrumentation, apart from tagging some functions with the
keyword VPP. If programmers want to optimize the program performance, they can
easily fine-tune the program by using the view scope construct to control how long a
view is held.

However, in Transactional Memory (TM) models, programmers must manually
instrument all code that access shared data to put them into atomic constructs. For
example, for the same list traversal example, TM models often have the following code
snippet:
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typedef struct Node_rec Node;

struct Node_rec {
Node *next;
Elem elem;

};

/* search a list in shared memory */
list *list_search(Elem elem, Node *list) {
atomic {

while (NULL != list) {
if (elem == list->elem) {

return list;
}
list = list->next;

}
}
return NULL;

}

Figure 3.12: List traversal in TM

The above list traversal code (which accesses a shared list) must be included in
an atomic construct. Failure to put code that access the shared data into an atomic
construct can result in data race bugs.

In contrast, Maotai 3.0 is always data race free. Suboptimal programming only
compromises performance by holding views longer than necessary, but does not cause
data races in Maotai 3.0. Violation of safe view accesses can be detected by the system.
Therefore, Maotai 3.0 is safer than TM models.

While TM does not suffer from deadlocks, Maotai 3.0 can avoid deadlocks by using
the deadlock free mode.
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3.3 Performance Evaluation and Discussion
In this section, the performance of Maotai 3.0 is compared with Maotai 2.0 [64] and

the software transactional memory system TL-2 version 0.9.6 [26]. Benchmark appli-
cations evaluated in this experiment include Mergesort, Raytrace, Barnes-Hut, Parallel
Neural Network (PNN), Binary-tree (BT), Linked-List (LL) and Travelling Salesman
Problem (TSP), representing different classes of applications. The experiments are
carried out on a Dell PowerEdge R905 server with four AMD Opteron 8380 quad-core
processors running at 800MHz and 16GB DDR2 memory. Linux kernel 2.6.31 and the
compiler gcc-4.4 are used during benchmarking.

All programs are compiled with the optimization flag “-O2”. In each case, speedup is
measured against the serial implementation of the benchmark algorithm. The elapsed
time calculated in each case includes initialization and finalization costs. However,
runtime of functions that are irrelevant to the original application, such as generation
of random input sequences and result-verification, are excluded.

The experimental results are illustrated with speedup curves. For each application,
the speedup curves of Maotai 2.0, Maotai 3.0 and TL-2 are shown. In the discussion
below, N refers to the number of processes.

To ensure fair comparison, the same serial implementation of each benchmark ap-
plication is used as a baseline for calculating speedups of all parallel programming
platforms. Each run is repeated for 10 times and the geometric mean is used.

3.3.1 Maotai 3.0 Outperforms TL-2 in High-Contention Cases
TSP, LL and BT

The Travelling-Salesman Problem (TSP) algorithm [1] uses the branch-and-bound
depth-limited search approach to identify the shortest path solution. The 33-city case
ftv33.atsp from TSPLIB95 [81] is used.

In this algorithm, the priority queue (storing partially-evaluated tours) is the shared
object. First, the master process pushes the root tour into the priority queue. Then,
in a loop, each process pops a tour. If the tour is small, it will be evaluated serially;
otherwise, sub-tours will be created and pushed into the priority queue.

In the TL-2 implementation, the shared priority queue is pushed and popped by
transactions. High contention of the priority queue results in the poor speedup of 7.03
in TL-2, as shown in Figure 3.13.

In both Maotai 2.0 and 3.0 implementations, the priority queue is allocated as
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a view. The speedup of Maotai 3.0 is 12.92, which is 84% better than the TL-2
implementation, as shown in Figure 3.13. However, Maotai 3.0 is only 3% slower than
Maotai 2.0, which has a speedup of 13.28. This small overhead can be attributed to
the automatic detection of view accesses.
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Figure 3.13: Speedup of TSP

Linked-list (LL) inserts nodes in an ascending-ordered singly-linked list, and deletes
the nodes afterwards.

In both Maotai implementations, the entire linked-list is allocated as a SWV, while
in the TL-2 implementation, naturally each insertion/deletion is put into a transaction.
Size of the linked-list is set to 4096.

At N = 16, speedup of Maotai 3.0 is 13.59, which is 26% better than TL-2 (10.79)
as shown in Figure 3.14. Maotai 3.0 is only 4% slower than Maotai 2.0.

Binary Tree (BT) constructs a binary tree in parallel and uses a task queue for load
balancing. When a node is explored, a small amount of dummy work is done, then
based on the id of the node, it works out whether the node has a left child and/or right
child. The left child id is curr.id × 2 and right child id is curr.id × 2 + 1. Left children
are always evaluated immediately and right children are pushed into the task queue
for future evaluation. Idle processes pop unexplored nodes from the task queue, until
the entire tree is explored. In Maotai 2.0 and 3.0 implementations, the task queue is
allocated as a SWV, whereas in the TL-2 implementation, the task queue is accessed
by short transactions. The depth of the tree is set to 21.

At N = 16, speedup of Maotai 3.0 is 35% better than TL-2 as shown in Fig-
ure 3.15. This is another case that lock-based implementations performs better than
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Figure 3.14: Speedup of LL

transactional memory. Again, speedup of Maotai 3.0 is only 3% worst than Maotai
2.0.

The above applications show that TL-2 is inferior to Maotai 3.0 in terms of per-
formance. The slight performance drop of Maotai 3.0 against Maotai 2.0 in the above
applications can be attributed to the automatic detection overhead described in Sec-
tion 3.1.5, as these applications have ten thousands of automatic view acquisitions
throughout their executions.

3.3.2 PNN - Multiple Iteration Algorithm Updating a Shared
Array

Parallel Neural Network (PNN) [79, 101] trains a back-propagation neural network
in parallel using a training data set. In this experiment, the size of neural network is
set to 9× 40× 1, and the number of epochs is set to 400.

At N = 16, speedup of Maotai 3.0 is 50% better than TL-2 as shown in Figure 3.16.
In TL-2, there is a shared array with size of 4800, which all processes need to increment
each element in this array at the end of each iteration. A short transaction would need
to increment each element. This arrangement results in millions of transactions. Since
the overhead of the transaction itself (start and commit) is not negligible, the sheer
number of transactions has unnecessarily compromised the performance of TL-2. It is
not possible to simply cover the entire array incrementation with a single transaction,
because if one element aborts, the entire array operation will be aborted and redone,
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Figure 3.15: Speedup of BT

which would make performance worse.
However in Maotai 2.0 and 3.0, the entire array is allocated as a single-writer view

(SWV), which removes unnecessary overheads from the TL-2 implementation and does
not complicate the programmability since there is only one lock in the application and
thus no deadlock issue in this case. As a result, there are only 25000 view acquires. At
N = 16, speedup of Maotai 3.0 is only 4% slower than Maotai 2.0.

3.3.3 Barnes-Hut, Raytrace and Mergesort - Low to Moderate
Contention Cases Shows Very Little Overhead in Maotai
3.0 Automatic View Access Detection

Barnes-Hut [105] is a multiple-iteration algorithm where in each iteration, the mas-
ter process constructs an octree for all particles in the model space based on their
current location and mass. Then the force acting on each particle is calculated using
the octree. Based on the force, acceleration, velocity and position of the particle, the
position of the particle at the next iteration is also calculated. In this experiment, the
number of bodies is set to 32768 and the number of iterations is set to 160. Due to the
complexity of parallelizing the octree construction and its relatively small share of the
workload, the octree construction is not parallelized. However, the workload of force
calculation on each particle is unpredictable; therefore a work queue is implemented for
load balancing. In the TL-2 implementation, accessing the work queue (i.e. increment-
ing the index) is handled by transactions; therefore Barnes-Hut is a short transaction
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Figure 3.16: Speedup of PNN

case. In Maotai 3.0, the work queue index is implemented as a SWV.
Raytrace [105] is an embarrassingly-parallel case with uneven workload, so a task

queue is used for load balancing (a row of pixels is a unit). The input file car.env is
used, and anti-aliasing level is set to 400.

The Mergesort algorithm sorts a 1,000,000,000-element array. The Maotai 3.0
implementation comes from [64], and the TL-2 implementation is derived from the
Pthreads implementation [64]. This is a barrier-based case, and transactions are not
needed in the TL-2 implementation.
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Figure 3.17: Speedup of Barnes-Hut
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Figure 3.18: Speedup of Raytrace

In Barnes-Hut (Figure 3.17), Raytrace (Figure 3.18) and Mergesort (Figure 3.19),
speedup of Maotai 2.0, Maotai 3.0 and TL-2 are nearly identical, except at n = 16,
TL-2 is 2% worse than Maotai 2.0 and Maotai 3.0 in Raytrace. (Figure 3.19). The
same performance of Maotai 3.0 and 2.0 demonstrates the extra overhead of automatic
detection of view access in Maotai 3.0 is relatively trivial when the view acquisition is
not frequent.

3.4 Concluding Remarks
The performance evaluation between Maotai 3.0 and TL-2 0.9.6 demonstrates that

both performance and programmability of Maotai 3.0 surpass TM systems. Compari-
son between Maotai 3.0 and Maotai 2.0 also demonstrates that in applications evaluated
in this chapter, automatic detection overhead is relatively low. Even in high-contention
cases such as TSP, LL, BT and PNN, performance penalty is under 4%.

Although the current automatic detection system has small runtime overheads in
applications shown in this chapter, other applications with fine-grained, frequent view
accesses will not scale easily, as the overheads of runtime detection mechanisms such
as mprotect() would become prohibitive. To eliminate the runtime overheads, a higher-
level language for VOPP should be investigated as a future work, that offers view
management, garbage collection and safe pointer manipulation, so that data race can
be partially detected at compile time, reducing the runtime overheads in the current
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Figure 3.19: Speedup of Mergesort

Maotai 3.0 system, as compiler support and language development of VOPP are outside
the scope of this thesis.

Maotai 3.0 is safer than TM systems because the data-centric nature of Maotai 3.0
ensures that it is data race free. Though the automatic detection scheme does not guar-
antee that there is no deadlock, deadlock can be avoided by using the VOPP sessions
with deadlock-free mode offered in Maotai 3.0. To further address the deadlock prob-
lem, the next chapter will present the View-Oriented Transactional Memory (VOTM)
scheme, where deadlock-prone shared data that can be accessed together atomically
are placed in the same view, where each view access is essentially a transaction.
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Chapter 4

View-Oriented Transactional
Memory

Previous chapters illustrated that, in the VOPP paradigm, an application only
needs to acquire the views as needed (automatic or manual), and leaves it for the system
to grant access to the view. If locking is used as the view access control mechanism
as in Maotai 2.0 and Maotai 3.0, then concurrency will be decreased in coarse-grained
views. To improve concurrency, programmers will need to use fine-grain views, which
are tedious to program, and can be prone to deadlocks [83].

To address the above concurrency issue, this chapter proposes a novel programming
paradigm View-Oriented Transactional Memory (VOTM), that seamlessly integrates
the locking mechanism and transactional memory into the same programming model.
In VOTM, access to each view is individually controlled by the Restricted Admission
Control (RAC) scheme that can dynamically decide the number of processes allowed to
acquire the view (known as the admission quota Q) according to the contention of the
view. If the contention is low RAC will allow unlimited access to the view to maximize
concurrency using TM, but if the contention is high, RAC will decrease the quota Q to
decrease contention and improve progress, and in the extreme case, RAC can fall back
to the lock-based mode by setting Q to 1. In each view, RAC can flexibly adjust Q of a
view according to its contention situation. Therefore a view with high contention will
have its access restricted to a low value to decrease contention and improve progress,
while RAC will leave access to other views with low contention unrestricted to maximize
concurrency. In this way, RAC improves performance of VOTM by maximizing both
the progress and concurrency of the view access.

The rest of this chapter is organized as follows: Section 4.1 will present the details
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of the VOTM system and the RAC scheme. Section 4.2 will give an overview of
TM algorithms. Section 4.3 will describe the details of the VOTM implementation.
Section 4.4 will show experimental results and performance evaluation and Section 4.5
concludes this chapter.

4.1 The VOTM Programming Model
VOTM is based on the philosophy of shared memory partitioning. Since different

shared data can have different access patterns and contention levels, VOTM allows
groups of shared objects that are not required to be accessed atomically to be put into
different views, so that concurrency control on each view can be separately optimized
using the RAC scheme (refer to Section 4.1.2 for more details).

This optimization cannot be achieved by traditional transactional memory without
grouping data objects into views. For example, in VOTM a tree structure with thou-
sands of nodes can be put into one view, and a hash table can be put into another
view if they are not required to be accessed atomically at the same time in an appli-
cation. Suppose the tree in the application has high contention, but the hash table
has low contention. The RAC scheme in VOTM would quickly restrict the access to
the tree to relieve its contention, without restricting the number of processes accessing
the hash table. In this way, the system would continue to allow maximal concurrent
access to the hash table, though the access to the highly-contentious tree is restricted.
Therefore, by putting the tree and the hashtable in different views, their accesses are
separately optimized, which cannot be achieved by traditional transactional memory.

In addition, the RAC scheme also allows seamless integration of the locking mech-
anism and transactional memory into VOTM. RAC can dynamically control the ad-
mission quota Q of a view, or alternatively, Q can be manually specified during view
allocation. When Q is greater than 1, a transaction starts when the process is admitted
to the view. However, when Q is equal to 1, it is equivalent to the lock mechanism,
thus eliminating all transactional overheads. In this way, programmers only need to
partition shared data into views according to the access patterns, but leave concurrency
control to RAC.

4.1.1 The VOTM Programming Interface

Figure 4.1 shows a C example to explain how to create a view for a linked list
in VOTM. In the example, create view() creates a view vid for the linked list, and
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malloc block() allocates a memory block from the view for the list head.

typedef struct Node_rec Node;

struct Node_rec {
Node *next;
Elem val;

};

typedef struct List_rec {
Node *head;

} List;

List *ll_init(int vid) {
List *result;
create_view(vid, size, 0);
result = malloc_block(vid, sizeof(result[0]));
acquire_view(vid);
result->head = NULL;
release_view(vid);
return result;

}

Figure 4.1: Code snippet of list initialization in VOTM

In VOTM, programmers can either let RAC to dynamically control access to the
view by specifying a value smaller than 1 to the third argument of create view(). Al-
ternatively, if the contention of the view is known to the programmer, the admission
quota Q of the view can be statically set via the third argument.

A VOTM code snippet for list insertion is shown in Figure 4.2. The parameter
node of the function points to a node that is a memory block belonging to the view
of the linked list. Compared with the sequential version of the code snippet, the only
extra code is the view primitives, acquire view() and release view(), that demarcate view
access.
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void ll_insert(List *list, Node *node, int vid) {
Node *curr;
Node *next;

acquire_view(vid);

if (list->head->val >= node->val) {
/* insert node at head */
node->next = list->head;
list->head = node;

} else {
/* find the right place */
curr=list->head;
while (NULL != (next = curr->next) &&

next->val < node->val) {
curr = curr->next;

}
/* now insert */
node->next = next;
curr->next = node;

}
release_view(vid);

}

Figure 4.2: Code snippet of list insertion in VOTM

Deadlock can be avoided in VOTM if view acquisitions are not nested. If two views
need to be acquired in a nested way, they can often be either put into the same view
initially or merged together dynamically. If views are carefully partitioned, nested view
acquisitions are rarely needed in real applications. When nested view acquisitions are
needed, they can often be resolved in VOTM by merging the involved views into one
view.

Below is a summary of the VOTM API:

int create view(int vid, size t size, int q)
Creates a view with ID vid and size size, and returns the view ID. If vid is set to
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a negative value, the view ID will be allocated by the system. q is the maximum
number of processes admitted to this view. If q is less than 1, admission quota
of this view will be dynamically managed by RAC.

void *malloc block(int vid, size t size)
Allocates a memory block with the specified size for the view vid. Returns the
base address of the allocated block.

void free block(int vid, void *ptr)
Frees the memory block pointed by ptr from the view vid.

void destroy view(int vid)
Destroys the view vid.

void sbrk view(int vid, size t size)
Increments the memory space of the view vid by size.

void acquire view(int vid)
Acquires read-write access to the view vid.

void acquire Rview(int vid)
Acquires read-only access to the view vid.

void release view(int vid)
Releases access to the view vid.

4.1.2 Restricted Admission Control (RAC) Scheme

The RAC scheme is implemented for every view. Each view consists of memory
blocks that may store an entire linked list, tree or graph. Each view has an admission
quota Q that restricts the maximum number of processes accessing the view concur-
rently. Before a view is accessed, the primitive acquire view is used. If Q equals 1,
acquire view is equivalent to a lock acquisition. In this case, the lock mechanism is
used instead of the transaction mechanism to avoid transactional overheads. If Q is
greater than 1, acquire view will either start a new transaction or wait according to the
following RAC scheme.

Suppose a view has an admission quota Q and the current number of processes
concurrently accessing the view is P , when the view is acquired through acquire view,
RAC follows the steps below:
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• Compare P with Q. If P is smaller than Q, increase P by 1, start a new trans-
action, and return with success.

• If P equals Q, the calling process is blocked until P becomes smaller than Q.

When the view is released through release view, RAC executes the following steps:

• Try to commit the transaction. If the commit fails, abort and roll back the
transaction, decrease P by 1, and reacquire the view as shown above.

• If the commit succeeds, decrease P by 1, and then return with success.

Furthermore, RAC can dynamically adjust the admission quota Q in the following
way according to the contention situation.

The admission quota Q of each view is initialized as the maximum number of
processes N if it is not set statically at view creation time. RAC regularly checks the
contention situation of the view. The current RAC algorithm estimates the contention
situation by the number of aborts as well as the number of successfully committed
transactions that are related to the view. If the number of aborts is high, the contention
is usually high. However, if the number of successful transactions is larger than the
number of aborts, then the contention may be not high enough to affect the overall
progress of the computation, even though the number of aborts may be high in such
a situation. Therefore, the ratio between the number of aborts and the number of
successful transactions ( aborts

successful tx) is used to reflect the severity of the contention
situation.

If this abort/success ratio is larger than MAX (currently set to 8.0), the view is
considered as highly contentious. When this happens, RAC will relieve the contention
of the view by halving the admission quota Q of the view. Then, the number of aborts
and the number of successful transactions will be reset in the view. This process can
be repeated periodically until Q reaches 1, in which case the concurrency control is
switched to the lock-based approach. Then the transaction mechanism is no longer
used to access the view, Q will stay at 1 and the abort/success ratio for the view
concerned is no longer checked.

Conversely, when Q is greater than 1 and the abort/success ratio is smaller than
MIN (currently set to 1

8
), the view is considered as having low contention. Then,

RAC will increase concurrency by doubling Q. When Q is changed, the numbers of
aborts and successful transactions of the view will be reset. This process will repeat
periodically until Q reaches N .

55



To eliminate cache flushing overheads on incrementing the shared counters in the
RAC metadata of the view, when it is clear that access restriction to the view is
unnecessary because of following low contention condition:

• 20000 transactions are executed since Q is set to N , and

• the abort/success ratio < MIN

The RAC mechanism will be disabled.
After the RAC mechanism of the view is disabled, access to the view will no longer

be restricted until the contention situation of the view changes, which is detected when
a process encounters a large number of consecutive aborts.

The choices of MAX and MIN are currently empirical. Different TM algorithms
may favor different values. For example, the encounter-time locking TM algorithm used
in TinySTM aborts potentially-conflicting transactions early to reduce wasted compu-
tation. Under the same contention situation, this would result in higher abort/success
ratio than other TM algorithms such as commit-time locking used in TL-2. There-
fore, the same genuine high contention case will have higher abort/success ratio for
TinySTM than for TL-2. Optimal MAX and MIN settings are dependent on the un-
derlying transactional memory system. Automatic adjustment of these values is an
interesting issue for further research.

Frequent check of the abort/success ratio is costly since a spinlock is used for multi-
ple processes to access the numbers, which would significantly increase the overhead of
RAC. Therefore, the periodic check is only triggered under the condition when the sum
of aborts and successful transactions is a multiple of 5000. It is observed that, checking
under this condition is frequent enough in most cases, because if the contention is high,
the number of aborts will rise quickly to trigger the check.

4.1.3 Origin of Performance Gain in VOTM

The origin of performance gain in VOTM is very different from TM systems that
use either in-transaction conflict resolution algorithms and/or transaction scheduling
algorithms. In-transaction conflict resolution algorithms [26, 40, 89] only detect con-
flicts and control contentions during the execution of transactions and on their own
still allow any processes to freely enter transactions. Transaction scheduling algo-
rithms [2, 29, 106] prevent conflicts by serializing transactions or limiting the num-
ber of concurrent transactions. These algorithms treat the entire TM with the same
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scheduling decision. However, it is not reasonable to restrict access to a low-contention
shared object due to another shared object that has high contention, a situation that
could happen on these algorithms. In VOTM, transactional memory is divided into
views where shared objects that will be accessed together in a transaction are grouped
into the same view. In this way, restricting access to a view with high contention does
not affect access to a view with low contention, which enables more concurrency. In
VOTM, RAC is used as the transactional scheduling algorithm for each view, but any
in-transaction conflict resolution algorithms can be applied in each view. Regardless
of the choice of the underlying in-transaction conflict resolution algorithm, there are
always cases where the number of aborts becomes very high. Here RAC can reduce
contention by limiting the admission of processes to the view, and improve progress.

Section 4.3 will discuss the details of the VOTM implementation; and Section 4.4
will show that VOTM with RAC can reduce the number of aborts, and therefore reduce
contention and increase throughput, by controlling the admission to each view.

4.2 Overview of Transactional Memory Algorithms
As mentioned in the Introduction chapter, the TM model improves concurrency

by allowing multiple processes to enter an atomic section. A transaction begins when
a process enters an atomic section, and the transaction ends when control leaves the
atomic section. If there are no conflicts between transactions, then concurrency is
achieved. If there is a conflict between transactions, the TM system will resolve the
conflict by aborting one or more transactions. Aborted transactions will be rolled back,
and restarted. Therefore transactions in TM is like transactions in a database system:
A transaction must either complete successfully, or if aborted, must undo all changes
it makes and revert to the state at the beginning of the transaction.

There are two ways TM mechanisms can handle read/write of variables during
transactions – undo-log and redo-log. In both ways, each transaction keeps a read-set
and a write-set to record its read and write activities respectively.

In the undo-log system, the transaction will directly write to the actual memory
location, but also add an entry to the write-set in its undo-log, with the original value of
that memory location. If there is no conflict, then nothing else needs to be done when
the transaction commits. However when the transaction aborts, it needs to play the
undo-log and undo all the changes it makes. As mentioned in [33] and [99], the abort
mechanism for undo-log systems can be complicated, as the rollback mechanism must
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handle the situation where multiple transactions have written to the same location,
and the correct version of the value must be restored to the location. This also makes
the abort mechanism expensive in undo-log systems, especially when the contention of
the application is high.

In the redo-log system, all reads and writes in a transaction are tentatively recorded
in the redo-log. When the transaction commits successfully, the redo-log is replayed to
write the changes to the actual memory locations. Conversely, when the transaction
aborts, there is no need to undo changes to the shared memory, as nothing has been
written to the actual locations in the shared memory.

In TM systems, generally there are two approaches to detect the conflict –
encounter-time locking (ETL) and commit-time locking (CTL).

In ETL, a transaction (T1) will lock a location x upon its first write. Other trans-
actions attempting to access x will detect the conflict, and self-abort. ETL aims at
detecting potential conflicts early, to reduce the time wasted by transactions that will
be ultimately aborted, especially in high-contention situations. However the aborted
transaction (T2) can restart while the originally-winning transaction (T1) in the pre-
vious conflict is still in progress. If the restarted T2 then accesses another location y
first and y is later accessed by T1, then T2 can abort T1. Therefore as illustrated in
Figure 4.3, it is possible for a pair of transactions to abort each other in a vicious cycle,
and results in a livelock. However, RAC can effectively prevent livelocks, because in
high contention situations, RAC will quickly restrict the admission quota Q to a low
value, such as 1, to ensure progress. ETL can use either undo-log or redo-log. Undo-
log can be slightly more efficient in low contention cases, as the log needs not to be
replayed when the transaction successfully commits. However if a transaction aborts,
the undo-log needs to be replayed to undo the changes. This mechanism is complicated
and has a high overhead. Therefore in high contention cases, redo-log should be used.
Later in this section, we will go into the details of TinySTM [33], which is an ETL TM
algorithm.

w(x)

T1

T2
w(y)r(x)

w(x)

r(x)

r(y)

Figure 4.3: Transactions T1 and T2 livelock in ETL

However in CTL, a transaction will lock the locations it writes to at commit time.
As in most TM algorithms, transactions in CTL algorithms also keep a read-set and a
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write-set to record its speculative reads and writes respectively. Then during commit,
all locations in the write-set are locked, and the read-set is validated. If both are
successful, then the new values in the write-set will be written to the actual location,
and the locks are released. Since CTL writes the changes to the actual shared memory
locations after the transaction successfully commits, redo-log must be used.

When a transaction detects a conflict, aborts and restarts, the other transaction in
the conflict would have already committed. Therefore it is impossible for a restarting
transaction to abort the originally-winning transaction. As a result, CTL algorithms
are livelock-free. However, since the written locations are locked at commit time, the
time between the occurrence and detection of the conflict can be potentially long, as
illustrated in Figure 4.4. Therefore considerable time could be wasted in ultimately-
doomed transactions. However in advanced CTL algorithms such as NOrec [24], op-
timization techniques such as read-set validations during read operations can make
conflict detection earlier, and therefore reduce the time wasted. Details of the NOrec
algorithm will be discussed later in this section.

T1

T2
w(x)r(x)

commit(T2)

commit(T1)r(x) w(x)

conflict detected

when T1 commits

T1 aborts

time wasted by T1

Figure 4.4: Time wasted by ultimately-doomed transactions in
CTL In this case, both transactions T1 and T2 access x. T2 commits
first, and its changes to x is published upon its commit. However
T1 only finds out the conflict when it attempts to commit. As a
result, the time wasted by the aborted transaction T1 is substantial
(between the conflict at the time T2 commits and when T1 discovers
the conflict at its commit time)

4.2.1 The TinySTM Algorithm

As mentioned above, the TinySTM algorithm [33] is an encounter-time locking
algorithm based on the Lazy Snapshot Algorithm [82]. TinySTM uses a global clock
(GC) to maintain the serial order of transactions and it uses a word-granularity lock
array in the global metadata to track lock ownership. Here, a location in the shared
memory is mapped to a lock in the global lock array through a hash function. Each
lock is word-sized, and its least significant bit indicates whether the lock is acquired
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by a transaction. When a lock not acquired, the remaining bits represents the version
number of the lock; otherwise when the lock is acquired, the remaining bits point to
the write-set entry of the owner transaction, thus allow lookup of the updated value
of the location, and whether the transaction owns this lock, in constant time, without
the need of traversing the write-set. Here are the global metadata used in TinySTM:

typedef struct versioned_lock_t {
bit lock;
uint63_t version; // if locked, represents a pointer to owner write-set

} versioned_lock_t; // total size of lock is 64 bits (one word)

versioned_lock_t locks[];

uint64_t GC;

Figure 4.5: TinySTM metadata

In addition, each transaction privately keeps a read-set and a write-set, like most
TM algorithms. The redo-log configuration is chosen in this experiment because it has
a lower overhead in high-contention situations.

When a transaction begins, or restarts, it first samples the global clock and takes
this value as the version number of the transaction.

void TxStart(TxDesc tx) {
tx.start_time = GC;

}

Figure 4.6: TinySTM TxStart() pseudocode

As mentioned above, TinySTM [33] is encounter-time locking, which means that
the location is locked by a transaction upon its first write. When a transaction tries
to write to a location, it checks whether the location is locked. If it is locked and if the
transaction owns the lock, then the transaction just updates the value in the write-set,
otherwise if the location is owned by other transactions, the transaction will abort. If
the location is not locked, the transaction will acquire the lock of the location, and add
an entry to its write-set. The pseudocode for the write operation is as follows:
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void TxWrite(TxDesc tx, off_t addr, word val) {
versioned_lock_t l;

tx.writeSet.insert(addr, val);

while (true) {
l = locks[addr];

if (l is not locked and l.version <= tx.start_time) {
if (atomic_acquire_lock(locks[addr]) fails) {
TxAbort(tx);

}
return;

} else if (tx already owns l) {
return;

} else if (l locked by other transactions)
TxAbort(tx);

} else {
// l.version > tx.start_time, need to extend snapshot
newts = GC;
validate(tx);
tx.start_time.newts;

}
}

}

Figure 4.7: TinySTM TxWrite() pseudocode

When reading a location, the transaction must verify that the lock is not owned by
other transactions. If the transaction already owns the lock, then it simply reads the
value from the write-set entry. Once a value has been read, the transaction will check
whether it can be used to construct a consistent snapshot (as in the lazy-snapshot
algorithm [82]). The validity range of the snapshot consists of a range of versions
from the beginning up to the current start time of the transaction. If the lock version
is outside the current validity range, then the transaction will try to “extend” its
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consistent snapshot (in its read-set). Here the read-set will be validated by checking
whether the value of each entry in the read-set is modified. If any entries in the read-
set are updated by other transactions, the validation will fail and the transaction will
abort. If the validation is successful, then the validity range of the transaction will be
extended to cover the version number of the lock (by setting tx.start time to the current
GC). Therefore read-only transactions are efficient, as the transaction incrementally
construct a snapshot that is valid at all time. As a result, no validations are necessary
at commit-time. The pseudocode for the read operation is as follows:

word TxRead(TxDesc tx, off_t addr) {
word result;
versioned_lock_t l;

if (addr in tx.writeSet) {
return tx.writeSet.getValue(addr);

}

while (true) {
l = locks[addr];
result = *addr;
if (l is locked by other transactions) {
TxAbort(tx);

} else {
// unlocked
if (l.version > tx.start_time) {
//need to extend snapshot
if (false == validate(tx)) TxAbort(tx);

} else {
tx.readSet.insert(addr);
return result;

}
}

}
}

Figure 4.8: TinySTM TxRead() pseudocode
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When a transaction commits, it first validates its read-set. The transaction will
abort if validation fails, otherwise the transaction will write the changes in its write-set
to the actual memory location, increments the global clock and acquires the global
clock as its unique end time through an add-and-fetch atomic operation. Finally, the
transaction atomically set the version of all locks it holds to end time and release the
locks. Pseudocodes for the commit, abort and validation operations are shown in
Figure 4.9, Figure 4.10 and Figure 4.11 respectively.

void TxCommit(TxDesc tx) {
if (tx.writeSet is empty) {

tx.readSet.reset();
return;

}

validate(tx);
tx.writeLog.run(); // run the redo log
tx.end_time = atomic_add_and_fetch(GC, 1); // increment GC
foreach (lock in tx.writeLog) {

atomically set version to tx.end_time and release lock
}
tx.writeSet.reset();
tx.readSet.reset();

}

Figure 4.9: TinySTM TxCommit() pseudocode

void TxAbort (TxDesc tx) {
tx.writeSet.reset();
tx.readSet.reset();

}

Figure 4.10: TinySTM TxAbort() pseudocode
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void validate(TxDesc tx) {
foreach (entry in tx.readSet) {

if (entry.lock.version > tx.start_time ||
entry.lock is locked by other transactions)

TxAbort(tx);
}

}

Figure 4.11: Pseudocode of the read-set validation algorithm of
TinySTM

4.2.2 NOrec

NOrec [24] is a word-granularity CTL TM algorithm. To reduce the overhead of
the TM mechanism, NOrec does not have a global lock array. Instead, NOrec uses
value-based validation to detect conflict. Therefore an entry of the read-set and write-
set must record both the value and the address of the memory location. The only
global metadata is the global versioned lock (GC), which has a lock-bit, and the rest
of the bits represents the version number. Like all CTL algorithms, redo-log is used in
NOrec, because all changes are globally-visible at commit time.

typedef struct versioned_lock_t {
bit lock;
uint63_t version;

} versioned_lock_t; // total size of lock is 64 bits (one word)

versioned_lock_t GC;

Figure 4.12: NOrec metadata

void TxBegin(TxDesc tx) {
tx->start_time = GC.version;

}

Figure 4.13: NOrec TxBegin() pseudocode
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Write operation is cheap in NOrec, as the only operation is inserting the write
operation into the write-set. No validations, or sampling of the global versioned lock,
are required.

void TxWrite(TxDesc tx, off_t addr, word val) {
tx.writeSet.insert(addr, val);

}

Figure 4.14: NOrec TxWrite() pseudocode

As mentioned earlier in this section, the time wasted in ultimated-doomed trans-
actions can be considerable in CTL algorithms due to the commit-time locking policy.
However NOrec reduces this wasted time by validating the read-set when the read op-
eration TxRead() finds out that the start time of the transaction is smaller than GC. So
a potential conflict will be detected at the next read, thus greatly reducing the time
wasted by ultimately doomed transactions. Unlike TinySTM, NOrec does not have
a lock array that stores the versioning information of each location, this necessitates
the re-validation of the read-set whenever the GC is incremented since the last read,
rather than only when reading a value that is updated since the last read-set validation.
Therefore in NOrec, transactions can have very frequent read-set validations, causing
high contention on the global versioned lock, as read-set validation samples the global
versioned lock. This contention can affect scalability of NOrec. Here is the pseudocode
of the read operation:
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word TxRead(TxDesc tx, off_t addr) {
word result;

if (addr in tx.writeSet) {
return tx.writeSet.getValue(addr);

}

result = *addr;

while (tx.start_time < global_lock) {
tx.start_time = validate(tx);
if (validate() failed) {
TxAbort(tx);

}
result = *addr;

}

tx.readSet.insert(result, addr);
return result;

}

Figure 4.15: NOrec TxRead() pseudocode

Like TinySTM, a read-only transaction does not need to validate the read-set when
committing, because it already has a valid read-set. However an updating transaction
needs to acquire the global versioned lock GC. Then a validation is required if GC is
larger than the start time of the transaction. Once this is done, GC will be atomically
incremented and released. Finally, changes in the write-set will be written to the actual
memory location, and both the read-set and write-set of the transaction will be reset.
Here are the pseudocode for the commit, abort and validation operations in NOrec:
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void TxCommit(TxDesc tx) {
if (tx.writeSet is empty) {

tx.readSet.reset();
return;

}

while (GC > tx.start_time or acquire(GC) fails) {
if (validation(tx) fails) {
TxAbort(tx);

}
}

tx.writeLog.run(); // run the redo log

atomically increment GC and release GC;

tx.writeSet.reset();
tx.readSet.reset();

}

Figure 4.16: NOrec TxCommit() pseudocode

void TxAbort (TxDesc tx) {
tx.writeSet.reset();
tx.readSet.reset();

}

Figure 4.17: NOrec TxAbort() pseudocode
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uint64_t validate(TxDesc tx) {
versioned_lock_t curr_version;

while (true) {
curr_version = GC;

if (curr_version.locked) continue;

foreach (entry in tx.readSet) {
if (entry.value != *(entry.addr)) {
return failed;

}
}

if (curr_version == GC) return curr_version.version;
}

}

Figure 4.18: Pseudocode of the read-set validation algorithm of NOrec

4.3 Implementation
The VOTM system implementation is based on the software transactional memory

system TinySTM [33], a word-granularity timestamp-based TM system based on the C
language. In this VOTM implementation, TinySTM is configured as a redo-log-based
TM system with encounter-time locking.

In VOTM, access to each view can be controlled independently so that a view with
high contention will not affect concurrency of other views that may have low contention.
Experimental results in the next section demonstrate that using multiple views in this
way improves performance.

Similar to TinySTM and many other software TM systems, in the current imple-
mentation, the memory accesses in VOTM have to be explicitly labelled with primitives
such as Tx read and Tx write. However, these primitives can be removed with compiler
support or hardware TM systems [25].

Since encounter-time locking is used in VOTM, the transaction first writing to a
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location commonly accessed by other transactions wins (as opposed to TL-2, which
uses commit-time locking instead). However, no matter what conflict detection policy
is used, short transactions can easily abort a long transaction and computation done
by the long transaction will be wasted. This situation will be further explained in
Section 4.4.1.

4.4 Performance Evaluation
This experiment compares the performance of VOTM with the software transac-

tional memory system TinySTM version 1.0.0 [33] and the lock-based approach which
uses Pthreads mutexes. These systems will be evaluated in benchmark applications
including Bayes, Intruder, Genome, Labyrinth, Vacation and SSCA2 from the STAMP
transactional memory benchmark suite version 0.9.10 [18], which represents real-life
applications with long critical sections that abolish concurrency of lock-based sys-
tems such as the previous Maotai implementations. In addition, Travelling Salesman
Problem (TSP) from the SPLASH-2 benchmark suite [105], which has many memory-
intensive short critical sections is also evaluated. These benchmarks represent different
classes of applications. The experiments are carried out on a Dell PowerEdge R905
server with four AMD Opteron 8380 quad-core processors running with 800MHz and
16GB DDR2 memory. Linux kernel 2.6.32 and the compiler gcc-4.4 are used during
benchmarking.

All programs are compiled with the optimization flag -O2 because it is more stable
than -O3. The runtime calculated in each case includes initialization and finalization
costs. However, the runtime of functions that are irrelevant to the original application,
such as generation of random input sequences and result-verification, is excluded.

Intruder is a memory-intensive TM application. In this application, a dictionary
is used to store partial results, and jobs are handled by a centralized task queue. In
the VOTM version, the task queue and the dictionary are allocated in separate views.
Default parameters “-a10 -l128 -n262144 -s1” are used for the application.

In Bayes, the shared net is accessed by long transactions with high contention,
whereas access to the task queue is short and does not take computation time. Since
the net is never accessed together atomically with the task queue, they are allocated
in separate views. Default parameters “-v32 -r4096 -n10 -p40 -i2 -e8 -s1” are used.

Genome is a gene-sequence alignment algorithm which has multiple shared hash
tables with low contention and two shared arrays with higher contention. Shared data

69



structures include an input hash table as well as an array of hash tables containing
intermediate fragments plus two arrays tracking prefixes and suffixes. In the VOTM
version, a view is used to host all shared data structures. In the pure lock-based version,
the hashtable, prefix array, and suffix array are each protected by a lock. The VOTM
version could protect each bucket in each hash table with a lock, but this would be
too tedious and change the original algorithm drastically. Default parameters “-g16384
-s64 -n16777216” are used.

Both Labyrinth and Vacation have long transactions with little contention.
Labyrinth finds the shortest path between pairs of starting and ending points in a
maze, which is implemented as a shared grid. The shared grid is accessed with long
transactions with low contention. The input file “random-x512-y512-z7-n512.txt” is
used. The shared grid is allocated as a view in the VOTM version. Since access to
the grid cannot be divided without a complete rewrite of the algorithm, the pure
lock-based version simply uses lock to protect access to the grid.

Vacation simulates the operation of a travel agency manager. Each transaction
consists a set of operations including adding/removing reservations. The transaction
succeeds only if all operations succeed; otherwise, it will abort and restart. Transactions
are long and with a moderately high memory accesses, but with low contention. Since
all shared data can be accessed together atomically, they must be put into a single
view in the VOTM version. Also for the same reason, the critical section cannot be
broken down in the pure lock-based version; therefore, a single lock is used to protect
the critical section. Default parameters “-n4 -q60 -u90 -r1048576 -t4194304” are used.

SSCA2 has high number of very short transactions with low contention; therefore,
it serves as a test case testing overheads for starting and ending transactions. SSCA2
operates on a large, directed and weighted multigraph. Kernel 1 in this application is
used in STAMP, which constructs the graph data structure in parallel using adjacency
arrays and auxiliary arrays. Similar to Labyrinth, the graph in SSCA2 is put in a
single view in the VOTM version. In SSCA2, operation on each graph node is done
by a very short transaction that takes little computation time. Contention is very low
in SSCA2 because the large number of graph node means concurrent updates on the
same adjacency list is rare. However there are many transactions in this application.
Default parameters “-s20 -i1.0 -u1.0 -l3 -p3” are used.

The Travelling-Salesman Problem (TSP) algorithm have short transactions with
very high contention. Transactions in this algorithm are memory intensive but does not
have computational work; therefore, only a small portion of execution time is spent in
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transactions. The algorithm uses the branch-and-bound depth-limited search approach.
The 33-city case ftv33.atsp from TSPLIB95 [81] is used. In this algorithm, the priority
queue (storing partially-evaluated tours) is the shared object, and is allocated in a
view. Since access to this view is short but contentious, a VOTM version with the Q

manually set to 1 is also implemented to test the benefit of manual Q optimization
against the VOTM version with dynamic Q adjusted by RAC.

Kmeans and Yada from the STAMP benchmark are excluded from this experiment
because, in Kmeans, the incrementation of each element in the shared array is atomic,
so atomic operations should be used instead of TM. The Yada application crashes
frequently whenever it runs with multiple processes, and when it does not crash, paral-
lelization shows little performance gain, if any, because all computation time is spent
in transactions with extremely high contention.

Table 4.1: Application runtime (s) at N = 16

Application VOTM TinySTM Lock-based
TSP Q = 1 52.23 194.73 52.23
Intruder 43.05 127.70 100.62
Bayes 11.15 19.51 30.72
Genome 4.93 5.91 37.48
Labyrinth 35.60 35.08 331.28
Vacation 14.84 14.1 61.88
SSCA2 8.80 8.77 56.28

Table 4.2: Number of transactions and aborts at N = 16

Application #transactions VOTM TinySTM
TSP Q = 1 3,925,092 0 4,150,852,440
Intruder 23,428,141 10,986,905 1,238,254,062
Bayes 1,751 4,591 522,972
Genome 2,472,907 83,273 64,595,381
Labyrinth 1056 196 202
Vacation 4,194,304 1,443 1,059
SSCA2 22,362,292 62 64
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From Table 4.1, it can be seen that VOTM has superior performance over TinySTM
in high contention applications. In TSP and Intruder, VOTM is 270% and 200% faster
than TinySTM respectively. In Bayes and Genome, VOTM is also 75% and 20% faster
than TinySTM, respectively.

In the above applications, RAC successfully prevents speedup degradation by re-
stricting the number of processes admitted to a view. In TSP, RAC eliminates aborts
in VOTM altogether, and for the rest of the applications shown in Table 4.2, RAC
cuts the number of aborts in VOTM by up to 100 times. The reasons RAC improves
performance of VOTM will be discussed in detail in Section 4.4.1.

In low contention applications, such as Labyrinth and Vacation with long transac-
tions and SSCA2 with a high number of very short transactions, the runtime of VOTM
and TinySTM are similar.

At low contention, RAC will allow admission of all processes in order to maximize
concurrency, and will thus behave like traditional TM. The runtimes of VOTM and
TinySTM for these applications shown in Table 4.1 are similar, suggesting that VOTM
has little extra overhead.

However, the pure lock-based version in general has poor performance because the
applications Intruder, Bayes, Genome, Labyrinth and Vacation have coarse-grained
critical sections occupying the majority of the execution time, thus eliminating con-
currency. To make them work with fine-grained locking, a total design of the parallel
algorithm is necessary, which requires expert knowledge in parallel programming.

Although in SSCA2, the time spent in critical sections is very short, the sheer
number of acquires of the same lock (22 million acquires) in the pure lock-based version
makes the lock a hot-spot. The resultant CPU cache coherence overhead makes the
pure lock-based version unscalable.

Table 4.3: Performance of TSP at N = 16

VOTM VOTM TinySTM Lock-based
(dynamic Q) (Q = 1)

time(s) 71.54 52.23 194.73 52.23
#aborts 15,658,595 0 4,150,852,440 0

The application TSP has a shared priority queue with high contention. Therefore,
TinySTM is not scalable. Since access to the priority queue is known to be very short
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but memory-intensive, VOTM benefits from manually setting Q to 1 to avoid transac-
tional overheads. As shown in Table 4.3, VOTM with Q = 1 has a 27% performance
gain over VOTM with dynamic Q. By manually setting Q = 1, the performance of
VOTM now matches the lock-based version, because locking is more effective to protect
highly contentious shared data such as this priority queue.

The above results show the VOTM system has the performance advantage over TM
in high contention situations and allows the performance benefit of fine-grained locking
through the optimization of admission quota.

4.4.1 How RAC Improves Performance

RAC improves performance in two ways. The first way is through removing the
transactional overhead by switching to lock-based mechanism when the admission
quota Q equals 1.

To investigate this transactional overhead, microbenchmarks of transactions with
0, 1, 10, 100, 1000, 10000 and 100000 read and write operations are performed. Each
read/write operation is performed in a separate location to examine the real cost of read-
and write-set maintenance. To amortize measurement errors, we have collected the
results by first measuring the execution time of 100,000 sequentially-executed identical
transactions and then calculating the average execution time of one transaction. The
results are presented in Table 4.4.

Table 4.4: Overhead of transactions with different sizes

no. of r/w 0 1 10 100 1000 10000 100000
time(µs) 0.21 0.35 1.30 10.65 109.47 1216.22 14425.03

From Table 4.4, it can be seen that the cost of starting and ending a transaction
itself is not trivial (0.21µs per empty transaction), and for a long transaction with
100,000 reads and 100,000 writes, the overhead can be up to 14ms per transaction.
Therefore, transactions are expensive.

To avoid the expenses in transactional memory, RAC drops the transactional mem-
ory mechanism when the admission quota of a view becomes 1.

The second way that RAC improves performance is through reducing the number
of aborts by decreasing Q. As the application is run, the RAC algorithm adjusts
Q according to the abort/success ratio. Q will eventually settle at the value where
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access speedup saturates (i.e. the number of processes where maximum concurrency is
reached).

After the speedup of accessing the view is saturated, RAC prevents speedup degra-
dation by restricting admission to the view to Q processes to prevent extra processes
from increasing contention and conflicts. This is very important in real-life situations,
as it can be difficult to determine in advance the number of processes needed to saturate
access speedup if the access patterns are dynamic and bursty.

In order to demonstrate the effect of RAC in terms of restricted admission, we use
Bayes in this part of the experiment. Here the number of running processes (N) is
fixed to 16 and the admission quota (Q) is fixed to 1, 2, 4, 8 and 16 respectively. The
Q = 16 case is equivalent to no restriction of admissions, but the Q = 1 case still
uses transactions (tx) in order to show only the effect of admission control. However,
result of a Q = 1 case run without transactions (no tx) is also shown to demonstrate
transactional overheads.

Table 4.5: Runtime and number of aborts of Bayes at different Q

1(no tx) 1(tx) 2 4 8 16
time(s) 27.51 28.34 23.53 12.42 9.4 12.54
#aborts 0 0 337 1143 3422 536384

From Table 4.5, it can be seen that Bayes performs the best at Q = 8. When Q is
smaller, the performance is not good due to lack of concurrency, though the number
of aborts is small. However, when Q is larger, the performance gets worse due to
high contention. Therefore, RAC is very useful for adjusting Q to the optimal value.
Differences between Q = 1 cases with and without using transactional mechanisms
reflect transactional overheads.

Figure 4.19 shows a scenario explaining theoretically why RAC can improve per-
formance with restricted admission. As mentioned earlier, in TinySTM, a late-coming
short transaction can easily abort a long transaction that has been running for a long
time if the short transaction locks an object first. The time between the entry of
the long transaction and the short transaction will be wasted. RAC can reduce the
likelihood of this situation by restricting the number of processes acquiring the view.

In Figure 4.19, the long transaction T1 conflicts with the short transaction T3,
although T3 starts much later than T1, T3 locks the variable a first. T1 finds out the
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Figure 4.19: RAC implementation over TinySTM - RAC blocks T3
and prevents it from aborting T1 in high contention

conflict when it tries to write to the variable a, then it aborts and restarts. However,
if Q is set to 2 by RAC, T3 is the third transaction to begin, so it is blocked until the
first transaction (T1) commits, which prevents it from conflicting and aborting T1.

The above results and analysis have demonstrated the advantage of RAC that it
can dynamically adjust the admission quota Q to enhance performance, keeping the
best balance between concurrency and contention.

4.4.2 View Partitioning Improves Performance

To investigate benefits of view partitioning over traditional TM with transaction
scheduling, performance of VOTM and “TinySTM + RAC” is compared using the
applications Intruder and Bayes. “TinySTM + RAC” is a system that implements the
transaction scheduling algorithms like RAC for the entire TM.
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Table 4.6: Performance of VOTM and TinySTM + RAC at N = 16

Application VOTM TinySTM + RAC

time(s)
Bayes 11.15 11.97
Intruder 43.05 59.50

#aborts
Bayes 4591 4587
Intruder 10986905 10337777

Table 4.6 shows that for Intruder and Bayes where their VOTM versions have mul-
tiple views, VOTM outperforms “TinySTM + RAC” by 38% and 7% respectively. In
these applications, both VOTM and “TinySTM + RAC” experience similar contention.

In both applications, a view with high contention is often accessed at the same
time as another view with low contention. For example, in Intruder, a process can
dequeue a task from the task list (with low contention) while another process can
access the dictionary, which has high contention, and therefore access is restricted by
RAC in VOTM. Similarly in Bayes, the task list and the highly-contended net are
allocated in separate views. By placing the task list and the high contention data, such
as the dictionary and the net in separate views in VOTM, the restriction placed on
access to the dictionary and the net will not affect access to the task list and reduce
concurrency. However, in “TinySTM + RAC”, the entire shared memory is restricted
to access under the same admission quota. Therefore, access of all data structures
in the shared memory, including the task list with little contention, will be restricted
as a result of contention in the dictionary and the net. That is, the concurrency of
processes accessing the task list will be unnecessarily affected in “TinySTM + RAC”.
As shown in the above results, the memory partitioning philosophy of VOTM resolves
this problem and therefore has superior performance over transactional memory with
transaction scheduling algorithms like “TinySTM + RAC”.

4.5 Concluding Remarks
VOTM allows shared data with different access patterns to be allocated in different

views, and then let RAC optimize access to each view independently according to the
contention level of each view. Therefore, processes accessing a view with low contention
will not be hindered by restrictions placed on another view with high contention.
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With RAC, VOTM seamlessly integrates locking and transactional memory into one
programming paradigm. It can take advantage of the merits of both the pessimistic
(locking) and the optimistic (TM) approaches to concurrency control. Programmers do
not need to worry about concurrency control of the view, because concurrency control
is left to the system (RAC) to decide whether a locking mechanism or a transactional
mechanism should be used based on the contention situation of the view.

RAC can improve performance of VOTM regardless of which underlying TM algo-
rithm is used. In any TM algorithms, there will be situations where the contention
become very high (number of aborts becomes much larger than the number of trans-
actions), and in these situations, RAC will step in and restrict admission to the view
to control contention, thereby reducing works wasted by aborted transactions and
improving progress. Experimental results show that RAC has superior performance
to both TM and the lock-based approach because of the ability of RAC controlling
admission and switching between TM and locking, whereas traditional TM has a per-
formance issue when the contention is high and lock-based approach only works well
in fine-grained locking but poorly in coarse-grained locking. Therefore, through the
definition/creation of different views in TM, VOTM offers better performance than
traditional transactional memory and better convenience (and sometimes better per-
formance) than lock-based programming. We believe this new programming paradigm
will bridge the gap between TM and lock-based programming, and thus will bring more
vitality to the research of TM.

One issue with RAC is blocking of processes by RAC when Q is smaller than N . This
blocking seems to violate the lock-free or obstruction-free feature of TM systems [41].
Even though this feature is arguably necessary [32], RAC can quickly resolve this kind
of blocking when the contention becomes low and thus Q is increased up to N , as long
as Q does not become 1. If necessary, RAC can completely avoid blocking by using
transactions even when Q equals 1, though it will lose some performance gain. In this
way, if the system discovers that processes are blocked for too long, the blocking can
be easily lifted by increasing Q. Actually, in normal situations, the blocking in RAC
is not worse than the live-locking in TM when transactions abort each other without
progress under high contention.

Another issue with the current VOTM system is the possibility of deadlock during
nested view acquisition. However, in most of the cases, nested view acquisition is not
necessary, as shared data that can be accessed together atomically should be allocated
in the same view. For example, in VOTM, all nodes in a tree will be allocated into the
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same view, thus nested view acquisition for individual nodes of the tree is unnecessary.
The adaptive RAC algorithm presented determines contention level by the

abort/success ratio. However given the same contention level, the abort/success
ratio would be different across different TM algorithms. For example, commit-time
locking (CTL) TM algorithms would be expected to have a much lower abort/success
ratio than ETL algorithms, as transactions would be aborted at a much later time.
Therefore parameters such as MIN and MAX for the abort/success ratio would be
specific to the underlying TM algorithm, and would be tedious to optimize RAC
manually for each new TM algorithm.

To overcome this problem, the next chapter proposes a new version of the RAC
algorithm that determines contention according to the total time spent in aborted
transactions and successful transactions. In this way, the RAC algorithm will become
TM-algorithm-neutral, as regardless of which TM algorithm is used, if the time spent
in aborted transactions is much higher than the time spent in committed transactions,
the contention is high, and it is therefore worthwhile to cut the time wasted in aborted
transactions by reducing Q.
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Chapter 5

Improvements on the RAC
Algorithm

The last chapter proposed the VOTM system that uses RAC to control admis-
sion to each view, and demonstrated performance and programmability improvements
of VOTM over both traditional TM and lock models. Unfortunately, in the VOTM
implementation shown in the last chapter, the contention situation was evaluated em-
pirically. Some empirical thresholds were used to decide if the contention is too high
and the admission quota Q should be adjusted to reduce the contention level. These
empirical thresholds may work well for one TM system (e.g. TinySTM [33] using en-
counter time locking), but may not be suitable to measure the contention situation
of other TM systems. Therefore, different threshold values have to be decided in an
ad-hoc way for different TM systems. As far as we know, there has been no theoretical
model to guide the selection of the thresholds for various TM systems.

To address the above issue, this chapter proposes a theoretical model for RAC.
Based on this model, the system is able to decide the contention level of TM systems
in a systematic way and to adjust the admission quota Q to an optimal value for any TM
systems. This model works better especially when the contentions are dynamic and/or
bursty. Based on this model, VOTM is extensively evaluated with microbenchmarks
and real applications, and different transactional memory implementations are used to
investigate in which cases and in which ways VOTM can improve performance.

The rest of this chapter is organized as follows: Section 5.1 presents the theoret-
ical model of RAC. Section 5.2 discusses the details of the VOTM implementation.
Section 5.3 describes the experimental design. Section 5.4 presents the initial results
of RAC. Section 5.5 refines the RAC theoretical model by taking TM overheads into
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account. Section 5.6 presents experimental results of the refined RAC model and Sec-
tion 5.7 concludes the chapter.

5.1 The Restricted Admission Control Theoretical
Model

RAC vs. Conventional TM

Consider a set of transactions ST = {T1, ..., Tn}, which access the same view and
are executed by N threads. The duration of transaction Ti(1 ≤ i ≤ n) is denoted
by ti and refers to the time period that Ti is executed from start to commit without
conflicts and interruptions. For simplicity of the analysis, it is assumed that, during
the execution of Ti, the expected number of aborts is ci and the average time spent by
an aborted transaction is di, where ci, di ≥ 0. Therefore, the expected execution time
for Ti is cidi + ti in conventional TM that has no admission control of transactions.

makespan is defined as the total time needed to perform all transactions. Suppose
that N threads are continuously executing the transactions, then the best possible
makespan for ST in conventional TM, denoted by makespanTM(ST ), can be calculated
as

makespanTM(ST ) =

∑n
i=1 cidi + ti

N
(5.1)

In RAC, Q transactions are allowed to be executed at any given time, where 1 ≤
Q ≤ N . The expected execution time for Ti is Q−1

N−1
× cidi + ti, which can be proven as

follows.
Suppose Ti aborts due to the conflict of shared memory location s accessed by Ti′

in conventional TM. However, in RAC, if Ti is allowed to access s at a given time,
the probability that Ti′ is also allowed to access s is Q−1

N−1
, because RAC allows only

Q threads accessing s at any given time. So, the probability that Ti has 1 abort due
to the conflict with Ti′ is Q−1

N−1
. According to the binomial distribution, the probability

that Ti has k aborts (k ∈ {0, 1, ..., ci}) is p(k) =
(
ci
k

)
(Q−1
N−1

)k(N−Q
N−1

)ci−k. Therefore,
the expected execution time for Ti in RAC is

∑ci
k=1(kdi + ti)p(k) =

∑ci
k=1 kp(k)di +∑ci

k=1 p(k)ti =
Q−1
N−1

× cidi + ti. (By the binomial distribution,
∑ci

k=1 kp(k) =
Q−1
N−1

× ci

and
∑ci

k=1 p(k) = 1)
Suppose the Q threads are continuously executing the transactions in RAC, then
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the makespan for ST in RAC, denoted by makespanRAC(ST ), is

makespanRAC(ST ) =

∑n
i=1

Q−1
N−1

× cidi + ti

Q
(5.2)

Therefore, the difference of makespanRAC(ST ) and makespanTM(ST ), denoted by ∆,
can be obtained by Equation 5.1 and 5.2 as follows.

∆ = makespanRAC(ST )− makespanTM(ST )

=

∑n
i=1

Q−1
N−1

× cidi + ti

Q
−

∑n
i=1 cidi + ti

N

=
1

N − 1
(
1

N
− 1

Q
)(

n∑
i=1

cidi −
n∑

i=1

ti(N − 1)) (5.3)

Let δ =
∑n

i=1 cidi∑n
i=1 ti(N−1)

. It can be derived from Equation 5.3 that
(a) if δ > 1, then ∆ < 0 and makespanRAC(ST ) < makespanTM(ST ). That is, RAC

outperforms conventional TM and the performance improvement is |∆| when δ > 1

(i.e.,
∑n

i=1 cidi >
∑n

i=1 ti(N − 1)). From this condition, it can be seen that RAC
works especially well for transactions with high contention (ci can be considered as
the number of conflicts experienced by Ti), which will be verified in the experimental
results.

(b) If δ ≤ 1, then ∆ ≥ 0 and makespanRAC(ST ) ≥ makespanTM(ST ). That is, when
δ ≤ 1, RAC should set Q to N . When Q equals to N , ∆ = 0 and RAC works the same
as the conventional TM.

RAC with Q′ Threads vs Q Threads

Similar to the deduction of Equation 5.3, the difference between makespans
of RAC using Q′ (new) threads (makespanRAC(ST ,Q′)) and Q (previous) threads
(makespanRAC(ST , Q)) is

makespanRAC(ST ,Q′)− makespanRAC(ST , Q)

=
1

Q− 1
(
1

Q
− 1

Q′ )(
n∑

i=1

ci(Q)× di(Q)−
n∑

i=1

ti × (Q− 1))
(5.4)

where ci(Q) and di(Q) are the expected number of aborts and the average time
spent by an abort of Ti when using Q threads in RAC.

Let δ(Q) =
∑n

i=1 ci(Q)×di(Q)∑n
i=1 ti×(Q−1)

. It can be derived from Equation 5.4 that
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(a) if δ(Q) > 1 and Q′ < Q, then makespanRAC(ST , Q) > makespanRAC(ST ,Q′).
That is, if δ(Q) > 1, RAC should decrease Q to reduce the execution time of the
concurrent transactions.

(b) if δ(Q) < 1 and Q′ > Q, then makespanRAC(ST , Q) > makespanRAC(ST ,Q′).
Therefore, to reduce the execution time of the concurrent transactions, RAC should
increase Q.

In summary, we have the following observation1:

Observation 1. If δ(Q) is larger than 1, Q should be decreased; if δ(Q) is smaller
than 1, Q should be increased, in order to reduce the makespan of ST in RAC.

In the RAC implementation,
∑n

i=1 ci(Q) × di(Q) is estimated with the total CPU
cycles spent in aborted transactions, and

∑n
i=1 ti is estimated with the total CPU

cycles spent in successful transactions. Therefore, δ(Q) is estimated with Equation 5.5
in RAC:

δ(Q) =
CPUcyclesaborted tx

CPUcyclessuccessful tx × (Q− 1)
(5.5)

RAC in Multiple Views vs Single View

This section analyzes the potential gain of performance in multiple-views scenario
where RAC can separately control admission to each view according to its contention.
It is compared with the scenario where RAC controls access to the entire transactional
memory.

Assume the set of transactions ST = {T1, ..., Tn} can be divided into two non-
intersecting subsets S1

T = {T 1
1 , ..., T

1
n} and S2

T = {T 2
1 , ..., T

2
n}, where transactions in

S1
T access data in Object1, and transactions in S2

T access data in Object2. So, if
δ1 =

∑n
i=1 c

1
i d

1
i∑n

i=1 t
1
i (N−1)

> 1 (high contention), δ2 =
∑n

i=1 c
2
i d

2
i∑n

i=1 t
2
i (N−1)

≤ 1 (low contention), and
Q1 ≤ Q ≤ Q2, then the makespan of putting Object1 and Object2 into separate views
with independent RAC makespanMV−RAC((S

1
T , Q

1), (S2
T , Q

2)) should be smaller than
the makespan of a single view with RAC makespanRAC(ST , Q):

makespanMV−RAC((S
1
T , Q

1), (S2
T , Q

2))

≤ makespanRAC(ST , Q)
(5.6)

1The RAC theoretical model is jointly developed with Dr Yawen Chen and Associate Professor
Zhiyi Huang. This model has been published in [62] and Dr Yawen Chen provided the mathematical
deductions of Equations 5.1, 5.2, 5.3, 5.4 and 5.6
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The proof of Equation (5.6) is as follows.

makespanRAC(ST , Q)

=

∑n
i=1

Q−1
N−1

× cidi + ti

Q

=

∑n
i=1 cidi
N − 1

+
1

Q
× (

n∑
i=1

ti −
∑n

i=1 cidi
N − 1

)

=

∑n
i=1 c

1
i d

1
i

N − 1
+

1

Q
× (

n∑
i=1

t1i −
∑n

i=1 c
1
i d

1
i

N − 1
)

+

∑n
i=1 c

2
i d

2
i

N − 1
+

1

Q
× (

n∑
i=1

t2i −
∑n

i=1 c
2
i d

2
i

N − 1
)

= makespanRAC(S
1
T , Q) + makespanRAC(S

2
T , Q) (5.7)

Suppose view 1 has high contention,
i.e., δ1 =

∑n
i=1 c

1
i d

1
i∑n

i=1 t
1
i (N−1)

> 1, and Q1 ≤ Q. Then,

makespanRAC(S
1
T , Q

1) ≤ makespanRAC(S
1
T , Q) (5.8)

Suppose view 2 has low contention,
i.e., δ2 =

∑n
i=1 c

2
i d

2
i∑n

i=1 t
2
i (N−1)

≤ 1, and Q ≤ Q2. Then,

makespanRAC(S
2
T , Q

2) ≤ makespanRAC(S
2
T , Q) (5.9)

Therefore, we have

makespanRAC(S
1
T , Q

1) + makespanRAC(S
2
T , Q

2)

≤ makespanRAC(S
1
T , Q) + makespanRAC(S

2
T , Q)

(5.10)

Since the makespan of the multiple-view RAC is:

makespanMV−RAC((S
1
T , Q

1), (S2
T , Q

2))

= makespanRAC(S
1
T , Q

1) + makespanRAC(S
2
T , Q

2)
(5.11)

and the makespan of the single view RAC is:

makespanRAC(ST , Q)

= makespanRAC(S
1
T , Q) + makespanRAC(S

2
T , Q)

(5.12)
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From Equation (5.10), we have:

makespanMV−RAC((S
1
T , Q

1), (S2
T , Q

2))

≤ makespanRAC(ST , Q)
(5.13)

Now we have this observation:

Observation 2. If there are two shared objects, which are not required to be accessed
together in the same transaction, and the first object has high contention (δ(Q) is larger
than 1) but the second object has low contention (δ(Q) is smaller than 1), then the two
objects should be put into separate views to reduce the makespan of RAC.

The experimental section will examine the multiple-view RAC model with different
applications, and the performance of RAC over different TM implementations.

5.2 Implementation
In this chapter, the implementation of VOTM is based on RSTM-7.0 [67], a C++-

based modular software transactional memory system where TM algorithms such as
the encounter-time locking algorithm OrecEagerRedo and the commit-time locking
algorithm NOrec [24] are implemented as plug-ins and can be chosen easily by recon-
figuration.

The reason for basing the VOTM implementation on TinySTM in the last chapter
was that when the experiments in the last chapter were carried out (also published
in [63]), RSTM was not available to x86 64 architectures, which the machine used in
the experiment was based on.

In this chapter, switching to the RSTM-VOTM implementation allows easy com-
parison with multiple TM algorithms without extra coding. Moreover, since the RSTM
base code is object-oriented, it becomes possible to refactor the RSTM base code so that
each view has its own separate TM metadata, and therefore each view is now genuinely
a separate TM system. This arrangement allows reduction of TM metadata contention
by partitioning the application shared data into multiple views, and prevention of false
conflicts between accesses to different views, whereas in the TinySTM-VOTM imple-
mentation in the last chapter, the entire TM uses a single set of TM metadata, and
therefore the TinySTM-VOTM implementation would not get these benefits in view
partitioning.
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In RSTM-VOTM, access to each view is separately controlled by its own RAC
mechanism as explained in the last chapter. As mentioned previously, δ(Q) in Obser-
vations 1 and 2 is estimated with Equation 5.5. rdtsc() is used to measure the CPU
cycles spent in aborted transactions and successful transactions. The model shown in
the last section states that if δ(Q) of the view is larger than 1, it has high contention
and its admission quota Q should be decreased; and if δ(Q) of the view is lower than
1, it has low contention and its admission quota Q should be increased. However, to
prevent the overheads of unnecessarily frequent adjustments of Q, a critical zone with
two values MAX and MIN is used. When δ(Q) > MAX, Q will be decreased; and Q

will be increased when δ(Q) < MIN. MAX and MIN are set to 1.1 and 0.5 respectively.
To avoid the hotspot problem of accessing the counter P of RAC by up to 64 processes,
the counter P is implemented as a scalable counter similar to the sloppy counter in [13].

5.3 Experimental Design
The first objective of this experiment is to examine the performance gain of VOTM

using RAC. This experiment uses various TM applications including Vacation, SSCA2,
Labyrinth and Intruder from the STAMP-0.9.10 benchmark suite [18], Eigenbench
microbenchmarks [48], and MultiRBTree (which is derived from the red-black tree
microbenchmark in RSTM-7.0). For this objective, only one view is used in these ap-
plications so that the performance gain of RAC can be separated from the performance
gain of using multiple views.

The second objective of this experiment is to examine the performance gain of
using multiple views. Intruder, Eigenbench, and MultiRBTree are evaluated where
multiple views are applicable. For these applications, both the single-view version and
the multi-view version are implemented. In the single-view version, all shared objects
are put into the same single view, while in the multi-view version shared objects are
placed in separate views. As mentioned before, partitioning shared objects into separate
views can improve performance by allowing RAC to optimally adjust the admission
quota Q of each view individually according to its contention level. In this way, the
system can restrict access to a high contention view, without affecting the concurrency
of transactions that access other low-contention views. In the rest of this paper, a
multi-view configuration for an application is denoted by its number of views used, e.g.
“1-view”, “2-view”, “4-view” and “8-view”.

Furthermore, to examine how well VOTM can interact with different TM algo-
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rithms, this work has implemented two versions of VOTM:

VOTM-OrecEagerRedo
is based on the encounter-time locking TM algorithm “OrecEagerRedo” (similar
to TinySTM [33]), which is implemented in RSTM-7.0 [67].

VOTM-NOrec
is based on the commit-time locking TM algorithm “NOrec” [24] which is also
from RSTM, as described in Chapter 4.

The STAMP applications Intruder, Vacation, SSCA2 and Labyrinth are discussed
in detail in Chapter 4, and the rest of this section will describe the multiple-view
applications Eigenbench and MultiRBTree.

5.3.1 Eigenbench

Eigenbench [48] can generate transactions using orthogonal parameters, and allows
a better understanding of the behaviour of a TM system by adjusting the parameters.

For example, contention in Eigenbench is controlled by adjusting the size of hot array
and the number of read and write accesses to the hot array. High contention can be
caused by a large number of read-write accesses to a relatively small length of hot array.
The shared mild array is also accessed by transactions, but each process has its own
subarray and therefore access to mild array will not cause conflicts, but will increase
transaction size and rollback overheads.

Long transactions can be generated by adjusting one or more of the following fea-
tures:

• reading/writing to a large range of locations in shared memory;

• many repeated accesses to the same locations in shared memory;

• frequent access to local memory;

• long transactions (using NOPs).

In Eigenbench, a transaction is modelled by a sequence of reads/writes to the shared
memory, interleaved with accesses to local memory and computation (represented by
NOPs). There are also accesses to local memory and computations outside transactions
in Eigenbench.
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In this experiment, the Eigenbench program is modified to have two views, each view
has its own hot array, mild array and parameters concerning the number of read/write
accesses and the number of NOPs in each transaction that access the view.

The modified Eigenbench program will execute a number of iterations, which is the
total number of transactions specified for each view. Each iteration accesses one of the
two views randomly, followed by the activities outside transactions. The pseudocode
outlining the modified Eigenbench application is shown in Figure 5.1, and parameters
used in Eigenbench are shown in Table 5.1.

In the “2-view” version, each process executes 25000 transactions that access view
1 (the high contention view) and 25000 transactions that access view 2 (the low con-
tention view), with the accesses interleaved randomly. View 1 is set to be accessed
by long transactions with high contention, with each transaction accessing many ele-
ments in a small hot array; whereas view 2 is accessed by long transactions with low
contention.

Table 5.1: Eigenbench parameters for the 2-view version

View 1 2
N 64
loops 25k 25k
A1 256 16k
A2 16k 16k
A3 8k 8k
R1 80 10
W1 20 10
R2 10 10
W2 10 10
R3i 0 5
W3i 0 1
NOPi 0 20
R3o 0
W3o 0
NOPo 0

In the “1-view” version, each process executes 50000 transactions. In each itera-
tion, after the view is acquired, the transaction can access either object 1 (with high
contention) or object 2 (with low contention). Accesses to object 1 and 2 have the
same access patterns as view 1 and 2 in the “2-view” version.
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struct View_data {
/* shared array where conflict occurs, accessed in tx */
shared word hot_array[A1];

/* shared array where each process accesses its own subarray, so does not
cause conflict, but still needs rollback should tx be aborted */

shared word mild_array[A2];

/* private to each process, can be accessed either inside or outside tx.
if accessed inside tx and tx aborted then needs to roll back changed */

word cold_array[A3];
};

View_data views[2];

each process:

for loops:
do

acquire view 1 or 2 randomly
in acquired view:
perform

r1 reads and w1 writes to the shared hot_array,and
r2 reads and r2 writes to the shared mild_array in *random order*
each access touches a random element (word) in the shared hot_array, or
in the dedicated subarray within the shared mild_array

between two accesses to shared arrays, there will also be r3i reads
and w3i writes to the private cold array, and NOPi instructions

release view

/* activities outside transactions:
perform r3o reads and w3o writes to the private array
perform NOPo instructions

done

Figure 5.1: Pseudocode of the modified Eigenbench application
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5.3.2 MultiRBTree

MultiRBTree has eight red-black trees. Each transaction will randomly search,
insert, or delete a value in a tree chosen randomly. Therefore, this application only
needs to guarantee the atomicity of the operations on a single tree and thus each tree
can be placed into a separate view.

However, to examine the potential of the benefit of multiple views, the trees are
divided into 1, 2, 4 and 8 views. Their performance results can show how much benefit
can be exploited by pure view partitioning without RAC.

In this microbenchmark, each tree has 1,000,000 elements, and each process executes
500,000 transactions. The ratio of the search operation is 34%, and the ratio for both
insertion and deletion is 33%.

5.4 Experimental Results
In this experiment, all tests are carried out on a Dell PowerEdge R815 server, which

has four AMD Opteron 6276 16-core processors running at 2.3GHz, and thus has a total
of 64 cores with a total 64GB DDR3 RAM. Linux kernel 3.2 and the compiler gcc-4.4
are used during the experiment. All programs are compiled with the optimization flag
-O3. Time spent in transactions are measured with rdtsc() and data cache misses are
measured with the Performance Monitoring Counters (PMCs) [107].

For each application, this experiment evaluates the performance gain by restricting
the admission quota Q, and whether the RAC algorithm can correctly identify this
optimal Q.

The rest of this section will show the results of our two VOTM implementations:
VOTM-OrecEagerRedo and VOTM-NOrec.

5.4.1 Performance of VOTM-OrecEagerRedo

Figure 5.2 shows the performance of VOTM compared with the traditional TM
using the OrecEagerRedo algorithm. The applications on VOTM all use a single view
with the RAC mechanism controlling concurrency.

For the rest of this chapter, “VOTM-OPT” denotes the performance of VOTM
with Q set to the optimal value; “VOTM-RAC” denotes the performance of VOTM
with Q determined by the RAC algorithm; “cputx” denotes the total number of CPU
cycles spent in successful transactions and “cpuabort” denotes the total number of
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CPU cycles spent in aborted transactions in the application.
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Figure 5.2: Single-view applications in VOTM-OrecEagerRedo
(Eigenbench on TM is not shown due to livelock)

Table 5.2: Single-view applications with VOTM-OrecEagerRedo

Application version time(s) cputx cpuabort δ(Q) Q #cachemiss

Eigenbench
TM livelock
VOTM-OPT 56.4 148G 96G 0.65 2 2.83G
VOTM-RAC 56.4 148G 96G 0.65 2 2.83G

Intruder
TM 130.8 1.12T 14.9T 0.21 64 20.8G
VOTM-OPT 26.4 411G 363G 0.05 16 4.45G
VOTM-RAC 130.9 1.12T 14.3T 0.20 64 21.2G

Vacation
TM 5.38 685G 65.4G 0.002 64 3.61G
VOTM-OPT 5.38 687G 65.2G 0.002 64 3.60G
VOTM-RAC 5.38 687G 65.2G 0.002 64 3.60G

SSCA2
TM 8.17 763.2G 229M 0 64 2.29G
VOTM-OPT 8.19 760G 225M 0 64 230G
VOTM-RAC 8.19 760G 225M 0 64 230G

Labyrinth
TM 8.11 315G 590G 0.03 64 6.61G
VOTM-OPT 8.21 318G 603G 0.03 64 669G
VOTM-RAC 8.21 318G 603G 0.03 64 669G
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For Eigenbench, Figure 5.2 shows livelock is incurred on the traditional TM, but
VOTM-OrecEagerRedo can prevent the livelock with RAC by setting Q to the optimal
value of 2, as illustrated in Table 5.2.

In Vacation, SSCA2 and Labyrinth, the contention is low as illustrated by the very
low δ(Q) in Table 5.2, so RAC does not need to restrict admission and Q is correctly
left at 64. In these applications, the runtime of VOTM is only slightly (1-3%) longer
than that of TM, which shows that VOTM has very low overhead.

For Intruder, although the optimal Q should be set to 16 (as indicated by VOTM-
OPT), which would have a 400% performance improvement over TM, VOTM-RAC
fails to restrict Q to improve performance, as its low δ(Q) indicates low contention.

5.4.2 Performance of VOTM-NOrec

Figure 5.3 shows the performance of VOTM compared with the traditional TM
using the NOrec algorithm. The applications on VOTM all use a single view with the
RAC mechanism to control concurrency.
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Table 5.3: Single-view applications in VOTM-NOrec

Application version time(s) cputx cpuabort δ(Q) Q #cachemiss

Eigenbench
TM 39.4 274G 4.0T 0.23 64 6.18G
VOTM-OPT 27.6 123G 319G 0.37 8 1.69G
VOTM-RAC 39.4 275G 4.0T 0.23 64 6.19G

Intruder
TM 199 10.8T 17.4T 0.03 64 28.2G
VOTM-OPT 45.9 644G 82G 0.02 8 3.56G
VOTM-RAC 199 10.8T 17.3T 0.03 64 28.2G

Vacation
TM 48.5 6.54T 9.46G 0 64 24.5G
VOTM-OPT 23.9 786G 50M 0 16 5.87G
VOTM-RAC 48.5 6.53T 9.37G 0 64 24.5G

SSCA2
TM 129.3 15.7T 1.94G 0 64 4.45G
VOTM-OPT 22.9 82.4G 267K 0 4 2.18G
VOTM-RAC 129.8 15.7T 2.0G 0 64 4.44G

Labyrinth
TM 8.03 312G 594G 0.03 64 6.67G
VOTM-OPT 8.39 320G 611G 0.03 64 6.72G
VOTM-RAC 8.39 320G 611G 0.03 64 6.72G

In Labyrinth, δ(Q) indicates that the contention is low, so the RAC algorithm
correctly leaves Q to 64 (Table 5.3). The runtime of VOTM-RAC is only 2% slower
than the runtime of TM, which indicates that VOTM has very low overheads.

From Table 5.3 shows that optimal performance in Eigenbench, Intruder, Vacation
and SSCA2, could be achieved by setting Q to 8, 8, 16 and 4 respectively, By setting
Q to the optimal value, VOTM-OPT has a performance gain over TM by 50%, 400%,
100% and 500% respectively, as shown in Figure 5.3. However, since the δ(Q) of
these applications are very low (< 0.00001), the RAC algorithm does not restrict
Q, and therefore VOTM-RAC does not enjoy this performance gain. In these cases,
when Q is restricted in VOTM-OPT, total times spent in both successful and aborted
transactions (cputx and cpuabort) decreases, and as a result, δ(Q) remains as a small
value (Table 5.3).

This finding indicates that as Q increases in these memory-intensive applications,
TM overheads in both successful and aborted transactions increase. These overheads
can be explained by the read-set re-validation in NOrec, which becomes very frequent
when Q is large. The frequent read-set re-validation then causes considerable cache
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hotspot on its global clock, and hence the dramatic increase of CPU cycles and cache
misses spent in the overheads, as seen in Vacation, where restricting Q to 16 cuts
the number of cache misses to 1

5
and results in 100% performance gain. Therefore

restricting Q can cut this overhead and improve performance. However the current
RAC model shown in the last section assumes negligible TM mechanism overhead, and
therefore fails to take the overhead into account. The next section will extend the RAC
model to take TM overhead into account.

5.5 Refinements on the RAC Model
The RAC model presented in Section 5.1 assumes that TM mechanism overhead

(such as overhead incurred by TxWrite() and TxRead()) is negligible. However in
memory-intensive applications, TM mechanism overhead arisen from cache contention
of TM metadata and/or read-set re-validation can be considerable as the admission
quota Q increases, and can easily outweigh the benefits of concurrency in TM. There-
fore in order to determine the optimal admission quota Q, the RAC model must take
TM mechanism overhead into consideration. This section will investigate how the RAC
theoretical model should be extended to take TM overhead into account.

When a memory location is accessed by TM, this access will be logged by the
TM mechanism. Therefore the log maintenance overhead will be present, even when
transactions are run serially. This overhead will form the static component of the TM
mechanism overhead, as it is independent from the number of transactions concurrently
run. At low Q, the static component dominates the TM mechanism overhead. For
example, if the cumulative time of all transactions (calculated by adding transactional
runtime of all processes together) is 16s, and the overhead is 14s, then the user time will
be 2s. Suppose the current Q is 4, then it will take 4s to run the transactions. However
if these transactions were to be run serially, without the transactional mechanism, then
it will only take 2s to run the transactions, faster than running concurrently at Q = 4.
Therefore, in cases where the static component dominates, if the overhead is larger
than user time × Q, running the transactions serially without TM mechanism would
have better performance than running concurrently with admission quota set to the
current Q.

One could argue that if the static component were to be the only component in the
TM mechanism overheads, then by raising Q to a very high value, such as 32, we would
eventually get a performance gain, as the transactions will theoretically take 0.5s to
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run. However as explained below, the TM mechanism overhead will be dramatically
increased by the dynamic component at higher Q, and therefore raising Q in this case
will worsen the performance.

When transactions are run concurrently, transactions will have extra overheads
from read-set re-validations, and cache contention of TM metadata (such as the global
clock). These overheads form the dynamic component of the TM mechanism overhead,
which increases dramatically as Q increases.

In Figure 5.4, the VOTM-NOrec version of Vacation has a static overhead of ap-
proximately 150 × 109 CPU cycles, which dominates the TM mechanism overhead at
1 <= Q <= 4. Then as Q increases further, the dynamic component drives the overall
TM mechanism overhead up rapidly. When the dynamic component of the TM mech-
anism overheads is high, restricting Q can often improve performance by cutting this
overhead. Empirical observation on different applications suggests that at Q >= 8,
performance can be improved by reducing Q when the TM mechanism overhead is
larger than user time × 8.
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Figure 5.4: TM mechanism overhead of Vacation in VOTM-NOrec

Based on the above analysis, we use the following overhead score to enhance the
RAC model:

overhead score(Q) =

 overhead
user time×Q

, Q < 8

overhead
user time×8

, Q >= 8
(5.14)

where
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overhead = overheadsuccessful tx + overheadaborted tx (5.15)

and

user time = user timesuccessful tx + user timeaborted tx (5.16)

In the RAC implementation, user time is calculated by subtracting the total TM
mechanism overhead from the total time spent in successful and aborted transactions.

In real-life TM applications, there will be TM mechanism overhead, as well as time
wasted in aborted transactions. Therefore the RAC model is now extended to take
both factors into the account:

score(Q) = δ(Q) + overhead score(Q) (5.17)

In the extended RAC model, score(Q) > 1 would suggest that Q should be reduced
to reduce contention and/or TM mechanism overhead; and score(Q) < 1 would suggest
that Q should be increased to increase concurrency. However, in the implementation,
the critical zone MIN and MAX of 0.5 and 1.1 respectively will still be used to avoid
overheads of excessively frequent adjustment of Q.

The next section will show the accuracy of the updated RAC mechanism in deter-
mining the optimal Q in different applications, and evaluate the benefits of partitioning
shared data into multiple views.

5.6 Experimental Results of the Refined RAC
Model

In this section, the accuracy of the refined RAC model in determining the optimal
admission quota Q will be tested on both VOTM-OrecEagerRedo and VOTM-NOrec.

5.6.1 Performance of VOTM-OrecEagerRedo

Figure 5.5 shows the performance of VOTM with the updated RAC algorithm
(VOTM-RAC) compared with VOTM with Q set to the optimal value (VOTM-OPT)
and traditional TM on single-view applications using the OrecEagerRedo algorithm.
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Figure 5.5: Single-view applications in VOTM-OrecEagerRedo
(Eigenbench on TM is not shown due to livelock)

Table 5.4: Single-view applications with VOTM-OrecEagerRedo

Application version time(s) cputx cpuabort δ(Q) overhead overhead score(Q) score(Q) Q #cachemiss

Eigenbench
TM livelock
VOTM-OPT 56.4 148G 96G 0.65 68.9G 0.20 0.85 2 2.83G
VOTM-RAC 56.4 148G 96G 0.65 68.9G 0.20 0.85 2 2.83G

Intruder
TM 130.8 1.12T 14.9T 0.21 7.53T 0.11 0.32 64 20.8G
VOTM-OPT 26.4 411G 363G 0.05 358G 0.11 0.16 16 4.45G
VOTM-RAC 130.9 1.12T 14.3T 0.20 7.21T 0.11 0.31 64 21.2G

Vacation
TM 5.38 685G 65.4G 0.002 372G 0.12 0.12 64 3.61G
VOTM-OPT 5.38 687G 65.2G 0.002 373G 0.12 0.12 64 3.60G
VOTM-RAC 5.38 687G 65.2G 0.002 373G 0.12 0.12 64 3.60G

SSCA2
TM 8.17 763.2G 229M 0 511G 0.25 0.25 64 2.29G
VOTM-OPT 8.19 760G 225M 0 507G 0.25 0.25 64 2.30G
VOTM-RAC 8.19 760G 225M 0 507G 0.25 0.25 64 2.30G

Labyrinth
TM 8.11 315G 590G 0.03 633M 0.0001 0.03 64 6.61G
VOTM-OPT 8.21 318G 603G 0.03 633M 0.0001 0.03 64 6.69G
VOTM-RAC 8.21 318G 603G 0.03 633M 0.0001 0.03 64 6.69G

Table 5.4 shows that RAC prevents livelock on Eigenbench by setting Q to 2, which
is shown by VOTM-OPT to be the optimal value. In Vacation, SSCA2 and Labyrinth,
the values of score(Q) are low, so VOTM-RAC correctly leaves Q as 64, which gives
the optimal performance.

However in Intruder, although the optimal Q is 8 at VOTM-OPT, RAC fails
to settle Q to this value, because at Q = 64, score(Q) < 1, as both δ(Q) and
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overhead score(Q) are very small. The small value of overhead score(Q) (0.11) at
Q = 64 indicates that transactional overhead (7.53T) only takes a small portion of the
total time in aborted and successful transactions (16T). Therefore the transactional
overhead is actually low. The other source of overhead could be the cache misses on
the user space in the application itself. In Intruder, there is a frequently-accessed shared
array, where accesses to neighbouring elements can easily cause false cacheline conflicts.
This hypothesis is supported with the results where VOTM-OPT cuts the number of
cache misses to 1

5
by setting Q to 8 despite very low δ(Q) and overhead score(Q) val-

ues. The effects of cacheline and memory bandwidth contention caused by user space
application on RAC need to be thoroughly studied as a future work.

The following part of this experiment will examine how multiple views can further
help improve performance. Figure 5.6 shows the performance of Eigenbench and In-
truder based on their 1-view and 2-view versions. To show the pure benefit of view
partitioning, Figure 5.6 also shows the performance of the two applications running
with 1-view and 2-view without RAC, which are denoted by 1-view-nr and 2-view-nr
respectively.
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Figure 5.6: Two-view applications on VOTM-OrecEagerRedo. For
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Table 5.5: Eigenbench in VOTM-OrecEagerRedo
version time(s) Q1 Q2 #cachemiss cputx1 cpuabort1 δ(Q1) overhead1 overhead score(Q1) score(Q1)

1-view-nr livelock
1-view-OPT 56.4 2 N/A 2.83G 148G 96G 0.65 68.9G 0.20 0.85
1-view-RAC 56.4 2 N/A 2.83G 148G 96G 0.65 68.9G 0.20 0.85

2-view-nr livelock
2-view-OPT 16.6 1 64 843M 31.2G 0 N/A 0 N/A N/A
2-view-RAC 16.6 1 64 843M 31.2G 0 N/A 0 N/A N/A
version cputx2 cpuabort2 δ(Q2) overhead2 overhead score(Q2) score(Q2)

2-view-nr livelock
2-view-OPT 74.2G 2.57G 0.0005 15.5G 0.032 0.032
2-view-OPT 74.2G 2.57G 0.0005 15.5G 0.032 0.032

For Eigenbench, both 1-view-nr and 2-view-nr have livelock which is prevented by
RAC in 1-view and 2-view. For the 1-view-RAC version, RAC correctly settles Q to 2

to contain the contention. For the 2-view-RAC version, the quota Q of the first view
is set to 1 due to its high contention, but the Q of the second view is set to 64 due to
its low contention. Obviously, due to the separate concurrency control for each view
in the 2-view-RAC version, 2-view-RAC has a further 200% performance gain over 1-
view-RAC. In both versions, Table 5.5 shows that RAC correctly predicts the optimal
value of Q in all views.

Table 5.6: Intruder with VOTM-OrecEagerRedo
version time(s) Q1 Q2 #cachemiss cputx1 cpuabort1 δ(Q1) overhead1 overhead score(Q1) score(Q1)

1-view-nr 130.8 64 N/A 20.8G 1.12T 14.9T 0.21 7.53T 0.11 0.32
1-view-OPT 26.4 16 N/A 4.45G 411G 363G 0.05 358G 0.11 0.16
1-view-RAC 130.9 64 N/A 21.2G 1.12T 14.3T 0.20 7.21T 0.11 0.31

2-view-nr 129.0 64 64 17.5G 299G 15.4T 7.13T 0.82 0.10 0.92
2-view-OPT 18.4 8 64 5.30G 829.1G 26.3G 0.30 26.4G 0.23 0.52
2-view-RAC 129.1 64 64 17.9G 288G 14.4T 0.79 6.76T 0.11 0.90
version cputx2 cpuabort2 δ(Q2) overhead2 overhead score(Q2) score(Q2)

2-view-nr 995G 237G 0.004 699G 0.16 0.17
2-view-OPT 484G 349G 0.01 493G 0.18 0.19
2-view-RAC 967G 241G 0.004 693G 0.17 0.17

Similarly, for Intruder, Table 5.6 shows splitting the shared data into two views
allows separate concurrency control in each view. For Intruder, 2-view-OPT has a 50%
improvement over 1-view-OPT, as 2-view-OPT can separately set the Q of the two
views to 4 and 64 respectively. In 1-view-OPT, the contention of the entire shared
memory is treated as a whole view, and thus Q can only be set to a value between 4

and 64, which is 16.
In 2-view-RAC, RAC fails to restrict Q1 (the Q of view 1) to improve performance,
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as the score(Q1) is not sufficiently high (0.90 at Q1 = 64) to drive Q down. However,
RAC has correctly left Q2 to 64, as score(Q2) is much smaller than 1 (0.17 at Q2 = 64).

From the performance results of 1-view-nr and 2-view-nr for Intruder in Figure 5.6,
there is not much performance gain by simply splitting the shared data without using
RAC. 2-view-nr is only 0.3% better than 1-view-nr.
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Figure 5.7: MultiRBTree in VOTM-OrecEagerRedo

Figure 5.7 shows the performance results of MultiRBTree using multiple views.
This experiment uses 1, 2, 4, 8 views in the application to show potential of using
multiple views. In all cases, the score(Q) of all views are low (< 0.4), therefore RAC
correctly leaves Q as 64.

As shown in Figure 5.7, partitioning shared data can have a slight improvement
on the performance of MultiRBTree up to 4 views. This performance improvement is
due to the reduction of transactional aborts according to Table 5.7. Since each view
has its own TM metadata, the lock array in the TM metadata of a view will not be
shared with other views, and thus it eliminates some aborts caused by false conflicts.
Although in all cases, δ(Q) of all views are very low (<= 0.0002) and time wasted
inside aborted transactions would be small, the extra overhead of restarting aborted
transactions in false conflicts in 1-view cases can explain the performance difference
between 1-view and 4-view cases.

However, when the trees are partitioned into eight views such as 8-view-RAC and
8-view-nr in Figure 5.7, the performance slightly deteriorates. The reason is that,
when the number of views is increasing, the size of the TM metadata (lock array,
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Table 5.7: MultiRBTree in VOTM-OrecEagerRedo

version #tx #abort #cachemiss
1-view-nr 32m 388k 4.02G
1-view-OPT 32m 366k 4.05G
1-view-RAC 32m 366k 4.05G
2-view-nr 32m 303k 4.16G
2-view-OPT 32m 292k 4.22G
2-view-RAC 32m 292k 4.22G
4-view-nr 32m 145k 4.29G
4-view-OPT 32m 146k 4.35G
4-view-RAC 32m 146k 4.35G
8-view-nr 32m 138k 4.46G
8-view-OPT 32m 119k 4.53G
8-view-RAC 32m 119k 4.53G

global clock, etc) is increasing as well. The size of TM metadata for each view is up to
100MB. Therefore, if a process accesses a large number of views during its execution,
it will also access the metadata of all views, which will cover a large memory footprint.
As a result, cache misses due to frequent cacheline refills are increasing as shown in
Table 5.7, which leads to the slight performance degradation. It is possible that this
slight performance degradation can be fixed by reducing the size of metadata for each
view using optimization techniques.

Since the contention is low in MultiRBTree, Q is set to 64 for all views. Therefore,
there is not much performance benefit from using RAC, which is shown in Figure 5.7
by the similar performance between N-view and N-view-nr, e.g. 4-view and 4-view-nr.
One the other hand, it shows the little extra overhead of VOTM.

5.6.2 Performance of NOrec

Figure 5.8 shows the performance of VOTM with the updated RAC algorithm
(VOTM-RAC) compared with VOTM with Q set to the optimal value (VOTM-OPT)
and traditional TM on single-view applications using the NOrec algorithm.
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Figure 5.8: Single-view applications in VOTM-NOrec

Table 5.8: Single-view applications in VOTM-NOrec

Application version time(s) cputx cpuabort δ(Q) overhead overhead score(Q) score(Q) Q #cachemiss

Eigenbench
TM 39.4 274G 4.0T 0.23 1.78T 0.09 0.32 64 6.18G
VOTM-OPT 27.6 123G 319G 0.37 155G 0.07 0.44 8 1.69G
VOTM-RAC 39.4 275G 4.0T 0.23 175G 0.09 0.32 64 6.19G

Intruder
TM 199 10.8T 17.4T 0.03 18.3T 0.23 0.26 64 28.2G
VOTM-OPT 45.9 644G 82G 0.02 538G 0.35 0.37 8 3.56G
VOTM-RAC 199 10.8T 17.3T 0.03 18.3 0.24 0.27 64 28.2G

Vacation
TM 48.5 6.54T 9.46G 0 6.17T 2.02 2.02 64 24.5G
VOTM-OPT 23.9 786G 503M 0 583G 0.36 0.36 16 5.87G
VOTM-RAC 35.0 2.33T 403M 0 2.06T 0.94 0.94 32 10.9G

SSCA2
TM 129.3 15.7T 1.94G 0 15.6T 16.8 16.8 64 4.45G
VOTM-OPT 22.9 82.4G 267K 0 54.6G 0.50 0.50 4 2.18G
VOTM-RAC 22.9 82.4G 267K 0 54.6G 0.50 0.50 4 2.18G

Labyrinth
TM 8.03 312G 594G 0.03 135M 0 0.03 64 6.67G
VOTM-OPT 8.39 320G 611G 0.03 139M 0 0.03 64 6.72G
VOTM-RAC 8.39 320G 611G 0.03 139M 0 0.03 64 6.72G

In SSCA2, VOTM-RAC correctly sets Q to the optimal value of 4 and has a 500%
performance gain over TM. In this application, although the application contention is
low, as shown in the very low δ(Q), the TM overhead is high, as indicated by the high
overhead score of 16.8 at Q = 64 (Table 5.8). Therefore the score(Q) is very high
(16.8), and RAC decreases Q until score(Q) is within the critical range (0.5 - 1.1).

Similarly in Vacation, the high score(Q) (2.02, at Q = 64 at TM) driven by the high
TM overhead also causes RAC to decrease Q to 32, and this gives a 50% performance
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gain over TM. Once Q reaches 32 in VOTM-RAC, score(Q) becomes 0.94, which is
smaller than 1, and therefore RAC does not decrease Q further. However, the actual
optimal Q is 16, as shown in VOTM-OPT, which gives further performance improve-
ment. By taking TM overheads into account, RAC can now improve the performance
of SSCA2 and Vacation over TM.

In Labyrinth, since both contention (δ(Q)) and TM overhead (overhead score) are
low, the low score(Q) correctly guides RAC to leave Q as 64. Since the runtime of
VOTM is only 5% longer than the runtime of TM, the overhead of VOTM is very
small.

In Eigenbench and Intruder, RAC fails to set Q to the optimal value of 8 as shown in
VOTM-OPT. In both applications, both contention and the TM mechanism overhead
are low, therefore the score(Q) are low (0.32 and 0.26 respectively at Q = 64). As a
result, RAC does not decrease Q. Similar to Intruder, Eigenbench also have shared ar-
rays which are prone to false cache conflicts, and in addition, large memory movements
in arrays can also cause memory bandwidth bottleneck in some hardware architectures.
These factors need to be further investigated to establish how they interplay with the
overhead of the application.

The following part of the experiment will examine how multiple views can further
improve performance in VOTM-NOrec.
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Figure 5.9: Two-view applications in VOTM-NOrec
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Table 5.9: Eigenbench in VOTM-NOrec
version time(s) Q1 Q2 #cachemiss cputx1 cpuabort1 δ(Q1) overhead1 overhead score(Q1) score(Q1)

1-view-nr 39.4 64 N/A 6.18G 274G 4.0T 0.23 1.78T 0.09 0.32
1-view-OPT 27.6 8 N/A 1.69G 123G 319G 0.37 155G 0.07 0.44
1-view-RAC 39.4 64 N/A 6.19G 275G 4.0T 0.23 175G 0.09 0.32

2-view-nr 29.5 64 64 5.91 93.6G 3.07T 0.52 762G 0.04 0.56
2-view-OPT 25.2 8 16 1.73 54.3G 330G 0.87 124G 0.06 0.93
2-view-RAC 29.5 64 64 6.01 94.6G 3.08T 0.52 768G 0.04 0.56
version cputx2 cpuabort2 δ(Q2) overhead2 overhead score(Q2) score(Q2)

2-view-nr 59.4G 88.8M 0 10.1G 0.026 0.026
2-view-OPT 57.6G 114M 0.0001 9.57G 0.025 0.025
2-view-RAC 59.0G 90.8M 0 10.0G 0.026 0.026

Table 5.10: Intruder with VOTM-NOrec
version time(s) Q1 Q2 #cachemiss cputx1 cpuabort1 δ(Q1) overhead1 overhead score(Q1) score(Q1)

1-view-nr 199 64 N/A 28.2G 10.8T 17.4T 0.03 18.3T 0.23 0.26
1-view-OPT 45.9 8 N/A 3.56G 644G 82G 0.02 538G 0.35 0.37
1-view-RAC 199 64 N/A 28.2G 10.8T 17.3T 0.03 18.3 0.24 0.27

2-view-nr 107.8 64 64 17.2G 43.9G 8.18G 0.003 21.6G 0.089 0.092
2-view-OPT 32.4 8 8 2.87G 20.1G 6.58G 0.05 11.4G 0.09 0.14
2-view-RAC 105.6 64 16 10.4G 44.0G 8.19G 0.003 21.9G 0.089 0.092
version cputx2 cpuabort2 δ(Q2) overhead2 overhead score(Q2) score(Q2)

2-view-nr 11.9T 3.37T 0.005 13.9T 1.32 1.33
2-view-OPT 399G 35.4G 0.01 271G 0.21 0.22
2-view-RAC 465G 97.0G 0.014 331G 0.18 0.19

For Eigenbench and Intruder, Figure 5.9 shows that 2-view-nr outperforms 1-view-
nr by 50% and 90% respectively on VOTM-NOrec. This improvement could be at-
tributed to the reduction of the TM metadata contention, as each view is essentially
a separate TM system with its own metadata, and splitting into two views effectively
halves the contention in each TM system. This reduction of TM metadata contention
is shown by a reduction of cache misses in 2-view-nr in both applications (by 10% and
40% respectively, shown in Tables 5.9 and 5.10).

In Eigenbench, 2-view-OPT shows that the optimal Q for view 1 and 2 are 8 and
16 respectively, and it has a further 20% performance gain over 2-view-nr. However,
as both score(Q1) and score(Q2) are low, RAC does not restrict either Q1 or Q2 on
2-view-RAC, and thus 2-view-RAC cannot have this performance gain (Table 5.9).

In Intruder, 2-view-OPT shows that the optimal Q for view 1 and 2 are 8, which
results in a 200% performance gain over 2-view-nr, and cuts the number of data cache
misses to 1/8. However in 2-view-RAC, it is only the high TM overhead in view
2 (overhead score(Q2)) which makes score(Q2) (1.33 at Q2 = 64) high enough for
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the RAC algorithm to drive Q2 down to 16. Therefore 2-view-RAC only has 2%
performance gain over 2-view-nr.
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Figure 5.10: MultiRBTree in VOTM-NOrec

Table 5.11: MultiRBTree in VOTM-NOrec (In all RAC cases, all
views settled to the same Q)

version time(s) Q #cachemiss
1-view-nr 104.0 64 11.6G
1-view-OPT 38.2 8 3.61G
1-view-RAC 39.6 16 4.72G
2-view-nr 53.4 64 7.04G
2-view-OPT 21.4 16 3.67G
2-view-RAC 21.4 16 3.67G
4-view-nr 27.3 64 4.91G
4-view-OPT 13.4 32 3.81G
4-view-RAC 27.4 64 4.91G
8-view-nr 11.8 64 3.87G
8-view-OPT 8.51 32 3.50G
8-view-RAC 11.8 64 3.89G

Figure 5.10 shows that partitioning shared data alone can improve performance of

104



MultiRBTree, where 8-view-nr outperforms 1-view-nr by 8 times. This performance
improvement is largely due to splitting the global clock contention in multiple view
versions, as Table 5.11 shows that 8-view-nr cuts the number of data cache misses to
1/3.

In 1-view-RAC and 2-view-RAC, the high score(Q) drive the Q down to 16, which
improves the performance over the -nr versions by 170% and 100% respectively, as it
further cuts the number of data cache misses to 1/3 and 1/2 respectively. However in
1-view-RAC, performance could have been further improved by setting Q to 8.

In 4-view and 8-view, the reduction of global clock contention by view partitioning
reduces TM overhead to an extent that score(Q) no longer triggers RAC to restrict Q,
and therefore both 4-view-RAC and 8-view-RAC leave Q of all views to 64. However,
results from Table 5.11 show that performance can be further improved by restricting
Q to 32.

The above results are consistent with the effects of relieving TM metadata con-
tention in NOrec by splitting shared data into multiple views and lowering the access
quota Q to control the validation-related contention on the global clock in NOrec.

5.7 Concluding Remarks
The above experiment has extensively shown the performance of VOTM using two

implementations: VOTM-OrecEagerRedo and VOTM-NOrec. Results in this experi-
ment have demonstrated that the performance gain of VOTM can originate from three
sources: contention control using RAC, fine-grained contention control using multiple
views, and contention reduction of metadata.

First, performance gain can be greatly achieved by the contention control and TM
overheads reduction of RAC. For example, the Eigenbench microbenchmark illustrates
that in highly-contentious situations, RAC can greatly improve its performance on
VOTM-OrecEagerRedo by preventing livelocks, as explained in Section 5.2. For other
applications such as Vacation and Labyrinth, when the number of processes N is raised
to a sufficiently high level (such as 4096), one may also see increased contention that
causes RAC to restrict the admission quota Q to reduce the contention. However, at
the time of my PhD candidature, multicore machines do not have this high number of
cores, and therefore this hypothesis could not be tested.

In addition, applications such as SSCA2, Vacation and MultiRBTree show that in
memory intensive applications, RAC can also improve performance on VOTM-NOrec
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by cutting TM overheads through restricting the admission quota Q.
Second, performance gain can be achieved by fine-grained contention control in

multiple views. For example, the 2-view versions of Eigenbench can treat the different
contention situations of the two views and RAC can set an optimal Q individually to
each view. Therefore, restricting access to a high-contention view does not affect the
access to the low-contention view.

Third, performance gain can be achieved by reducing the contention accessing the
TM metadata. As explained in Section 5.2, NOrec performs worse for memory-intensive
applications such as Intruder due to the high contention on the global clock. By split-
ting shared objects into multiple views, the contention on the global clock is reduced
since each view is essentially a separate TM system that has its own global clock. If
the contention on the global clock within a view is still too high, Q can be reduced to
a proper value to further relieve the contention. Most applications on VOTM-NOrec
have demonstrated this performance gain.

Even though VOTM has these sources of performance gain, dynamic adjustment of
the quota Q according to contention levels remains a challenging issue. In applications
such as Eigenbench (NOrec only) and Intruder (both TM systems), the contention
appears to be low due to the low δ(Q) score, and the measured TM overheads is
also low, yet results show that restricting the admission quota Q further improves the
performance. This observation could not be explained by the current RAC model, and
it could be due to other factors related to application-side memory overheads, including
limitations of the memory bus bandwidth.

The philosophy of RAC is that there are factors that cause performance deteriora-
tion when a large number of processes access a view concurrently, and if any one of
these factors exist, then the admission quota, Q, should be restricted to improve perfor-
mance. Currently, the RAC model identifies application contention and TM metadata
overheads as two of the factors that justify restriction of the admission quota Q. How-
ever, to further refine the RAC model, other possible factors that justify restriction of
the admission quota such as effects of memory bandwidth, overheads of both the ap-
plication and TM mechanism on concurrency will be investigated as a future work. As
an emerging interesting work, VOTM implementations over Hardware Transactional
Memory architectures such as Intel Haswell [14] will also be investigated, as the over-
heads in the Haswell HTM will probably be different from the overheads in the current
STM systems which VOTM is based on, and will certainly play a role in how RAC
performs.
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Chapter 6

Related Work

First, this chapter presents existing parallel programming models and examines how
these models deal with data races. Then this chapter explores modern concurrency
control mechanisms for TM systems that optimize the concurrency control according
to the contention situation of the application. Finally, this chapter gives an overview
of non-blocking algorithms, which allow high concurrency on accessing shared data
structures.

6.1 Programming Models
As illustrated in the Introduction, code-centric shared-memory models are prone to

data race, as these models require programmers to manually arrange locks to protect
atomic access of shared data. To address this problem, data-centric programming
models, such as Deterministic Parallel Java, and Colorama, aim at preventing data
race, rather than detecting data race after it occurs. Then this section examines these
data-centric models in detail, and discusses the deterministic multithreading model
Dthreads, which guarantees determinism even when there are conflicts of data accesses
between processes.

6.1.1 Deterministic Parallel Java

Deterministic Parallel Java (DPJ) [10] is a data-centric shared-memory model aim-
ing at ensuring determinism in parallel code. Based on extra information supplied
through annotations, this model determines at compile-time whether it is possible for
tasks to have conflicting shared data access. If the compiler is sure that it is impossible
to have conflicting data access between two threads, then these tasks are allowed to
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run in parallel; otherwise, they will be run sequentially. Therefore DPJ is data-race
free. Since locks are not used to protect shared data at runtime, DPJ is also deadlock
free.

DPJ lets programmers define regions within a class, and each region in the object
must be accessed atomically. Then methods that may be run concurrently must ex-
plicitly declare its “effects” (i.e. which regions it reads from and write to), and the
compiler will ensure the correctness of this annotation. This extra information helps
the compiler to determine potential access conflicts between two tasks, and thus allows
more concurrency. If a region is accessed by more than one task, and at least one task
writes to the region, then these tasks have conflicting access, and will not be allowed
to be executed concurrently. A code snippet demonstrating concurrent access of two
regions is shown in Figure 6.1.

class Pair {
region Fst, Snd;
int fst in Fst;
int snd in Snd;

void setFst(int fst) writes Fst {
this.fst = fst;

}

void setSnd(int snd) writes Snd {
this.snd = snd;

}

void setBoth(int fst, int snd) {
cobegin {
setFst(fst); /* writes Fst */
setSnd(snd); /* writes Snd */

}
}

}

Figure 6.1: Code snippet of a concurrent Pair class in DPJ [11]
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class Tree<region P> {
region L, R;
int data in P;
Tree<P:L> left in P:L;
Tree<P:R> right in P:R;

int increment() writes P:* {
++data; /* writes P */
cobegin {
/* writes P:L:* */
if (left != NULL) left.increment();
/* writes P:R:* */
if (right != NULL) right.increment();

}
}

}

Figure 6.2: Code snippet of a concurrent binary search tree in DPJ
using the region path list [11]

In Figure 6.1, regions are declared in the class, and each data field is assigned to
a region. Then the shared data access pattern of setFst() and setSnd() are declared.
Finally in setBoth(), cobegin spawns each statement inside its block as a separate task
if the compiler can determine that these tasks within the cobegin block will not conflict;
otherwise, these statements will be sequentially executed. All tasks must return before
control leaves the cobegin block.

In recursive data structures such as lists and trees, DPJ allows recursive region
subdivision using the region path list system.

In the binary search tree example shown in Figure 6.2, data belongs to the parent
region P. Then the left child and the right child are put into the region path lists P:L and
P:R respectively. Here, P:L denotes that L is a sub-region of P. The method increment()
is annotated with writes P:*, which means it will write to the entire region P, including
its sub-regions. In this case, since the compiler can satisfy that left.increment() and
right.increment() access disjoint regions, so it will execute these calls concurrently. As
increment() will make recursive concurrent calls in the cobegin block, it can achieve
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considerable concurrency in this case.
However, in other cases such as node insertion in a tree or a graph, where access

to the next node depends on result of current node (only known at runtime) and
access pattern cannot be decided at compile time, execution will still fall back to
sequential access and performance will be affected. Since this approach depends on
compiler support, complex, fine-grained applications like list traversal may not be fully
parallelized.

To address this problem, the paper of [12] extends the DPJ to allow explicitly-
defined non-determinism. Here are the rules:

• A region that may be accessed non-deterministically must be marked with the
keyword atomic, and similarly, a method that accesses such a region must also
mark its effect on that region with atomic.

• All code sections that access atomic regions must also be annotated with an
atomic block.

• cobegin nd block, a non-deterministic version of the cobegin block, is used to
concurrently execute atomic blocks that may conflict with each other.

In a cobegin nd block, statements will only be executed concurrently if it can be
satisfied that only atomic statements access common atomic regions, and non-atomic
statements only access non-disjoint non-atomic regions. If this is not satisfied, the
statements will be executed sequentially. In the DPJ models, atomic statements are
run as transactions.

In Figure 6.3, the cobegin nd block in MyApp::work() executes two red-black-tree
insertions. Both insertion statements are marked with “atomic”. The RBtree::insert()
method called by these statements also declares that it has “atomic write” access to the
red black tree. Since there are no non-atomic regions that are accessed by both insertion
statements, the cobegin nd block will execute both insertion statements concurrently
as transactions.
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class RBTree<atomic region P> {
atomic region L, R;
int data in P;
Tree<P:L> left in P:L;
Tree<P:R> right in P:R;
void balance() atomic writes P:* {

....
}
void insert(int val) atomic writes P:* {

if (val < data) {
if (left == NULL) {

left = new Tree<P:L>(val);
} else {

left.insert(val);
}
balance();

} else if (val > data) {
if (right == NULL) {

right = new Tree<P:R>(val);
} else {

right.insert(val);
}
balance();

}
}

}
class MyApp {
atomic region R;
RBTree<R> tree in R;
void work() {

cobegin_nd {
atomic tree.insert(100);
atomic tree.insert(150);

}
}

}

Figure 6.3: Code snippet showing two tasks executed concurrently in
a cobegin nd block in DPJ 111



This approach provides extra concurrency. However, in many cases, it is still too
restrictive for applications where tasks only access shared memory for a short time,
because regions are effectively acquired throughout the entire lifetime of a task. In
the case of an atomic statement (task), the transaction would also last for the entire
runtime of the task, whereas in VOPP, a view will only be held for as long as necessary.

6.1.2 Colorama

Colorama is a data-centric shared memory model [20]. In Colorama, shared objects
are explicitly defined as “colours”, as opposed to views in VOPP, and multiple blocks
of shared data can be allocated with the same colour. Under the Colorama scheme,
access to data owned by colours is automatically acquired and released:

• A colour is acquired when its memory is first accessed.

• A colour is released when control leaves the scope of the colour acquisition.

A code snippet demonstrating how Colorama automatically determines the scope
of a critical section is shown in Figure 6.4.

void foo () {
color(A, 1024, red); // allocate color red
...
A = ...... <<<<<
... ColorID_A critical section
... <<<<<

}

Figure 6.4: Automatic critical section inference in Colorama

Like the automatic view access detection in VOPP, the automatic colour-acquiring
semantics improves programmability of Colorama by relieving programmers from man-
ually acquiring and releasing colours. However as mentioned in Chapter 3, the auto-
matic view access detection model in VOPP also allows fine-grain control of when views
are acquired and released by the view scope construct, which allows programmers to
specify exactly when views are acquired and released, whereas in Colorama, a colour is
always held until the end of the function scope of where the colour is acquired. There-
fore the colour can be held for longer than necessary. This can affect the concurrency
of the application.
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In addition, Colorama would require hardware support in the form of special hard-
ware instructions, as well as OS support in the form of system calls. Therefore the
portability of Colorama is limited, whereas Maotai 3.0 can run on any architectures.

6.1.3 Dthreads

Dthreads [65] is a C / C++-based deterministic multithreading model designed as
a drop-in replacement of Pthreads [72]. In Dthreads, the effects of each thread are only
published at synchronization time (e.g. reaching a barrier). Therefore this approach
eliminates read-write data races, because a read operation will always read the version
at the last synchronization. For write-write races between threads (i.e. two threads
writing to the same shared memory location), this model enforces a determined order
(e.g. based on thread ID) to decide which thread will win. Therefore the end-result
would still be deterministic, even in the write-write race case. This determinism makes
debugging much easier, because although the result can be wrong, it is reproducible
when the application is re-run in a debugger.

Like the distributed shared memory system TreadMarks [1] and Maotai 2.0,
Dthreads uses the runtime mprotect() page-based system to detect access to shared
data. The first write to a page by a process will trigger a page fault, and the fault
handler will create a twin page to store the subsequent changes of this page in a
diff. Then at synchronization time, the system will apply the diffs from all processes
in a pre-determined order. Therefore if diffs from two processes have conflicts, it is
pre-determined who is the winner. However, the mprotect() and the diff mechanism
overhead would be considerable in memory-intensive applications, where threads
access a wide range of locations (i.e. many pages), thus making these applications
difficult to scale.

In Dthreads, deadlocks are eliminated by converting all locks into a global lock.
This is done by requiring the thread to hold the global token when it holds any locks.
However, this approach will adversely affect the application performance, as it does
not allow disjoint access parallelism. Moreover, the increased contention on the global
token will easily create cache contention in fine-grain applications.
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6.2 Concurrency Control Models in Modern Trans-
actional Memory Systems

As discussed in Chapter 1, TM optimistically allows concurrency in critical sections
and only resolves conflicts afterwards by aborting some transactions in the conflict, but
the overhead of aborted transactions is staggering when the contention is high. To ad-
dress this concurrency problem, there are a number of adaptive approaches to optimize
the concurrency control mechanism according to the contention: in-transactional con-
flict resolution, transactional scheduling and adaptive locks. This section will also
discuss work on adaptive transactional memory.

6.2.1 In-Transactional Conflict Resolution

In-transaction conflict resolution aims to resolve conflicts effectively to reduce
wasted work of aborted transactions. All in-transaction conflict resolution algorithms,
including both encounter-time locking (DSTM [45, 89], SXM [40], TLRW [27] and
McRT-STM [86]), commit-time locking (TL-2 [26] and NOrec [24]) algorithms, as
well as algorithms such as Relaxed Concurrency Control [6] that attempt to resolve
conflicts by converting memory accesses of conflicting transactions to a serializable
schedule, resolve conflicts within a transaction only after these conflicts have been
detected, but threads are still freely admitted into transactions. Therefore, aborts
cannot be stemmed in high contention and work is still wasted by transactions that
eventually abort, as shown in experimental results presented earlier in Chapter 4.

6.2.2 Transactional Scheduling

Transactional scheduling can control the admission of transactions when contention
is high. It can prevent conflicts before they occur, therefore reducing wasted work on
aborted transactions. For example, transaction scheduling algorithms such as [106] use
a thread-local contention score. When a thread experiences high contention, it queues
the starting transaction to a central scheduler, which will execute queued transactions
serially. A similar approach is adopted in [29], except when a thread experiences high
contention it uses a heuristic approach that predicts read and write sets of the starting
transaction using read and write sets of previous transactions of the threads. If any
address in the predicted read and write sets is being written by any other currently
executing transactions, then the starting transaction will be queued to be executed
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serially. Otherwise, the transaction executes immediately. This algorithm relies on
heuristic prediction of what will be read/written in the starting transactions. The
admission control algorithm in [2] also adopts a similar approach.

This family of transactional scheduling algorithms works orthogonally with the
in-transaction conflict resolution algorithms mentioned above. They use empirical
thresholds to decide contention level.

All transactional scheduling algorithms described above treat the entire TM with
the same scheduling decision. Therefore, access to objects of low contention can be
unreasonably restricted due to the high contention of other objects in TM. Also the
statistics collected for the entire TM are not as accurate as those collected in a per-view
basis.

6.2.3 Adaptive Locks

The speculative lock elision (SLE)-based model [84] was proposed to avoid unnec-
essary exclusive accesses in lock-based programs. An elidable lock can be acquired
“speculatively” (using TM) or “non-speculatively” (using mutex). At any time, an
elidable lock can be acquired speculatively by multiple threads, but only one thread
can hold an elidable lock non-speculatively at any time.

The adaptive lock model in [100] has a similar approach, except a thread trying to
acquire the lock in mutex mode must wait until all existing threads holding the lock
in the transaction mode to finish.

Like VOTM, both SLE and adaptive lock models have separate access control on
each elidable lock, to ensure restrictions placed by the system on locks with high
contention will not unnecessarily affect concurrency of accessing other elidable locks
with low contention. These models either allow all threads to hold the elidable lock in
speculative mode, or only allow exclusive access to one thread during non-speculative
(mutex) mode. However, as shown in Chapter 5, there are some cases where the
optimal admission quota of a lock/view is actually between 1 and N . Therefore, the
RAC scheme can achieve a superior performance by finding out the optimal admission
quota to achieve the optimal concurrency rather than only choosing between the two
extremes – exclusive access to one thread or admitting all threads.
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6.2.4 Adaptive Transactional Memory

There are also TM systems, such as [102] by the RSTM group from the University
of Rochester, that choose a TM algorithm at runtime according to the access pattern
and contention situation of the transactional memory. These adaptive TM systems use
machine learning methods such as decision trees and neural network to learn from a
training set of microbenchmarks and TM algorithms, to create an executable adaptive
policy. Then, when a real application is run, “profiles” are taken at some pre-defined
events such as thread creation/destruction and consecutive aborts. These profiles are
subsequently used to compare with the adaptive policies to select the best TM algo-
rithm on the fly. For example, when the contention increases, the system can switch
to a more pessimistic algorithm.

Adaptive TM is orthogonal to VOTM. It can be adopted by VOTM, where different
views can have different access patterns, and therefore have different optimal TM
algorithms. This area will be investigated as a future work.

6.3 Non-Blocking Algorithms
Non-blocking algorithms provide an efficient way to avoid critical sections and allow

multiple processes to make progress without blocking each other. There are three
classes of non-blocking algorithms: obstruction-free, lock-free and wait-free. Wait-free
algorithm is a subset of lock-free algorithm, which is in turn a subset of obstruction-free
algorithm. An algorithm is obstruction-free if at any point after which the operation
executes in isolation, it finishes in a finite number of steps. All TM algorithms belong
to this class. Obstruction-freedom only requires any partially completed operations can
be aborted and rolled back. However this does not eliminate the possibility of livelocks,
which happen if operations abort each other, as illustrated in encounter-time locking
TM algorithms in Chapter 4. An algorithm is lock-free if it guarantees that infinitely
often some operations finish in a finite number of steps [35, 47]. Lock-free algorithms
admit the possibility of some threads to starve, but guarantee that some operations
in the application will complete in finite time. This is different from the lock-based
approach, where a process will block until the contending location is released by other
processes. In addition to all requirements of lock-freedom, wait-free algorithms also
guarantee that all operations must finish in a finite number of steps [47].

Fault tolerance is another advantage of lock-free and wait-free algorithms. When a
process terminates while holding a shared object, other processes can grab the object
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and continue, and in wait-free algorithms, other processes will “help” the terminated
process to complete its tasks, thus ensuring the progress. However in locking algo-
rithms, if a process terminates while holding a lock, then other processes waiting for
the lock will be blocked forever.

Currently, most architectures, including x86 and amd64, have hardware support of
compare-and-swap (CAS) on a single word. CAS allows efficient single-word atomic
updates, but it cannot detect the case where a word is concurrently changed to a
new value and then restored to the original value. This problem is known as the
“ABA problem”. For this purpose, another primitive load-linked/store conditional
(LL/SC) is used for algorithms that requires atomic updates on a word that is safe
from the ABA problem [47]. However, only a limited number of architectures provide
hardware LL/SC support, such as Alpha, PowerPC, MIPS and ARM. Multiple-CAS
(MCAS) allows compare-and-swap of multiple locations. If all listed locations are not
updated by other processes, then MCAS can atomically update all listed locations with
their new values, otherwise the values of the locations will not be changed. MCAS is
very handy for atomically accessing a shared data structure, such as a tree, where
multiple locations need to be atomically updated. Although none of the commercially-
available architectures have hardware MCAS support, there are software-based MCAS
implementations such as [5, 43, 95] that utilize the hardware CAS.

In operations that atomically update a shared data structure, lock-free algorithms
often enjoy superior performance over both lock-based and TM-based approaches, be-
cause lock-free algorithms enjoy disjoint access parallelism, which means operations
that access disjoint data structures are not serialized, whereas in many TM algorithms
such as TL2 [26], TinySTM [33] and NOrec [24], transactions are serialized by the
global clock, which causes considerable cache contention when the number of trans-
actions are high. Also in lock-based models, if the lock assignment is not sufficiently
fine-grained, operations can also be unnecessarily serialized by the lock.

However, there are some disadvantages with lock-free and wait-free algorithms.
First, a large amount of CPU time can be wasted in lock-free algorithms if the con-
tention is very high, as lock-free algorithms must retry failed operations, and wait-free
algorithms must do repetitive work by “helping” other threads. Second, CAS, LL/SC
and MCAS cannot be directly used to replace long atomic sections in TM, as these
primitives only atomically update a set of locations, whereas atomic sections may in-
clude other computation work. Also, designing lock-free data structures and algorithms
requires expert knowledge in concurrent programming. It is tedious to tailor-made
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lock-free data structures and algorithms for each application, and implementation of
these algorithms are prone to errors, that are difficult to debug. Therefore lock-free
algorithms are generally reserved for niche high-performance applications and libraries.
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Chapter 7

Conclusions and Future Work

This thesis has implemented a data race prevention scheme and an automatic view
access detection scheme over the VOPP paradigm, which effectively prevents data race
and improves programmability of VOPP by relieving programmers from acquiring and
releasing views. Experimental results demonstrated that in most applications, these
schemes improve programmability of VOPP with very little overhead, and outperform
shared memory models such as OpenMP as well as traditional TM systems.

However, the view access detection in the current Maotai 3.0 implementation is
runtime-based, which would introduce substantial overheads from the memory protec-
tion system and the interrupt handler in fine-grained view accesses. To reduce these
overheads, compile-time support on automatic view access detection would be an in-
teresting future work.

This thesis has also proposed the novel View-Oriented Transactional Memory
(VOTM) system which seamlessly integrates the merits of the locking mechanism and
TM into the same programming model. VOTM allows concurrency control of each
view to be individually optimized by the RAC scheme according to its own contention.

In addition, VOTM substantially improves the programmability of VOPP. Since
VOTM allows concurrent access to a view, programmers are no longer required to
perform fine-grained partitioning to extract concurrency, which would be tedious and
prone to errors such as deadlock. For example, a tree can be put into a view, rather
than partitioning each node into a separate view. In this way, excessive overheads of
frequently acquiring and releasing fine-grained views can be mitigated. To enhance
performance, programmers only need to put data that will not be accessed together
atomically into separate views. For example, a dictionary with high contention can
be put in a different view from a graph with low contention if they are not accessed
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together atomically, therefore admission restriction on the dictionary will not hinder
concurrency of processes that access the graph. In this way, concurrency control of
each view can be individually optimized according to its access pattern.

In this thesis, a novel RAC scheme for VOTM has been proposed to dynamically
adjust the admission quota of each view according to its contention. A theoretical
model of RAC has been proposed to estimate the optimal admission quota according
to the contention of the view and the TM overhead. Performance evaluations have
shown that, in most cases, this RAC theoretical model can improve performance by
restricting admission when the contention is high or when the TM metadata overhead
is excessive.

Experimental results have shown that the performance gain of VOTM comes from:

Reduction of contention and TM overhead In high contention applications such
as Eigenbench, RAC can prevent livelocks by quickly cutting the admission quota
to reduce contention and ensure progress. On the other hand, when memory-
intensive applications incur excessively high TM mechanism overhead, RAC can
also reduce this overhead by cutting the admission quota as illustrated by the
VOTM-NOrec versions of Vacation and SSCA2. As a result, VOTM-NOrec has
a performance gain of 50% and 500% on Vacation and SSCA2 respectively over
TM.

View partitioning allows individual optimization of admission to each view
If two shared objects with different access patterns are placed into separate
views, then RAC can restrict admission of the high contention view to reduce
its contention, while giving unlimited access to the low contention view to
maximize its concurrency. In applications such as the OrecEagerRedo version of
Eigenbench, view partitioning allows RAC to set the optimal admission quota
for each view, and therefore outperforms the single-view version by 200%, where
RAC can only settle the overall admission quota in between the shared objects.

Reduction of TM metadata contention through view partitioning Since
each view is essentially a separate TM system with its own metadata,
partitioning shared memory into multiple views will also split contention in the
TM metadata. The VOTM-NOrec version of multiple-view applications such
as Eigenbench, Intruder and MultiRBTree highlight this performance gain by
splitting data into multiple views alone, even when RAC is not used to control
admission to each view.
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However, performance evaluations also pointed out that in some memory-intensive
cases, such as Intruder, the application itself also incurs memory overhead, that is not
accounted for by the current RAC model, and consequently, RAC failed to determine
the optimal admission quota. This overhead could be due to cacheline contention of
the application data, or memory bandwidth limitations in the hardware architecture.
As the number of cores in modern multicore architecture increases, these overheads
will become predominant. Therefore, the impact of the memory overheads on RAC,
from both the application and the TM mechanism, needs to be investigated in detail
as a future work. Moreover, in addition to admission control, I will also investigate
the potential benefits of applying adaptive TM algorithms (as shown in the RSTM pa-
per [102]) in each view of VOTM to optimize performance in multiple-view applications
where the optimal TM algorithm of each view is different.

In the current VOTM implementation, nested view acquisition is forbidden. This
would limit the composability of VOTM, because after acquiring a view, the VOTM
application may call other third-party libraries that access other views. To address this
composability problem, I will investigate the automatic view partitioning scheme that
automatically partition shared data into views and/or merge views at runtime accord-
ing to the data access pattern. In this way, whenever two views are accessed together,
these two views can be merged into a single view. In addition, when two shared objects
in the same view have different access patterns, but are never accessed together, then
the system can split them into separate views to allow fine-grained control of their
accesses according to their own contention, thus further improve the performance.
Moreover, the automatic view partitioning scheme will also relieve programmers from
manually partitioning shared data into different views, thus substantially improve the
programmability of VOTM.

In addition, architectures with hardware transactional memory (HTM) support,
such as the IBM BlueGene/Q [53] and Intel Haswell [14] are beginning to emerge in
the commercial market. Currently, these HTM architectures support HTM only at the
cache level within a CPU. Since the HTM metadata is stored in the CPU cache, it can
only be accessed by cores within the same CPU socket. Therefore HTM can only be
supported between the cores on the same CPU socket, but TM between different CPU
sockets still requires software transactional memory (STM).

Since the data owned by a view can be determined by the system due to the data-
centric philosophy of VOTM, VOTM can further optimize performance by scheduling
processes that access the same view onto the same CPU socket, thus avoiding the STM
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overhead, and the data transfer overhead between sockets. This will be investigated as
a future work once the Intel Haswell processor becomes commercially available.

Similarly, the benefits of VOTM can also be realized in distributed STM systems. In
distributed STM systems, the network overhead between nodes is relatively high [92],
despite the advent of high speed network architectures such as InfiniBand [76]. There-
fore, performance can be greatly enhanced if processes that frequently access the same
view can be scheduled onto the same computer to avoid the network overhead. Imple-
mentation and performance analysis of VOTM for distributed multi-core architectures
would be an interesting future work as well.

In conclusion, this thesis has clearly demonstrated that VOPP can provide a data
race free environment on shared-memory multicore architectures with little overhead,
and VOTM outperforms both traditional transactional memory models and lock-based
models in most benchmark applications.
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[54] Jájá, J. (1992). Introduction to Parallel Algorithms. Addison-Wesley.

[55] Kale, L. (2012). The Charm++ Programming Language Manual. University of
Illinois at Urbana-Champaign.

[56] Karunaratna, T. C. (2005). Nondeterminator-3: A provably good data-race de-
tector that runs in parallel. Master’s thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology.

[57] Kirk, D. B. and Hwu, W.-M. (2013). Programming Massively Parallel Processors
(2nd ed.). San Francisco, Califonia, USA: Morgan Kaufmann.

[58] Kung, H. and Robinson, J. (1981). On the optimistic methods for concurrency
control. ACM Transactions on Database Systems, 6(2), 213–226.

[59] Lamport, L. (1974). A new solution of Dijkstra’s concurrent programming prob-
lem. Commun. ACM, 17(8), 453–455.

[60] Lamport, L. (1979). How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. IEEE Transactions on Computers, 28(9), 690–691.

[61] Leiserson, C. E. (1998). A minicourse in multithreaded programming. Technical
report, MIT Laboratory for Computer Science.

[62] Leung, K., Chen, Y., and Huang, Z. (2012). When and how VOTM can im-
prove performance in contention situations. In The Fifth International Workshop
on Parallel Programming Models and Systems Software for High-end Computing, in
Proceedings of the 41st International Conference on Parallel Processing.

128



[63] Leung, K. and Huang, Z. (2011). View-Oriented Transactional Memory. In The
Fourth International Workshop on Parallel Programming Models and Systems Soft-
ware for High-end Computing, in Proceedings of the 40th International Conference
on Parallel Processing.

[64] Leung, K., Huang, Z., Huang, Q., and Werstein, P. (2009). Maotai 2.0: Data
race prevention in View-Oriented Parallel Programming. In Proceedings of the 10th
International Conference on Parallel and Distributed Computing, Applications and
Technologies, 263–271. IEEE Computer Society.

[65] Liu, T., Curtsinger, C., and Berger, E. D. (2011). Dthreads: efficient deterministic
multithreading. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, SOSP ’11, New York, NY, USA, 327–336. ACM.

[66] Lomet, D. B. (1977). Process structuring, synchronization, and recovery using
atomic actions. In ACM Conference on Language Design for Reliable Software,
128–137.

[67] Marathe, V. J., Spear, M. F., Heriot, C., Acharya, A., Eisenstat, D., Scherer
III, W. N., and Scott, M. L. (2006). Lowering the overhead of nonblocking soft-
ware transactional memory. In The First ACM SIGPLAN Workshop on Languages,
Compilers, and Hardware Support for Transactional Computing.

[68] Mattson, T. G. and Sanders (2005). Patterns for Parallel Programming. Addison-
Wesley.

[69] Mellor-Crummey, J. (1991). On-the-fly detection of data races for programs with
nested fork-join parallelism. In Supercomputing’91, 24–33.

[70] Miller, B. P. and Choi, J.-D. (1988). A mechanism for efficient debugging of
parallel programs. In Proceedings of the SIGPLAN ’88 conference on Programming
language design and implementation, Volume 23, 135–144.

[71] Netzer, R. H. and Ghosh, S. (1992). Efficient race condition detection for shared-
memory programs with post/wait synchronization. In The 21st International Con-
ference on Parallel Processing (ICPP’92).

[72] Nichols, B., Buttlar, D., and Farrell, J. P. (1996). Pthreads Programming. O’Reilly.

[73] Odersky, M., Spoon, L., and Venners, B. (2008). Programming in Scala: A Com-
prehensive Step-by-step Guide (1st ed.). USA: Artima Incorporation.

129



[74] OpenMP Architecture Review Board (2008). OpenMP Application Program In-
terface Version 3.0. OpenMP Architecture Review Board.

[75] Oppenheimer, D., Ganapathi, A., and Patterson, D. A. (2003). Why do internet
services fail, and what can be done about it? In Proceedings of the 4th conference on
USENIX Symposium on Internet Technologies and Systems - Volume 4, USITS’03,
Berkeley, CA, USA, 1–1. USENIX Association.

[76] Pentakalos, O. (2002). An Introduction to the InfiniBand Architecture. O’Reilly.

[77] Peterson, G. (1981). Myths about the mutual exclusion problem. Information
Processing Letters, 12(3), 115–116.

[78] Pethick, M., Liddle, M., Werstein, P., and Huang, Z. (2003a). Parallelization of a
backpropagation neural network on a cluster computer. In International Conference
on Parallel and Distributed Computing and Systems (PDCS 2003).

[79] Pethick, M., Liddle, M., Werstein, P., and Huang, Z. (2003b). Parallelization
of a backpropagation neural network on a cluster computer. In Proceedings of the
15th IASTED International Conference on Parallel and Distributed Computing and
Systems.

[80] Reinders, J. (2007). Intel Threading Building Blocks : Outfitting C++ for Multi-
core Processor Parallelism. O’Reilly.

[81] Reinelt, G. (1995). TSPLIB95. Technical report, Institut für Angewandte Math-
ematik, Universität Heidelberg.

[82] Riegel, T., Felber, P., and Fetzer, C. (2006). A lazy snapshot algorithm with eager
validation. In 20th International Symposium on Distributed Computing.

[83] Rossbach, C. J., Hofmann, O. S., and Witchel, E. (2010). Is transactional pro-
gramming actually easier? In Proceedings of the 15th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’10, New York, NY,
USA, 47–56. ACM.

[84] Roy, A., Hand, S., and Harris, T. (2009). A runtime system for software lock
elision. In Proceedings of the 4th ACM European Conference on Computer Systems,
New York, NY, USA, 261–274. ACM.

130



[85] Ruppert, J. (1995). A delaunay refinement algorithm for quality 2-dimensional
mesh generation. J. Algorithms, 18(3), 548–585.

[86] Saha, B., Adl-Tabatabai, A.-R., Hudson, R. L., Minh, C. C., and Hertzberg, B.
(2006). McRT-STM: a high performance software transactional memory system for
a multi-core runtime. In Proceedings of the eleventh ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, New York, NY, USA, 187–197.
ACM.

[87] Sakr, S. (2012). ARM’s eight-core Mali GPUs promise “dramatic” boost to mobile
graphics. Engadget.

[88] Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., and Anderson, T. (1997).
Eraser: A dynamic race detector for multithreaded programs. In The 16th ACM
Symposium on Operating Systems Principles (SOSP’97).

[89] Scherer, III, W. N. and Scott, M. L. (2005). Advanced contention management for
dynamic software transactional memory. In M. K. Aguilera and J. Aspnes (Eds.),
Proceedings of the Twenty-Fourth Annual ACM Symposium on Principles of Dis-
tributed Computing, 240–248. ACM.

[90] Spracklen, L. and Abraham, S. G. (2005). Chip multithreading: Opportunities and
challenges. In Proc. of Inter. Symp. on High-Performance Computer Architecture,
248–252.

[91] Subramaniam, V. (2011). Programming Concurrency on the JVM: Mastering
Synchronization, STM, and Actors. The Pragmatic Programmers.

[92] Suganuma, T., Koseki, A., Ishizaki, K., Ueda, Y., Mizuno, K., Silva, D., Komatsu,
H., and Nakatani, T. (2011). Distributed and fault-tolerant execution framework for
transaction processing. In Proceedings of the 4th Annual International Conference
on Systems and Storage, SYSTOR ’11, New York, NY, USA, 2:1–2:12. ACM.

[93] Summerfield, M. (2008). Programming in Python 3: A Complete Introduction to
the Python Language (1st ed.). Addison-Wesley Professional.

[94] Sun Microsystems (2006). OpenSPARC T1 Microarchitecture Specification. Sun
Microsystems.

131



[95] Sundell, H. (2009). Wait-free multi-word compare-and-swap using greedy helping
and grabbing. In H. R. Arabnia (Ed.), Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and Applications, PDPTA 2009,
Las Vegas, Nevada, USA, July 13-17, 2009, 2 Volumes, 494–500. CSREA Press.

[96] Supercomputing Technologies Group, MIT Laboratory for Computer Science
(1998). Cilk 5.4.6 Reference Manual. Supercomputing Technologies Group, MIT
Laboratory for Computer Science.

[97] Tanenbaum, A. and Steen, M. (2002). Distributed Systems: Principles and
Paradigms, Chapter 5. Prentice Hall.

[98] Thomas, D., Fowler, C., and Hunt, A. (2009). Programming Ruby 1.9: The
Pragmatic Programmers’ Guide (3rd ed.). Pragmatic Bookshelf.

[99] Tim Harris, J. R. L. and Rajwar, R. (2010). Transactional Memory (2nd ed.).
Synthesis Lectures on Computer Architecture. Morgan and Claypool.

[100] Usui, T., Behrends, R., Evans, J., and Smaragdakis, Y. (2009). Adaptive locks:
Combining transactions and locks for efficient concurrency. In Proceedings of the
18th International Conference on Parallel Architecture and Compilation Techniques,
Washington, DC, USA. IEEE Computer Society.

[101] van der Wijngaart, R. F. and Frumkin, M. (2002). NAS grid benchmarks ver-
sion 1.0. Technical Report NAS-02-005, NASA Advanced Supercomputing Division,
NASA Ames Research Center.

[102] Wang, Q., Kulkarni, S., Cavazos, J., and Spear, M. (2012). A transactional
memory with automatic performance tuning. ACM Trans. Archit. Code Optim., 8(4),
54:1–54:23.

[103] Wilkinson, B. and Allen, M. (2005). Parallel Programming Techniques and Ap-
plications Using Networked Workstations and Parallel Computers (2nd ed.). Prentice
Hall.

[104] Witchel, E., Cates, J., and Asanović, K. (2002). Mondrian memory protection.
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Appendix A

Contents of the Source Code
CD-ROM

The source code of all VOPP and VOTM implementations from Chapter 2–5, together
with benchmark applications for each implementation, are included in the CD-ROM
attached in this thesis. All implementations are tested on amd64-based shared memory
multicore machines running on Linux 2.6.32 or later. To compile the source code, the
following software are required:

• gcc and g++ compilers version 4.4 or later

• GNU Makefile system

• CMake 2.6 or later

The contents of the CD-ROM are as follow:

/Maotai-2.0 The Maotai 2.0 implementation presented in Chapter 2
/Maotai-3.0 The Maotai 3.0 implementation presented in Chapter 3
/TinySTM-VOTM The TinySTM-based VOTM implementation presented in Chapter 4
/RSTM-VOTM The RSTM-based VOTM implementation presented in Chapter 5
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