
Maintaining Discriminatory Power in Quantized Indexes

Matt Crane
Department of Computer

Science
University of Otago

Dunedin, New Zealand
mcrane@cs.otago.ac.nz

Andrew Trotman
Department of Computer

Science
University of Otago

Dunedin, New Zealand
andrew@cs.otago.ac.nz

Richard O’Keefe
Department of Computer

Science
University of Otago

Dunedin, New Zealand
ok@cs.otago.ac.nz

ABSTRACT

The time cost of searching with an inverted index is di-
rectly proportional to the number of postings processed and
the cost of processing each posting. Dynamic pruning re-
duces the number of postings examined. Pre-calculation
then quantization of term / document weights reduces the
cost of evaluating each posting. The effect of quantization
on precision, latency, and index size is examined herein. We
show empirically that there is an ideal size (in bits) for stor-
ing the quantized scores. Increasing this adversely affects
index size and search latency; decreasing it adversely affects
precision. We observe a relationship between the collection
size and ideal quantization size, and provide a way to deter-
mine the number of bits to use from the collection size.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems
and Software – Performance evaluation (efficiency and ef-
fectiveness)

General Terms

Experimentation, Performance, Reliability

Keywords

Quantization, Impact Ordered Indexes

1. INTRODUCTION
Search engine response time can be dominated by the time
taken to calculate the score of a term with respect to a doc-
ument. This can be reduced in several ways; for example by
examining fewer postings (pruning), reducing the evaluation
cost of the ranking function, or both. In this investigation
we are interested in the second—reducing the cost of evalu-
ation without loss of precision.
Persin et al. [5] proposed ordering the postings lists by

decreasing term frequency (impact ordering). This not only

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.

Copyright 2013 ACM 978-1-4503-2263-8/13/10 ...$15.00.

http://dx.doi.org/10.1145/2505515.2507860.

allows those documents with the highest term frequencies to
be processed first, but it also means the cost of computing
the term frequency component of the ranking function can
be amortized by computing it once for a set of documents
sharing the same frequency. This ordering is also a form of
compression as the term frequency is only stored once for a
set of documents rather than once for each.

Moffat et al. [4] observed that approximations to compo-
nents of the ranking function were as effective as exact values
(the document length can be approximate). Anh et al. [1]
observed that the term / document weight could be pre-
computed and stored in the impact ordered index; during
indexing they evaluated the ranking function for every term
with respect to every document and stored that result rather
than term frequency. Doing so reduced the search-time rank-
ing function to a series of additions.

However, such pre-calculated values are floating point and
do not compress well, so Moffat et al. [4] quantized these
scores into b-bit integers. Several approximations were ex-
plored by Anh et al. [1], who show that either a linear map-
ping, or alternatively skewing to provide extra granularity
at the lower scores works well.

Herein we examine the number of bits needed for quan-
tization. We do this by exploring the relationship between
the number of bits and retrieval precision, index size, and
search latency. We find that as the number of bits increases
the precision trends towards that seen in an index storing
term frequencies. We observe that as the number of bits
increases so too does the index size and processing time.

Problematically, the number of bits needed for quanti-
zation must be known while indexing. A value too small
results in a loss of precision (reductio ad absurdum, 1-bit is
Boolean) whereas a value too large increases latency. This
leads to our research question “What is the minimum num-

ber of bits needed for a quantized index to perform compa-

rably to a term-frequency index”. We measure comparable
as no statistically significant loss in precision, which in turn
we measure with non-interpolated MAP and P@20. P@20
accurately reflects early precision but MAP is more stable
when a small number of queries with binary assessments are
used [2]. We wish to minimize size so as to keep latency low.

Our question is not phrased in terms of query processing,
only in terms of precision. Consequently the choice of term-
at-a-time, document-at-a-time, or score-at-a-time process-
ing of postings lists is inconsequential. Without loss of gen-
erality we use term-at-a-time processing of impact ordered
postings quantized with the uniform quantization method
of Anh et al. [1], which is an index-wide linear scaling of

2 4 6 8 10 12 14 16

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

WSJ & WT10G

Bits

M
A
P

WSJ

WT10G

2 4 6 8 10 12 14 16

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

0
.2
5

.GOV & .GOV2

Bits

M
A
P

.GOV

.GOV2 701–750

.GOV2 751–800

.GOV2 801–850

2 4 6 8 10 12 14 16

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

0
.2
5

0
.3
0

ClueWeb09

Bits

M
A
P

A 2010

A 2011

B 2010

B 2011

2 4 6 8 10 12 14 16

0
.0
0

0
.1
0

0
.2
0

0
.3
0

WSJ & WT10G

Bits

P
@
2
0

WSJ

WT10G

2 4 6 8 10 12 14 16

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

.GOV & .GOV2

Bits

P
@
2
0

.GOV

.GOV2 701–750

.GOV2 751–800

.GOV2 801–850

2 4 6 8 10 12 14 16

0
.0

0
.1

0
.2

0
.3

0
.4

ClueWeb09

Bits

P
@
2
0

A 2010

A 2011

B 2010

B 2011

Figure 1: Precision effect due to quantization into
[

1..2bits
)

(MAP at top, P@20 at bottom), horizontal lines are tf indexes

the term / document weight. A heap is used to store the
top-k accumulators; these were all already implemented in
the ATIRE [6] search engine.
Our experiments were conducted on 5 TREC document

collections of varying size and 8 query sets. From these we
observe a relationship between the ideal number of bits and
collection size. We use this to estimate the number of bits
needed for the ClueWeb12 collection, which we find to be
metric dependent.

Collection Documents Size TREC Topics
WSJ 173,252 650MB 51–100
.GOV 1,247,753 19GB 551–600
WT10G 1,692,069 10GB 451–500
.GOV2 25,205,179 426GB 701–750, 751–800, 801–850
ClueWeb09 B 50,220,423 1.5TB 51–100 (2010)
ClueWeb09 A 150,954,279 12.5TB 101–150 (2011)

Table 1: Collection stats, ClueWeb09 A minus (70%) spam

2. COLLECTIONS
Table 1 presents details of the document collections used.
The first column gives the name, the second gives the num-
ber of documents, the third is the size, and the fourth gives
the topic sets. For example, the 1.6M document WT10G
collection is 10GB and against it we used TREC topics 451–
500. ClueWeb09 was used in two configurations: Category
B, and Category A with 70% spam reduction (using the list
developed by Cormack et al. [3]).
The experiments were conducted on a quad-CPU AMD

Opteron 6276 2.3GHz 16-core PC with 512GB PC12800
memory, 6×600GB 10000 RPM hard drives, running Linux

kernel 2.6.32. All experiments were single threaded.

3. PRECISION
In this section we show that as the number of bits used to
store the quantized weight increases from 2, the precision of
the search engine tends towards that observed when term
frequencies are used. Indeed, when 1 bit is used the index
simply stores the presence or absence of the term in the doc-
ument (the index is Boolean) but the accuracy is equivalent
when the resolving power is equal to that of the floating
point numbers used to compute the weight at search time.

To demonstrate this we compared the precision (MAP and
P@20) seen in a quantized index to that seen in a term fre-
quency (tf) index. The number of bits used for quantization
varied from 2 to 16 in steps of 1. We used the BM25 ranking
function trained on maximizing ERR-IA@20 on ClueWeb09
B and TREC 2009 topics 1–50. These topics are otherwise
not used herein.

The results are presented in Figure 1. Horizontal lines
show the precision seen when a tf index is used and curved
lines show the precision as the number of bits increases. By
visual inspection, and for the smaller collections, 8 bits is
adequate if MAP is used and 5 for P@20 (notwithstanding
significance tests, see Section 5), but is woefully inadequate
for ClueWeb09.

As a sanity test, and to eliminate the possibility that the
observed behaviour is due to the precision metrics, the ex-
periment was reconducted using just ClueWeb09 A and the
diversity metric ERR-IA@20. The result, presented in Fig-
ure 2, shows a similar pattern to Figure 1.

2 4 6 8 10 12 14 16

0
.0
0

0
.1
0

0
.2
0

0
.3
0

ClueWeb09 A

Bits

E
R
R
-
I
A
@
2
0

2010

2011

Figure 2: Precision effect (ERR-IA@20)
due to fixed-range quantization

2 4 6 8 10 12 14 16

0
5
0

1
0
0

1
5
0

Index Size

Bits

In
d
e
x
S
iz
e
(G

B
)

ClueWeb09 A

ClueWeb09 B

.GOV2

WT10G

.GOV

WSJ

Figure 3: Index size effect due to
fixed-range quantization

0.0e+00 5.0e+07 1.0e+08 1.5e+08

0
2

4
6

8
1
0

1
2

Bits Required

Document Count

B
it
s
R
e
q
u
ir
e
d

MAP Observed

MAP Fitted

P@20 Observed

P@20 Fitted

Figure 4: Collection size / bits for
quantization relationship

4. SIZE
In this section we show that as the number of bits used to
store the quantized score increases, so too does the index
size. Indeed, this tends to infinity as some rational numbers
cannot be stored in a finite number of bits (quantization is
necessarily lossy).
The postings lists were impact ordered, sorted first on

decreasing weight and then within each group (quantum)
by increasing document id. The weight was stored once for
each group and document ids were stored difference (delta)
encoded then v-byte compressed. These indexes are small
(for .GOV2 it is about 3% of collection size).
To conduct the experiment we examined the index sizes

from Section 3. The results are presented in Figure 3 which
shows that regardless of collection the index size increases
as the number of bits increases. The increase can be sub-
stantial, for example the 8-bit ClueWeb09 A index is 82GB
but the 16-bit index is 148GB.
This increase is intuitively correct and due to three effects.

First, as the number of bits increases the space required for
storing them increases. Second, as the number of bits in-
creases the number of unique quantized values tends to a
maximum of one per document id. Third, as the number
of document ids in each quantum decreases, their deltas in-
crease, and compress less effectively.

5. LATENCY
In this section we demonstrate a search latency effect due
to the number of bits used for quantization. Intuitively a
1 bit index should be faster than a 16 bit index, however
this is contingent on many factors including the index lo-
cation (disk or memory), index structure (impact or doc-
ument ordered), early termination, pruning, skipping, etc.
But regardless of these factors an effect on latency is ex-
pected because the amount of information being processed
differs. Two impact ordered approaches were tested: term-
at-a-time processing to completion; and top-k (k = 20) using
a heap.
To conduct this experiment we used the indexes from Sec-

tion 3. For queries we used the titles from the TREC topics
in Table 1. The index was on disk and caches were not
flushed between runs. Each experiment was conducted 10
times and the median was taken because it discards outliers
and more realistically (than the mean) represents expected

behaviour. The baseline used term frequencies processed
to completion using identical BM25 parameters. Reported
times are mean time per query (from the median run).

The results are presented in Figure 5, which shows the
effect of the number of bits on search time. The baseline
(horizontal line) is the time taken for the tf index. The
curved line is the time taken as the number of bits increases.
The figure shows that, in general, as the number of bits
increases so too does the time to search (latency).

It is intuitively correct that a quantized index should
take less time than a tf index. In the former the rank-
ing function is simple integer addition whereas in the lat-
ter it requires many floating point operations. It is also
reasonable to expect that as the number of bits increases
so too should the execution time (to a limit, as observed):
the postings lists are longer as there are more integers to
process. For example, with .GOV2 (751–800) and 2 bits,
308,110,592 integers were decompressed by comparison to
311,947,378 integers when 16 bits are use. But with top-k
search the heap is touched less often with a larger number of
bits: with ClueWeb A (2011 topics) and 2 bits it is touched
1,157,182,513 times and 2,628,019 times for 16 bits. There
is a tradeoff evident in the dip seen in ClueWeb graph of
Figure 5. When not performing top-k search a final sort
is performed and it takes longer as the number of unique
accumulator values increases.

6. IDEALITY
In the previous sections we showed an effect on precision,
index size, and search latency due to the number of bits used.
We wish to maximize throughput without loss of precision,
and in doing so must choose the number of bits to be large
enough for there to be no precision effect, but no larger.

In this experiment we re-examined the results from Fig-
ure 1 and selected, for each collection, those runs that were
were not statistically significantly (2-tailed pairwise t-test,
p = 0.01) different from the baseline. From these runs we
selected for, each collection, the run that used the smallest
number of bits. If this differed between topic sets we chose
the larger. This requires a number of significance tests, but
no adjustment (e.g. Bonferroni) was made as the purpose of
the tests was selection and a small error could be tolerated.

The results are shown in Figure 4 where the relationship
between the minimum number of bits needed and the col-

2 4 6 8 10 12 14 16

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

WSJ & WT10G

Bits

S
e
a
rc
h

T
im

e
(m

s)

WSJ

WT10G

2 4 6 8 10 12 14 16

0
2

4
6

8

.GOV & .GOV2

Bits

S
e
a
rc
h

T
im

e
(s
)

.GOV

.GOV2 701–750

.GOV2 751–800

.GOV2 801–850

2 4 6 8 10 12 14 16

0
2
0

4
0

6
0

8
0

1
0
0

ClueWeb09

Bits

S
e
a
rc
h

T
im

e
(s
)

A 2010

A 2011

B 2010

B 2011

2 4 6 8 10 12 14 16

0
2
0

4
0

6
0

8
0

WSJ & WT10G

Bits

S
e
a
rc
h

T
im

e
(m

s)

WSJ

WT10G

2 4 6 8 10 12 14 16

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

.GOV & .GOV2

Bits

S
e
a
rc
h

T
im

e
(m

s)

.GOV

.GOV2 701–750

.GOV2 751–800

.GOV2 801–850

2 4 6 8 10 12 14 16

0
2

4
6

8

ClueWeb09

Bits

S
e
a
rc
h

T
im

e
(s
)

A 2010

A 2011

B 2010

B 2011

Figure 5: Search time effect due to quantization (search to completion at top, top-20 at bottom), horizontal lines are tf
indexes

lection size can be seen. MAP appears to be more stable
than P@20 so we fitted a curve to MAP and back fitted to
P@20. This curve provides, given the collection size, a con-
servative estimate (lower bound, due to significance errors)
of the number of bits needed without loss of precision. The
lines are shown dashed and presented as Equation 1:

b =
⌈

g + h× 10−4 ×
√

|D|
⌉

(1)

where b is the number of bits, and |D| is the number of doc-
uments. For MAP, g = h = 5.4; for P@20, g = 2.9, h = 4.3.
Quantization is lossy and the errors sum when ranking and
so different results are expected for substantially different
query types (e.g. long).
The number of points is small so care should be taken

when extrapolating. However, ClueWeb12 contains 1.2 bil-
lion documents and substituting this for |D| in Equation 1
suggests the ideal number of bits to use is 25 for MAP and
8 for P@20; fewer will negatively impact precision and more
will negatively affect latency and index size. Coincidently,
IEEE single precision floats are 24 bit so it may be necessary
to use doubles when a tf index is used (which we did).

7. CONCLUSIONS
This work presents a thorough empirical investigation into
the effects on index size, search latency, and precision due
to the number of bits chosen for quantization of term / doc-
ument weights. We observe that quantization into 1 bit is
equivalent to a Boolean index. As the number of bits in-

creases the precision increases to a point equal to that of a
term frequency index. As the number of bits increases so too
does the search time and index size. We present intuitive
explanations as to why. We show a relationship between
the collection size and the ideal number of bits, that num-
ber that is as small as possible (minimizing latency) with no
(significant) loss in precision. Our experiments suggest that
ClueWeb12 will require 25 bits for quantization if MAP is
the preferred metric but only 8 if P@20 is used.

8. REFERENCES
[1] V. Anh, O. de Kretser, and A. Moffat. Vector-space

ranking with effective early termination. In SIGIR

2001, pages 35–42, 2001.

[2] C. Buckley and E. M. Voorhees. Evaluating evaluation
measure stability. In SIGIR 2000, pages 33–40, 2000.

[3] G. Cormack, M. Smucker, and C. Clarke. Efficient and
effective spam filtering and re-ranking for large web
datasets. Information Retrieval, 14(5):441–465, 2011.

[4] A. Moffat, J. Zobel, and R. Sacks-Davis. Memory
efficient ranking. IP&M, 30(6):733–744, 1994.

[5] M. Persin, J. Zobel, and R. Sacks-Davis. Filtered
document retrieval with frequency-sorted indexes.
JASIS, 47(10):749–64, 1996.

[6] A. Trotman, X. Jia, and M. Crane. Towards an efficient
and effective search engine. In SIGIR 2012 Workshop

on Open Source Information Retrieval, pages 40–47,
2012.

	Introduction
	Collections
	Precision
	Size
	Latency
	Ideality
	Conclusions
	References

