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Abstract. Many techniques have previously been proposed for using
low-level CPU Performance Monitoring Counters in power estimation
models. In this paper, we present some common myths of these tech-
niques, and their potential impact. Such myths include: (1) sampling
rate can be ignored; (2) thermal effects are neutral; and (3) memory
events correlate well with power. We aim to raise the awareness of these
interesting issues, which existing power modeling techniques usually do
not address. Our discussions provide some guidance to avoid these myths
and their effects through detailed specification of software and hardware
configurations.
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1 Introduction

Much previous research has focused on building accurate power estimation mod-
els based upon Performance Monitoring Counters (PMCs) [13,8,14,12,11,10].
These techniques allow runtime power estimation, on a per-application basis,
without requiring the use of a power meter or special hardware. They are very
useful in power metering of virtual machines in cloud computing [15,16]. Even
hardware-based power metering in Intel’s Sandy Bridge microarchitecture has
to use PMC-based estimation to measure the dynamic power of the cores [9].
However, the research into the use of these techniques needs to be coupled with
an improvement in the specification of the hardware and software configurations
used in the process of the researchers’ power modeling. In previous research,
these configuration details were normally given a brief mention, but lacked dis-
cussion and analysis on their potential impacts on the resulting power model.
Our experiments show that many of these configuration details are crucial in
order to achieve reproducible results. The omissions that we have encountered
can often be attributed to reasons such as assumption of background knowledge,
limited space for publication, or indifference to the authors interpretation of the
experimental results.

Detailed specification of the hardware and software configurations used in
the process of power modeling is also crucial for the avoidance of myths in this
research area. It can help prevent the readers from drawing erroneous conclu-
sions.
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For example, suppose there are two different power models with an identical
mean measuring error of 5%, but for different machines with an equal total power
consumption of 200W. Without further information, the natural conclusion that
can be drawn by the reader is both power models are equally accurate. However,
a different conclusion can be drawn if it was additionally known that machine
‘A’ has a dynamic power (aka workload dependent power) of 30%, while machine
‘B’ has a larger dynamic power of 60%. Given a total error of 10W (5% of total
200W) and the constant static power (aka base power), it is now clear that the
model based on machine ‘A’ has a 16.6% error for dynamic power while the
model based on machine ‘B’ has a much lower error of 8.3% for dynamic power.
The extra information on the proportion of static power and dynamic power
enables a fair comparison to be made between the two, otherwise identical, power
estimation models.

In this paper, we discuss the impact of hardware and software configurations
and the possible myths in the research area of PMC-based power estimation
due to the lack of detailed information. More precisely, we have identified the
following three possible myths.

– Sampling rate can be ignored—In previous research, the sampling rate for
taking PMC-power samples is seldom mentioned. Very often, when a bench-
mark is run, the PMC counters are recorded for the whole execution period
of the benchmark and the average power of the benchmark during the pe-
riod is used in the sample. However, we will show that the sampling rate can
affect the accuracy of the power estimation.

– Thermal effects are neutral—Thermal effects are often not discussed in power
estimation. Many experimental results were given without mentioning the
temperature condition of the CPU chips. We will show that the temperature
of the CPU chips has an effect on the accuracy of the power model and its
effect can be eliminated with proper treatment.

– Memory events correlate well with power—Previous research often assumes
a correlation between memory events and power. Intuitively memory events
like cache misses should correlate with power consumption due to many
memory fetches. We will show that this is not the case on our multicore sys-
tem possibly due to a different memory architecture. This observation gives
us inspiration that detailed specification of software and hardware config-
urations is very important for fair comparison and deep understanding of
different PMC-based power models.

The intention of this paper is not to criticize any of the existing work, or to
propose any alternative methodologies. Instead, our objectives are twofold. First,
we would like to raise awareness of the potential pitfalls in the research area.
Second, we want to stress the importance of detailed specification of software
and hardware configurations in the process of power modeling. If experimental
results are published with sufficient context and specification, it helps avoid the
myths that we will discuss in power modeling.

The remainder of this paper is organized as follows. Section 2 describes our
experimental setup and software/hardware configuration. The myths are dis-
cussed in Section 3. Related work is in Section 4, with the conclusions in Section
5.
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2 System configuration

In this section and throughout this paper, we make a conscious effort to specify
all relevant configuration information, allowing experimental results to be placed
in the appropriate context. It will be shown through this paper that changes in
sampling rate, execution time and configuration of benchmarks impact the re-
sulting model. If such information was not explicitly specified, as is often the case
in many published papers, it becomes harder to compare fairly among alterna-
tive approaches and power models. A commonly omitted data value in a power
estimation model is the amount of static vs. dynamic power within a system.
Static power is the constant, workload independent power consumption of com-
ponents like the Power Supply Unit (PSU). Dynamic power changes according
to the workload, with the most obvious example of the CPU.

Care should be taken to ensure that any neglected details do not impact
on the resulting power model or create the potential for erroneous conclusions.
Often researchers neglect the detailed specification of system parameters due to
limited publication space. Unfortunately, a large number of parameters can have
a significant effect on the experimental results. The architecture-specific nature
of PMC-based power estimation means it is important to document all relevant
hardware and software configurations.

It is for these reasons that this section takes the time to describe the overall
experimental setup of hardware and software configuration, including the design
of our own micro-benchmark. Certain experiment-specific configuration details
are left until the corresponding results sections.

2.1 Experimental setup

The experiments are run on a Dell PowerEdge R905 with four quad-core AMD
Opteron 8380 processors (CPUs), with each core having its own floating-point
unit (FPU). Each processor is located with 4GiB of memory organized in a
NUMA (Non-Uniform Memory Accesses) architecture, providing a total of 16GiB
RAM. The processor provides four alternate operating frequencies through DVFS
(Dynamic Voltage and Frequency Scaling), however we restrict the frequency to
the highest (2.5 GHz) for our experiments as it is the most commonly used
frequency. All benchmarks are compiled using gcc 4.6.3 with no optimization
enabled, ensuring none of the micro-benchmark operations are optimized away.
OpenMP 3.0 [5] is used for the NAS Parallel Benchmarks, which are compiled
with gcc 4.6.3, using optimization argument -O3. All benchmarks were running
on a standard installation of Linux version 2.6.32-25.

The power is measured with the Watts Up? PRO .net power meter, con-
nected via USB to an external monitoring system. The accuracy of the power
meter is ±1.5% + 0.3 watts [1]. An iSocket (InSnergy Socket)1 power meter was
additionally used to validate power measurements, which has an accuracy of 1%.
The measured base/idle power (i.e., static power) for our server is 249W.

1 Institute for Information Industry, http://web.iii.org.tw/, who we thank for pro-
viding this measurement equipment.

http://web.iii.org.tw/


4 Jason Mair, Zhiyi Huang, David Eyers, and Haibo Zhang

The monitoring system was additionally configured to remotely monitor the
server’s system components and temperatures, while recording the power. This
was achieved by altering an instance of IPMItool [7] to log specific measurements
at the same rate as the power values. Communication is handled by the Intel-
ligent Platform Management Interface (IPMI) over LAN, bypassing the OS,
directly communicating with the Baseboard Management Controller (BMC).
Thus, this measurement causes no overhead on the test server.

All performance values are collected from the PMCs, which are a set of four,
per-core hardware registers [6]. Each register is set to record one of the 120
available performance measures at the start of each execution.

2.2 Benchmark configuration

The myths discussed in this paper come from observations made during our
work on deriving a runtime power estimation model based on PMC values. The
idea behind such a model is to find the relationships between key PMCs, the
workload type they represent and the resulting power use. For example, if the
PMC for FPU utilization is high, the current workload is FPU intensive, causing
a large power draw. Alternatively, if the number of cache misses is high, there
may be many memory accesses, resulting in lower utilization of the processor
and a lower power draw from the processor.

To explore these basic principles, we created a micro-benchmark designed
to reproduce five key workload types that could be expected within a system,
shown in Table 1. The micro-benchmark, as shown in Program 1, consists of a
larger outer loop, intended to perform a large number of iterations, and a small
for loop for short bursts of each workload type. The inner for loops execute
quickly, ensuring that whenever the PMCs are sampled during execution, a mix
of workload types will be represented. Modest variations in this burst time are
provided by the pseudo random numbers. This is then multiplied by a ratio,
which is designed to allow extra weight to be added to a single workload type
during execution.

Table 1. Types of workload

Micro-benchmark Description

FPU Floating point multiplication

INT Integer multiplication and division.
Represents most micro operations

memory Random memory accesses

NOP idle loop with NOPs

cache Memory accesses with high cache-hit ratio

By default, all ratios are set to one. However, if we are interested in the
impact of a more FPU-oriented workload, we increase the FPU ratio, leaving all
other ratios the same. The ratios shown throughout this work are 1, 2, 4, 6 and
8. To avoid any synchronization overheads, 16 independent concurrent instances
are run across all 16 cores.
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for(large_number_of_iterations)

for(pseudo_random_number x fpu_ratio)

fpu_micro();

for(pseudo_random_number x int_ratio)

int_micro();

for(pseudo_random_number x memory_ratio)

memory_micro();

for(pseudo_random_number x nop_ratio)

nop_micro();

for(pseudo_random_number x cache_ratio)

cache_micro();

Program 1: Pseudo-code of the micro-benchmark

3 Myths

Many alternative models have been proposed for PMC-based power estimation
[13,8,14,12,11,10]. They commonly used a black-box approach to data processing,
where the regression function is directly applied to the data without necessarily
being visualized. In contrast, this section describes some of the observations made
during our thorough analysis and visualization of the collected experimental data
in the process of power estimation modeling. We will also disclose the differences
of the resulting model due to the system architecture used and the selection of
statistical methods.

Not all of our observations have gone without a note in the literature, but
often only warrant a passing mention without much discussion or analysis. This
may be due to space limitations. Also it is worth noting that failing to disclose
all relevant information would not affect the correctness of the previous work.

In this section, each subsection introduces a myth that could be observed
in published literature. Each myth is followed by a series of observations in our
experiments and our approach to avoid the myth. Each myth is then concluded
with a brief discussion of how this should be taken into account within our
modeling process.

3.1 Myth 1: Sampling rate can be ignored

The rate at which PMCs and power samples are taken can have a direct impact
on the strength of correlation and the noise within a dataset. This is intuitive,
as it will determine the aggregation of results, but is often not documented.

Observation: execution time and sampling rate The first step in deriving
the power model will consist of collecting some initial coarse-grained data for a
range of PMCs, sampled once when execution begins and again upon completion
of each micro-benchmark iteration. The TSC (Time Stamp Counter) is addition-
ally read whenever PMCs are read in order to provide a measure of time. TSC
measures the time as the number of cycles since reset, allowing the intensity of
the PMC-related event to be calculated during execution.
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Fig. 1. Intensity of FPU correlated with power measured over entire execution of micro-
benchmark running an FPU workload.

For example, Figure 1 shows some intensity values for the FPU activities for
multiple iterations of the micro-benchmark, introduced in Section 2.2, in different
configurations. The x-axis is the intensity of FPU activities, which is calculated
by taking the difference in the two FPU PMC measurements of the execution
period and dividing it by the difference in the corresponding TSC values, which
provides the intensity of the activities during the execution period. The y-axis
is the calculated average power use, measured by the power meter, over the
same execution period. In this example, the FPU ratio is adjusted for different
iterations, providing the spread of data clusters along the x and y-axis.

In Figure 1, the data points form a series of tight clusters along a linear path,
which is what was expected according to previous research.

Knowing this works at the most basic level, the logical next step is to increase
the rate at which samples are taken. This was chosen to be once every second,
in order to match that of the power meter. Each PMC value and power mea-
surement are logged to a file during execution, with a corresponding timestamp,
to allow synchronization and post-processing. This time, the results shown in
Figure 2 were not what was expected. The modest horizontal spread of points
within each cluster is due to the adjustments in the pseudo random number
in the algorithm. However, the vertical stripping was not expected at all. This
indicates that something within the system is causing the power values to vary
during execution, which was previously obscured by the coarse-grained samples.

Since the micro-benchmark consists of a fairly consistent workload, it was
suspected that the stripping was due to an inherent latency in the system re-
sponding to starting execution. If such a latency exists, the trend in the data
should become more linear with increased execution times. Therefore, each con-
figuration was re-run, increasing the execution time from ∼ 3 minutes to ∼ 25
minutes. The results in Figure 3 show that when sampled over a longer period
with the same sampling rate, data points return to lying on a linear path, though
there is a long vertical tail in each cluster, which will be explained in the next
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Fig. 2. Intensity of FPU correlated with power, sampled every second for ∼3 minute
execution of the micro-benchmark running FPU workload. Vertical stripes are a result
of a warm-up effect.

section. The spread of points for each cluster along the x-axis is a result of
the increased range of pseudo random times made available by the significantly
increased iteration count.

In this section we have seen two ways in which important data may be ob-
scured. First, the extreme case of using a sampling rate which is too coarse-
grained for the benchmark being sampled. Second, execution times which are
too short will hide longer run trends within a dataset.

Observation: benchmark configuration and execution time The previ-
ous observation not only illustrated the importance of choosing an appropriate
rate at which to sample a benchmark, but also the importance of ensuring a
sufficiently long execution time. However, care must be taken not to introduce
more noise when increasing execution time. While the micro-benchmarks expe-
rience minimal workload variation during execution, this will not be the case for
all other benchmarks. Therefore, increasing execution time in the same way will
not have the same effect, contributing more noise than expected.

To test this hypothesis, we ran an OpenMP instance of the Fast Fourier
Transform (FFT) benchmark from the NAS Parallel Benchmark (NPB) suite
in two different configurations. To ensure each instance to experience the same
latency from startup, a 10 minute idle period is run before each instance begins.
The first configuration had a problem size of 512 × 512 × 512, completing 250
iterations. The mean power measured was 403.6W with a standard deviation
of 56.19W. Looking at the data we found many small periods of low power use
during the execution due to the large number of iterations performed, explaining
the large deviation in measured power.

For comparison purposes, an alternative configuration was run with a prob-
lem size of 1024 × 512 × 512, completing 100 iterations. The mean power of
425.0W was much closer to the peak power, with a smaller standard deviation,
36.2W.
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Fig. 3. Intensity of FPU correlated with power, sampled every second for ∼25 minute
execution of the micro-benchmark running FPU workload. The linear trend is more
clear though vertical stripes still exist due to a warm-up effect.

From this observation, we find it is important to carefully consider how bench-
marks are configured to avoid introducing any unexpected noise in measured
power.

Discussion When selecting the rate at which to sample the PMC counters, it
is important to consider potential smoothing effects if samples are too coarse
grained. Not doing so will obscure data trends and characteristics for the sam-
pled benchmark. Similar to this is the importance of execution time, as this
additionally impacts the number of samples for a given rate, potentially further
obscuring long-run trends.

Documenting both the sampling rate and the execution time help to add con-
text to the commonly reported statistics like the mean power. The significance
of such values can be questionable and statistically inaccurate if the data set is
believed to be too small.

Also it is good to give the standard deviation of the measured power so that
the smoothness of the power changes is known. Mean power value can hide the
smoothness of the power trend, as two power trends with the same mean value
can have very different standard deviations. Standard deviation can be used
to reflect how reliably the mean power value is used to characterize the power
feature of the execution period.

3.2 Myth 2: Thermal effects are neutral

Thermal effects are often not discussed in power modeling. For those who are
aware of the thermal effects on power consumption, it is commonly perceived
that the thermal effects can be negated by locking the fan speed, believing the
change of fan speed is the main cause of the variation in power due to changes
in thermal load. An alternative technique to locking the fan speed is the use
of a CPU warm-up phase before the start of each execution. However, we find
neither of these can sufficiently negate the thermal effects.
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Fig. 4. Normalized CPU temperatures and power meter readings for a long-run exe-
cution of the micro-benchmark running FPU workload.

Observation: fan speed and power Section 3.1 mentioned the presence of
a long-run latency in power changes corresponding to the beginning of each
micro-benchmark execution, which causes the vertical long tail of each cluster
in Figure 3. The most likely cause of delayed effect on power within a system is
temperature related. To explore this, we used IPMI to monitor CPU tempera-
tures once a second during execution of each micro-benchmark. Figure 4 shows
the normalized values for power and temperature of all four CPUs on the y-axis.
The x-axis gives the time in seconds. The power curve steadily increases until
around 400 seconds where it flattens out. The recorded temperatures follow a
similar trend where they continue to increase until about 400 seconds, reaching
a stable point with the exception of an occasional temperature spike.

These results illustrate a trend between CPU warm-up and the corresponding
power latency. The most surprising aspect of this is the length of time required
to reach a stable value, 400 seconds. In many cases this will be longer than the
execution time of the benchmarks.

To further confirm this relationship, IPMI was used to monitor the fan speed
for each CPU. Despite the temperatures changing, the fans’ speed remains con-
stant at 3600rpm. This speed is even maintained under a high thermal load
running a CPUburn benchmark [4]. Contrary to the common belief, the power
latency is not caused by changes in the speed of the fans when they respond
to an increased thermal load. Therefore, policies designed to lock fan speeds
through the BIOS are not capable of negating all of the dynamic thermal effects
on power consumption.

Observation: warm-up and cool-down In an attempt to remove the effect
of the warm-up phase, the micro-benchmark was re-run after a CPU warm-up
phase. There is a 15-minute cool-down period before each iteration of the micro-
benchmark starts to execute, in order to ensure consistent starting temperature
for each iteration. After that, an instance of the CPUburn was run on each core
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Fig. 5. Intensity of FPU correlated with power, sampled every second for the micro-
benchmark running INT workload. Sampling starts after a 60-second period of CPU
warm-up.

for different execution times, providing different times of CPU warm-up. The
results for two different CPU warm-up lengths of 60 and 90 seconds are shown
in Figures 5 and 6, respectively. Same as the previous figures, the x-axis is the
intensity of the FPU activities, while the y-axis is the power in Watts. This time,
the INT ratio is adjusted between iterations, giving the spread of clusters along
the x-axis.

A CPU warm-up phase of 60 seconds, as shown in Figure 5, is enough to
eliminate much of the vertical tail caused by the warm-up phase, resulting in
a stronger linear correlation. Alternatively, with the CPU warm-up phase of 90
seconds, as shown in Figure 6, it begins to over-warm the CPU, which causes
the opposite effect, a vertical stripping above the main linear trend, instead of
the vertical tail.

However, different types of workload in the benchmark need different warm-
up periods. A 60-second CPU warm-up phase provides the best results for a
workload with lots of integer calculations, as shown in Figure 5. However, a
workload with lots of floating point calculations requires a 90-second CPU warm-
up. These results are illustrated by the Pearson’s Correlation Coefficient for
the two workload types in Table 2. While differences in correlations are not
significant they do illustrate the point that no single CPU warm-up policy is
sufficient for all workload types.

Table 2. Pearson’s Correlations for different workload type with different warm-up
times

CPU warm-up
time (seconds) FPU-type INT-type

30 0.969611 0.977467

60 0.992794 0.997928

90 0.996615 0.992321

120 0.993053 0.985091
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Fig. 6. Intensity of FPU correlated with power, sampled every second for the micro-
benchmark running INT workload. Sampling starts after a 90-second period of CPU
warm-up.

Discussion Temperature variations within a system have the potential to ad-
versely impact the accuracy of a power estimation model. For example, an in-
stance of the micro-benchmark running a FPU workload initially uses 397W,
stabilizing at around 405W. This gives an error of 2% of total power, and more
significantly, 5% of dynamic power. Due to the myth of the thermal effects, there
is no single solution designed to mitigate all thermal effects.

Unfortunately, it is not likely that a single policy exists to reliably remove
all warm-up effects on power consumption. The most likely cause for the warm-
up effects is static power leakage from the processor, which is due to the high
temperatures. For example, a 12% reduction in CPU (dynamic) power was made
in [2] by reducing the operating temperature, while maintaining the same voltage
and frequency 4.6GHz.

It might seem that the only way to reliably monitor thermal effects is through
embedded temperature sensors. However, since their placement inside the socket
is some distance away from the top of CPU, embedded sensors do not provide
reliable temperature data [3]. Also such sensors were not designed for high preci-
sion temperature reading, as their purpose is to provide an early warning system
to prevent hardware damage.

In summary, we have made two key observations. First, benchmarks can ex-
perience a large warm-up effect on power consumption during their start-up,
which is not due to the changes in fans speed. Second, the length of warm-up
phase required varies between different workloads, as illustrated through differ-
ences in the warm-up times required by FPU and INT workloads. That means
using a fixed period of warm-up for all workloads will not achieve the desired
result.
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Fig. 7. Intensity of L2-cache misses correlated with power , sampled every second for
the micro-benchmark running memory workload.

3.3 Myth 3: Memory events correlate well with power

The correlation between memory-related PMCs like cache miss and memory
activities is intuitive and well known. However, there is a myth that memory-
related PMCs correlate equally well with power consumption. This proved not
to be true for our multicore system.

Observation: neutrality of memory-related PMCs Memory-bound and
CPU-bound workloads exhibit quite different power characteristics and in most
cases are therefore treated differently. For power estimation, it is also common to
use those PMCs with a direct logical connection to memory use. This intuitively
makes sense, and is what we expected to be the case too. In modeling the power
use of memory workloads, we used PMCs directly related to memory, such as,
instruction cache miss, data cache miss, L2-cache miss, L3-cache miss, DTLB
miss and DRAM accesses.

Surprisingly, none of these counters provided a strong correlation between
memory use and power consumption. To illustrate this, the results for L2-cache
misses are plotted in Figure 7. Our micro-benchmark has been configured to
execute a large number of memory accesses by increasing the ratio for memory
accesses, leaving all other micro-benchmark ratios at the default value of one. The
x-axis is the intensity of cache misses, which is calculated taking the difference
of two L2-cache-miss PMC values divided by the elapsed TSC value. The y-axis
is the measured power. We collect the intensity and power samples at every one
second. The warm-up effect, seen by the vertical stripping within each cluster,
is present since there is no CPU warm-up phase before data collection.

The most notable observation to be made in Figure 7 is the distinct lack
of any vertical offset between clusters. It seems that power is not functionally
determined by L2-cache misses. The same results have been found for all other
memory-related PMCs mentioned, so we do not repeatedly show the results here.
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Discussion A common approach taken in building a power model is to decom-
pose the processor and the expected workload type into several key components,
such as FPU, Memory, Stalls, and Instructions Retired [8]. Each component
requires a specific, strongly correlated PMC to represent its power consumption.
In the case of memory, a PMC like cache misses is expected to correlate well
with the activities of the memory subsystem. This approach has worked in other
power estimation models [12], but failed to do so on our experimental system
due to the neutrality of memory-related PMCs to power consumption.

This difference of results can likely be attributed to the architectural dif-
ferences, though we are not sure which components have caused the difference,
as there are several components which could possibly contribute to such dif-
ferences. The first component could be the memory architecture. Our system
uses NUMA, where, unlike some systems of the previous work, there is no sin-
gle memory bank shared between all processors. The memory in our system is
arranged in 4GiB blocks beside each of the four processors. Given the random
memory accesses, extra overhead may be incurred if memory accesses are shifted
to a remote processor’s memory block.

Also the processors in our system lack the ability to sleep, even at low levels.
That means the processor maintains a busy loop or executes some other work
while waiting for requests from the memory subsystem. Given the high thermal
latencies, temperatures will remain high, despite lower levels of utilization.

4 Related Work

Much of the prior work on PMC-based power estimation has taken the approach
of using PMCs to model the underlying architectural components, which are ap-
plied in a variety of use cases. Singh et al. [8] proposed a model which used micro-
architectural knowledge to decompose the processor into its four main functional
units: FP Units, Memory, Stalls, and Instructions Retired. PMC selection is
made from initial data collected from the execution of the SPEC benchmark
suite. A separate micro-benchmark is designed for each of the four PMCs most
strongly correlated with power for each functional unit. The micro-benchmark
data is used to form a piece-wise linear function.

Bertran et al. [12] take an even finer grained approach by starting with a
set of about 97 micro-benchmarks designed to individually highlight all possible
power components. This results in multiple linear equations with an input for
each of the seven derived power components. During the runtime period, PMC
multiplexing is required, as the micro-architecture does not allow that many
counters to be collected simultaneously.

Da Costa et al. [14] present a methodology intended to broaden the range
of modeled workloads by supplementing PMC values with process and system
level statistics. This means the resulting model, derived through multivariate
regression, is not limited to estimating the power of CPU and memory work-
loads, allowing accurate power estimation of the network and disk synthetic
benchmarks.

Such models derive a single, global power estimation function typically used
for monitoring system power on a per application basis. Alternatively, Alonso et
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al. [11] takes this more targeted approach in proposing a framework for instru-
menting source code functions with power metering. The API logs PMC data
and power values to derive a specific power model offline, enabling execution
traces of power to be used during runtime estimation.

Wang et al. [10] takes the novel approach of using the fewest PMCs possible.
The model was built using only CPU operating frequency and IPC, making
it universal across microarchitectures. It is built into the SPAN libraries and
interfaces to provide source code power estimation.

Dhiman et al. [16] presented a model for accurate power estimation in a virtu-
alized environment. A performance counter manager is run on each host machine,
designed to collect and correlate PMC events to each VM. Power estimates are
then periodically made for each VM using classification based Gaussian mixture
models.

Only a select sample of previous work is presented here to demonstrate some
alternate uses for PMC-based power estimation models. A more comprehensive
survey on hardware, software and hybrid power estimation techniques can be
found in [10]. Given this varied use of PMC-based power models, each myth
within this paper was presented and discussed without explicit guidance, en-
suring all conclusions remain relevant and universally applicable to different
approaches.

5 Conclusions

In this paper we have presented and discussed three myths in PMC-based power
estimation models: sampling rate can be ignored; thermal effects are neutral;
and memory events correlate well with power. The truth of each myth is re-
vealed through a series of observations made while deriving our own PMC-based
estimation model.

Such myths have arisen due to a lack of configuration specifications and
accompanying analysis in published literature. This is of particular importance
for PMC-based power estimation as the models derived are largely architecture
dependent. As we have seen, changes in hardware and software configurations
can adversely impact the resulting power models.

While failing to disclose all relevant information would not affect the correct-
ness of the previous work, it can lead to erroneous conclusions being drawn from
the results. In raising awareness of the impact of the missing relevant informa-
tion, we hope researchers in this community more readily document hardware
and software configurations in the future. Doing so will prove to be beneficial to
the advancement of the research community.

Acknowledgement

This work was partially supported by the COST (European Cooperation in
Science and Technology) framework, under Action IC0804.



Myths in PMC-based Power Estimation 15

References

1. Watts up? operators manual., https://www.wattsupmeters.com/secure/

downloads/manual_rev_9_corded0812.pdf

2. Anandtech, Overclocking CPU/GPU/Memory Stability Testing Guidelines, http:
//forums.anandtech.com/showthread.php?p=34255681

3. Overclockers, Reconciling CPU Temperature Measures, http://www.

overclockers.com/reconciling-cpu-temperature-measures/

4. Ubuntu Manuals, CPUburn, http://manpages.ubuntu.com/manpages/precise/

man1/cpuburn.1.html

5. O.A.R. Board, OpenMP Application Program Interface Version 3.0, May 2008.
6. AMD. BIOS and Kernel Developer’s Guide (BKDG) For AMD Family 10h Proces-

sors, 2009.
7. IPMItool, http://ipmitool.sourceforge.net/
8. K. Singh, M. Bhadauria, and S. A. McKee. Real time power estimation and thread

scheduling via performance counters. SIGARCH Computer Architecture News,
37(2):4655, 2008.

9. Rotem, E., Naveh, A., Rajwan, D., Ananthakrishnan, A., and Weissmann, E.: Power
Management Architecture of the 2nd Generation Intel Core microarchitecture, for-
merly codenamed Sandy Bridge. In Hot Chips: A Symposium on High Performance
Chips, Aug. 2011.

10. S. Wang, H. Chen, and W. Shi. SPAN: A software power analyzer for multicore
computer systems. Sustainable Computing: Informatics and Systems, 1(1):2334,
2011.

11. P. Alonso, R.M. Badia, J. Labarta, M. Barreda, M.F. Dolz, R. Mayo, E.S.
Quintana-Orti, and R. Reyes. Tools for Power and Energy Analysis of Parallel Sci-
entific Applications. Proceedings of International Conference on Parallel Processing
(ICPP), Sept. 2012.

12. R. Bertran, M. Gonzlez, X. Martorell, N. Navarro, E. Ayguade. Decomposable
and responsive power models for multicore processors using performance counters
ICS 10: Proceedings of the 24th ACM International Conference on Supercomputing,
ACM, Tsukuba, Ibaraki, Japan (2010), pp. 147158

13. X. Chen , C. Xu , R. Dick and Z. Mao. Performance and power modeling in a multi-
programmed multi-core environment, In Proceedings of the 47th Design Automation
Conference, ACM, pp. 813-818, 2010.

14. G. Da Costa, and H. Hlavacs. Methodology of measurement for energy consump-
tion of applications. Grid Computing (GRID), 2010 11th IEEE/ACM International
Conference on. IEEE, 2010.

15. A. Kansal, F. Zhao, J. Liu, N. Kothari, A.A. Bhattacharya, Virtual machine power
metering and provisioning, In Proceedings of the 1st ACM Symposium on Cloud
Computing, pp.39-50, 2010.

16. G. Dhiman, K. Mihic, T. Rosing, A system for online power prediction in virtual-
ized environments using Gaussian mixture models, In Proceedings of the 47th ACM
IEEE Design Automation Conference, ACM, pp. 807812, 2010.

https://www.wattsupmeters.com/secure/downloads/manual_rev_9_corded0812.pdf
https://www.wattsupmeters.com/secure/downloads/manual_rev_9_corded0812.pdf
http://forums.anandtech.com/showthread.php?p=34255681
http://forums.anandtech.com/showthread.php?p=34255681
http://www.overclockers.com/reconciling-cpu-temperature-measures/
http://www.overclockers.com/reconciling-cpu-temperature-measures/
http://manpages.ubuntu.com/manpages/precise/man1/cpuburn.1.html
http://manpages.ubuntu.com/manpages/precise/man1/cpuburn.1.html
http://ipmitool.sourceforge.net/

	Lecture Notes in Computer Science
	Introduction
	System configuration
	Experimental setup
	Benchmark configuration

	Myths
	Myth 1: Sampling rate can be ignored
	Myth 2: Thermal effects are neutral
	Myth 3: Memory events correlate well with power

	Related Work
	Conclusions


