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Many  techniques  have  previously  been  proposed  for using  low-level  CPU  Performance  Monitoring  Coun-
ters  in  power  estimation  models.  In this  paper,  we  present  some  apparent  myths  regarding  these
techniques,  and their  potential  impact.  The  underlying  misconceptions  include:  (1)  sampling  rate  and
execution  time  can  be left unspecified;  (2)  thermal  effects  are  insubstantial;  (3)  memory  events  corre-
eywords:
ower estimation
erformance Monitoring Counter (PMC)
ower metering model

late  well  with  power  consumption;  (4)  compilation  configuration  does  not need  to  be reported;  and  (5)
metrics  for  performance  evaluation  of  models  are comparable.  We  aim  to  raise  the awareness  of these
interesting  issues,  which  existing  power  modeling  techniques  often  do  not  address.  Our  discussions
provide  some  guidance  to  avoid  these  myths  and their  effects  through  detailed  specification  of software
and hardware  configurations.

© 2014 Elsevier  Inc.  All  rights  reserved.
. Introduction

Much previous research has focused on building accurate power
stimation models based upon Performance Monitoring Counters
PMCs) [1–6]. These models collect relevant PMC  values and map
hem to power usage based on the sampled 〈pmc1, pmc2, . . .,  pmcn,
〉 tuples, where P is the measured power under the correspond-
ng PMC  values. Usually the PMC  values reflect the activities of the
ystem components such as CPU and RAM, which can potentially
orrelate well with the power usage of the system. These tech-
iques allow runtime power estimation, on a per-application basis,
ithout requiring the use of a power meter or special hardware.

hey are very useful in power metering of virtual machines in cloud
omputing [7,8]. Even hardware-based power metering in Intel’s
andy Bridge microarchitecture has to use PMC-based estimation
o measure the dynamic power for the processor package [9,10].
owever, the research into the use of these techniques needs to be
oupled with an improvement in the specification of the hardware
nd software configurations used in the process of the researchers’
ower modeling. In previous research, these configuration details
ere normally given a brief mention, but lacked discussion and
nalysis on their potential impacts on the resulting power model.
Our experiments show that many of these configuration

etails are crucial in order to achieve reproducible results. The

∗ Corresponding author. Tel.: +64 3 479 8498; fax: +64 3 479 8529.
E-mail addresses: jkmair@cs.otago.ac.nz (J. Mair), dme@cs.otago.ac.nz (D. Eyers),

zy@cs.otago.ac.nz (Z. Huang), haibo@cs.otago.ac.nz (H. Zhang).

ttp://dx.doi.org/10.1016/j.suscom.2014.03.007
210-5379/© 2014 Elsevier Inc. All rights reserved.
omissions that we  have encountered can often be attributed to rea-
sons such as assumption of background knowledge, limited space
for publication, or indifference to the authors interpretation of the
experimental results.

In this paper, we discuss the impact of hardware and software
configurations and the possible myths in the research area of PMC-
based power estimation due to the lack of detailed information.
More precisely, we have selected the following five myths to dis-
cuss.

• Sampling rate and execution time can be left unspecified—In previ-
ous research, the sampling rate for taking PMC-power samples
is seldom mentioned. Very often, when a benchmark is run, the
PMC  counters are recorded for the whole execution period of
the benchmark and the average power of the benchmark dur-
ing the monitoring period is used in the sample. However, we
will show that the sampling rate can affect the accuracy of the
power estimation significantly.

• Thermal effects are insubstantial—Thermal effects are often not
discussed in power estimation. Many experimental results were
given without mentioning the temperature condition of the CPU
chips. We  will show that the temperature of the CPU chips has an
effect on the accuracy of the power model and its effect can be
eliminated with proper treatment.
• Memory events correlate well with power consumption—Previous
research often assumes a correlation between memory events
and power consumption. The idea is that cache misses should
correlate with energy-expensive memory fetches. We  will show

dx.doi.org/10.1016/j.suscom.2014.03.007
http://www.sciencedirect.com/science/journal/22105379
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Table 1
Types of workload.

Micro-benchmark Description

FPU Floating point multiplication
INT Integer multiplication and division. Represents

most micro operations
Memory Wide-ranging random memory accesses
NOP Idle loop with NOPs

The micro-benchmark, as shown in Program 1, consists of a larger
outer loop, intended to perform a large number of iterations, and
a small for loop for short bursts of each workload type. The inner
4 J. Mair et al. / Sustainable Computing

that this is not the case on our multicore system, which is most
likely due to its different memory architecture.
Compilation configuration does not need to be reported—The
selection of compiler optimization is often given very little con-
sideration as it is perceived to have a minimal impact, if any, on
the accuracy of the power model. We  will show that power mod-
els can be more compilation dependent than is typically expected.
Metrics for performance evaluation of models are comparable—The
results for many existing models are not presented in a manner
allowing for them to be fairly compared to alternative models due
to the use of different metrics. Additionally, some of the evalua-
tion methods used may  result in misleading conclusions. We  will
show how to avoid such problems, in order to present results in
a clear, informative way.

These observations give us inspiration that detailed specifica-
ion of software and hardware configurations is very important for
air comparison and a deep understanding of different PMC-based
ower models.

The intention of this paper is not to criticize any of the existing
ork, or to propose any detailed power estimation methodologies.

nstead, our objectives are twofold. First, we would like to raise
wareness of the potential pitfalls in the research area. Second, we
ant to stress the importance of detailed specification of software

nd hardware configurations in the process of power modeling.
f experimental results are published with sufficient context and
pecification, it helps avoid the myths in power modeling that we
ill discuss in the following sections.

The remainder of this paper is organized as follows. Section 2
escribes our experimental setup and software/hardware config-
ration. The myths are discussed in Section 3. A general modeling
ethodology is presented in Section 4. Related work is summarized

n Section 5, with the conclusions and future work in Section 6.

. System configuration

In this section and throughout this paper, we make a conscious
ffort to specify all relevant configuration information, allowing
xperimental results to be placed in the appropriate context. It will
e shown through this paper that changes in sampling rate, exe-
ution time and configuration of benchmarks impact the resulting
odel. If such information was not explicitly specified, as is often

he case in many published papers, it becomes harder to compare
airly among alternative approaches and power models.

Care should be taken to ensure that any neglected details do
ot impact on the resulting power model or create the potential for
rroneous conclusions. Often researchers neglect the detailed spec-
fication of system parameters due to limited publication space.
nfortunately, a large number of parameters can have a significant
ffect on the experimental results. The architecture-specific nature
f PMC-based power estimation means it is important to document
ll relevant hardware and software configurations.

It is for these reasons that this section takes the time to describe
he overall experimental setup of hardware and software configu-
ation, including the design of our own micro-benchmark. Certain
xperiment-specific configuration details are left until the corre-
ponding results sections.

.1. Experimental setup

The experiments are run on a Dell PowerEdge R905 with four

uad-core AMD  Opteron 8380 processors (CPUs), with each core
aving its own floating-point unit (FPU). Each processor is located
ith 4GiB of memory organized in a NUMA (Non-Uniform Mem-

ry Accesses) architecture, providing a total of 16GiB RAM. The
Cache Memory accesses with high cache-hit ratio

processor provides four alternate operating frequencies through
DVFS (Dynamic Voltage and Frequency Scaling), however we
restrict the frequency to the highest (2.5 GHz) for our experiments
as it is the most commonly used frequency. All micro-benchmarks
are compiled using gcc 4.6.3 with no optimization enabled, ensur-
ing none of the micro-benchmark operations are optimized away.
The NAS Parallel Benchmarks are compiled with gcc 4.6.3, using
OpenMP 3.0 [11] and optimization argument -O3 as the default
in our experiments. Some specific experiments use gcc 4.4.7 or
optimization level -O0, which are explicitly stated. All benchmarks
were run on a standard installation of Linux version 2.6.32-25.

The power is measured with the Watts Up? PRO.net power
meter connected via USB to an external monitoring system. The
accuracy of the power meter is ±1.5% +0.3 W [12]. An iSocket
(InSnergy Socket)1 power meter was  additionally used to validate
power measurements, which has an accuracy of 1%. The idle oper-
ating state of the system was  measured as 249 W,  providing the
base/idle power (i.e., static power). The default operating state of
the OS is idle, as no sleep or halt states are available on the experi-
mental server.

The external monitoring system was  additionally configured to
remotely monitor the server’s system components and tempera-
tures, while recording the power. This was  achieved by altering an
instance of IPMItool [13] to log specific measurements at the same
rate as the power values. Communication is handled by the Intel-
ligent Platform Management Interface (IPMI) over LAN, bypassing
the OS, directly communicating with the Baseboard Management
Controller (BMC). Thus, this measurement causes no direct over-
head on the test server.

All performance values are collected from the PMCs, which are
a set of four, per-core hardware registers [14]. Each register is set
to record one of the 120 available performance events at the start
of each execution.

2.2. Benchmark configuration

The myths discussed in this paper come from observations made
during our work on deriving a runtime power estimation model
based on PMC  values. The idea behind such a model is to find the
relationships between key PMCs, the workload type they represent,
and the resulting power use. For example, if the PMC  for FPU utiliza-
tion is high, the current workload is FPU intensive, causing a large
power draw. Alternatively, if the number of cache misses is high,
there may  be many memory accesses, resulting in lower utilization
of the processor and a lower power draw from the processor.

To explore these basic principles, we created a micro-
benchmark designed to reproduce five key workload types that
could be expected in general purpose software, shown in Table 1.
1 Institute for Information Industry, http://web.iii.org.tw/,  who we thank for pro-
viding this measurement equipment.

http://web.iii.org.tw/
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processing. This time, the results shown in Fig. 2 were not what
was expected. The modest horizontal spread of points within each
cluster is due to the adjustments in the pseudo random number
in the algorithm. However, the vertical stripping was  not expected
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or loops execute quickly, ensuring that whenever the PMCs are
ampled during execution, a mix  of workload types will be repre-
ented. Modest variations in this burst time are provided by the
seudo random numbers. This is then multiplied by a ratio, which

s designed to allow extra weight to be added to a single workload
ype during execution.

rogram 1: Pseudo-code of the micro-benchmark.

By default, all ratios are set to one. However, if we  are interested
n the impact of a more FPU-oriented workload, for example, then

e increase the FPU ratio, leaving all other ratios the same. The
atios shown throughout this work are 1, 2, 4, 6 and 8. To avoid
ny synchronization overheads, 16 independent instances are run
oncurrently on each of the 16 cores.

. Myths

Many of the existing methodologies for PMC-based power
stimation [1–6] to some degree use a black-box approach to
rocessing PMC data, where the regression function is directly
pplied to the data without necessarily being visualized. As a result,

 detailed specification of the modeling procedure may  not be avail-
ble, hindering other researchers from reproducing the results. In
ontrast, this section describes some of the observations made
uring our thorough analysis and visualization of the collected
xperimental data in the process of deriving our power estimation
odel. We  will also disclose the differences of the resulting model

ue to the system architecture used and the selection of statistical
ethods.
In this section, each subsection introduces a myth that could be

bserved in published literature. Each myth is followed by a series
f observations derived from our experiments and our approach
o avoid key misconceptions underlying the myth. The first four
ubsections conclude with a brief discussion of how to address the
yth within a modeling process. The final subsection covers statis-

ical methods, and advice on avoiding these problems are threaded
hroughout it.

.1. Myth 1: Sampling rate and execution time can be left
nspecified

The rate at which PMCs and power samples are taken can have
 direct impact on the strength of correlation and the noise within
 dataset. This is intuitive, as it will determine the aggregation of
esults, but is often not documented.
.1.1. Observation: execution time and sampling rate
The first step in deriving a power model will consist of collecting

ome initial coarse-grained data for a range of PMCs, sampled once
Fig. 1. Intensity of FPU correlated with power measured over entire execution of
micro-benchmark running an FPU workload.

when execution begins and again upon completion of each micro-
benchmark iteration. The TSC (Time Stamp Counter) is additionally
read whenever PMCs are read in order to provide a measure of
time. TSC measures the time as the number of cycles since reset,
allowing the intensity of the PMC-related event to be calculated
during execution.

For example, Fig. 1 shows some intensity values for the
FPU activities for multiple iterations of the micro-benchmark,
introduced in Section 2.2. The x-axis is the intensity of FPU activi-
ties, which is calculated by taking the difference in the two FPUPMC
measurements of the execution period and dividing it by the differ-
ence in the corresponding TSC values, which provides the intensity
of the activities during the execution period. The y-axis is the cal-
culated average power use, measured by the power meter, over the
same execution period. In this example, the FPU ratio is adjusted
for different iterations, providing the spread of data clusters along
the x and y-axis.

In Fig. 1, the data points form a series of tight clusters along
a linear path, which is what was expected according to previous
research.

Now knowing that the power/PMC correlation works at a basic
level, the logical next step was  to increase the rate at which sam-
ples are taken. This was  chosen to be once every second, in order
to match the available data from the power meter. Each PMC  value
and power measurement are logged to a file during execution, with
a corresponding timestamp, to allow synchronization and post-
FPU PMC / TSC

Fig. 2. Intensity of FPU correlated with power, sampled every second for ≈3 min
execution of the micro-benchmark running FPU workload. Vertical stripes are a
result of a warm-up effect.
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Fig. 4. Normalized CPU temperatures and power meter readings for a long-run
lear though vertical stripes still exist due to a warm-up effect.

t all. This indicates that something within the system is causing
he power values to vary during execution, which was  previously
bscured by the coarse-grained samples.

Since the micro-benchmark consists of a fairly consistent work-
oad, it was suspected that the stripping was due to an inherent
atency in the system responding to starting execution. If such a
atency exists, the trend in the data should become more linear

ith increased execution times. Therefore, each configuration was
e-run, increasing the execution time from ≈3 min to ≈25 min. The
esults in Fig. 3 show that when sampled over a longer period with
he same sampling rate, data points return to lying on a linear path,
hough there is a long vertical tail in each cluster, which will be
xplained in the next section. The spread of points for each cluster
long the x-axis is a result of the increased range of pseudo random
imes made available by the significantly increased iteration count.

In this section we have seen two ways in which important data
ay  be obscured. First, the extreme case of using a sampling rate
hich is too coarse-grained for the benchmark may  omit important

amples for training. Second, execution times that are too short may
ide longer-term trends within a dataset.

.1.2. Observation: benchmark configuration and execution time
The previous observation not only illustrated the importance of

hoosing an appropriate rate at which to sample a benchmark, but
lso the importance of ensuring a sufficiently long execution time.
owever, the execution time is dependent on the benchmark con-
guration, requiring the publication of configuration details for an
xperiment to be reproducible. Unfortunately, much existing work
nly goes as far as publishing the execution time, if at all. The prob-
em arises when benchmarks have multiple, configurable execution
arameters, such as the problem size or iteration count, where mul-
iple configurations will have varied execution characteristics, but
re capable of achieving similar execution times.

To test this hypothesis, we ran an OpenMP instance of the fast
ourier Transform (FT) benchmark from the NAS Parallel Bench-
ark (NPB) suite in two different configurations, achieving similar

xecution times. The first configuration had a problem size of
12 × 512 × 512, completing 250 iterations. The mean measured
ower was 403.6 W with a large standard deviation, 56.19 W,
aused by periods of low power use. Alternatively, the second con-
guration was run with a larger problem size of 1024 × 512 × 512,
ompleting only 100 iterations. The mean power of 425.0 W was

uch closer to the peak power, with a smaller standard deviation,

6.2 W.
This observation illustrates how a similar execution time can

e achieved by two different benchmark configurations, with each
execution of the micro-benchmark running FPU workload.

having quite different power characteristics. This further high-
lights the need for a full disclosure of experimental configuration
details in the literature, preventing erroneous conclusions from
being drawn.

3.1.3. Discussion
When selecting the rate at which to sample the PMC  counters,

it is important to consider potential smoothing effects if samples
are too coarse-grained. Not doing so will obscure data trends and
characteristics for the sampled benchmark. Similar to this is the
importance of execution time, as this additionally impacts the num-
ber of samples for a given rate, potentially further obscuring trends
from longer runs.

Documenting both the sampling rate and the execution time
help to add context to the commonly reported statistics such as the
mean power. The significance of such values can be questionable
and statistically inaccurate if the data set is believed to be too small.

3.2. Myth 2: Thermal effects are insubstantial

Thermal effects are often not discussed in power modeling. For
those who  are aware of the thermal effects on power consumption,
it is commonly perceived that the thermal effects can be negated by
locking the fan speed, believing the change of fan speed is the main
cause of the variation in power due to changes in thermal load. An
alternative technique to locking the fan speed is the use of a CPU
warm-up phase before the start of each execution. However, we
find neither of these can sufficiently negate the thermal effects.

3.2.1. Observation: fan speed and power
Section 3.1 mentioned the presence of a latency in power

changes within long runs corresponding to the beginning of each
micro-benchmark execution, which causes the long vertical tail
of each cluster in Fig. 3. The most likely cause of a delayed effect
on power within a system is temperature-related. To explore this,
we used IPMI to monitor CPU temperatures once a second during
execution of each micro-benchmark. Fig. 4 shows the normalized
values for power and temperature of all four CPUs on the y-axis. The
x-axis gives the time in seconds. The power curve steadily increases
until around 400 s where it flattens out. The recorded temperatures
follow a similar trend where they continue to increase until about
the same time, reaching a stable point with the exception of an

occasional temperature spike.

These results illustrate a trend between CPU warm-up and the
corresponding power latency. The most surprising aspect of this is
the length of time required to reach a stable value: well over six
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Table 2
Pearson’s Correlations for different workload type with different warm-up times.

CPU warm-up time (s) FPU-type INT-type

30 0.969611 0.977467
60  0.992794 0.997928
ig. 5. Intensity of FPU correlated with power, sampled every second for the micro-
enchmark running INT workload. Sampling starts after a 60-s period of CPU warm-
p.

inutes! In many cases this will be longer than the execution time
f the benchmarks.

To further confirm this relationship, IPMI was used to monitor
he fan speed for each CPU. Despite the temperatures changing,
he fans’ speed remains constant at 3600 rpm. This speed is even

aintained under a high thermal load running a CPUburn bench-
ark [15]. Contrary to the common belief, the power latency is

ot caused by changes in the speed of the fans when they respond
o an increased thermal load. Therefore, policies designed to lock
an speeds through the BIOS are not capable of negating all of the
ynamic thermal effects on power consumption.

.2.2. Observation: warm-up and cool-down
In an attempt to remove the effect of the warm-up phase, the

icro-benchmark was re-run after a CPU warm-up phase. There
s a 15-min cool-down period before each iteration of the micro-
enchmark starts to execute, in order to ensure consistent starting
emperature for each iteration. After that, an instance of the CPUb-
rn was run on each core for different execution times, providing
ifferent durations of CPU warm-up. The results for two  different
PU warm-up lengths of 60 and 90 s are shown in Figs. 5 and 6,
espectively. The axes are the same as each of the previous figures:
he x-axis is the intensity of the FPU activities, while the y-axis is
he power in Watts. This time, the INT ratio is adjusted between
terations, giving the spread of clusters along the x-axis.

A CPU warm-up phase of 60 s, as shown in Fig. 5, is enough

o eliminate much of the vertical tail caused by the warm-up
hase, resulting in a stronger linear correlation. Alternatively, with
he CPU warm-up phase of 90 s, as shown in Fig. 6, it begins to
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ig. 6. Intensity of FPU correlated with power, sampled every second for the micro-
enchmark running INT workload. Sampling starts after a 90-s period of CPU warm-
p.
90 0.996615 0.992321
120 0.993053 0.985091

over-warm the CPU, which causes the opposite effect, a vertical
stripping above the main linear trend, instead of the vertical tail.

However, different types of workload in the benchmark need
different warm-up periods. A 60-s CPU warm-up phase provides
the best results for a workload with lots of integer calculations, as
shown in Fig. 5. However, a workload with lots of floating point
calculations requires a 90-s CPU warm-up. These results are illus-
trated by the Pearson’s Correlation Coefficient for the two workload
types in Table 2. While differences in correlations are not signifi-
cant they do illustrate the point that no single CPU warm-up policy
is sufficient for all workload types.

3.2.3. Discussion
Temperature variations within a system have the potential to

adversely impact the accuracy of a power estimation model. For
example, an instance of the micro-benchmark running an FPU
workload initially uses 397 W,  stabilizing at around 405 W.  This
gives an error of 2% of total power, and more significantly, 5% of
dynamic power. Due to the myth of the thermal effects, there is no
single solution designed to mitigate all thermal effects.

Unfortunately, it is not likely that a single policy exists to reli-
ably remove all warm-up effects on power consumption. The most
likely cause for the warm-up effects is static power leakage from
the processor, which is due to the high temperatures. For exam-
ple, a 12% reduction in CPU (dynamic) power consumption was
made, as documented in an Anandtech article [16], by reducing the
operating temperature, while maintaining the same voltage and
frequency 4.6 GHz.

It might seem that the only way to reliably monitor thermal
effects is through embedded temperature sensors. However, since
their placement inside the socket is some distance away from the
top of CPU, embedded sensors do not provide reliable temperature
data either [17]. Also such sensors were not designed for high pre-
cision temperature reading; their primary purpose is to provide an
early warning system to prevent hardware damage.

In summary, we  have made two key observations. First, that
benchmarks can experience a large warm-up effect on power con-
sumption during their initial execution start-up time, which is not
due to the changes in cooling fan speed. Second, the length of
warm-up phase required varies between different workloads, as
illustrated through differences in the CPU warm-up times required
by FPU and INT workloads. That means using a fixed period of
warm-up for all workloads will not achieve the desired result.

3.3. Myth 3: Memory events correlate well with power
consumption

The correlation between memory-related PMCs, such as cache
miss, and memory activities is intuitive and well known. How-
ever, there is a myth that memory-related PMCs correlate equally
well with power consumption. This proved not to be true for our
multicore system.
3.3.1. Observation: neutrality of memory-related PMCs
Memory-bound and CPU-bound workloads exhibit quite differ-

ent power characteristics and in most cases are therefore treated
differently. For power estimation, it is also common to use those
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Fig. 8. Scatter plot of power and retired-uops PMC  values for two executions of

different optimization argument. The x-axis plots the intensity of
or the micro-benchmark running memory workload.

MCs with a direct logical connection to memory use. This intu-
tively makes sense, and is what we expected to be the case too.
n modeling the power use of memory workloads, we  used PMCs
irectly related to memory, such as, instruction cache miss, data
ache miss, L2-cache miss, L3-cache miss, DTLB miss and DRAM
ccesses.

Surprisingly, none of these counters provided a strong correla-
ion between memory use and power consumption. To illustrate
his, the results for L3-cache misses are plotted in Fig. 7. Our

icro-benchmark has been configured to execute a large number
f memory accesses by increasing the ratio for memory accesses,
eaving all other micro-benchmark ratios at the default value of
ne. The x-axis is the intensity of cache misses, which is calculated
aking the difference of two L3-cache-miss PMC  values divided
y the elapsed TSC value. The y-axis is the measured power. We
ollect the intensity and power samples once every second. The
arm-up effect, seen by the vertical stripping within each clus-

er, is present since there is no CPU warm-up phase before data
ollection.

The most notable observation to be made in Fig. 7 is the distinct
ack of any vertical offset between clusters. It seems that power is
ot functionally determined by L3-cache misses. The same results
ave been found for all other memory-related PMCs mentioned, so
e do not repeatedly show the results here.

.3.2. Discussion
A  common approach taken in building a power model is to

ecompose the processor and the expected workload type into sev-
ral key components, such as FPU, Memory, Stalls, and Instructions
etired [2]. Each component requires a specific, strongly correlated
MC to represent its power consumption. In the case of memory, a
MC such as ‘cache misses’ is expected to correlate well with the
ctivities of the memory subsystem. This approach has worked in
ther power estimation models [4], but was not able to be repro-
uced on our experimental system, in which there is much less
f a link between the aforementioned memory-related PMCs and
ower consumption.

This difference of results can likely be attributed to the archi-
ectural differences, though we are not sure which components
ctually have caused the difference, as there are several compo-
ents which could possibly be playing a part. The first component
ould be the memory architecture. Our system uses NUMA, where,
nlike the system architectures used in previous work, there is

o single memory bank shared between all processors. The mem-
ry in our system is arranged in 4GiB blocks besides each of the
our processors. Given a workload of random memory accesses,
the FT NPB benchmark. Each benchmark is compiled using a different optimization
parameter.

extra overhead may  be incurred if memory accesses are shifted to
a remote processor’s memory block.

Also the processors in our system lack the ability to sleep, even at
low levels. That means the processor maintains a busy loop or exe-
cutes some other work while waiting for requests from the memory
subsystem. Given the high thermal latencies, temperatures will
remain high, despite lower levels of utilization.

3.4. Myth 4: Compilation configuration does not need to be
reported

The compiler configuration and relevant software versions were
not always given for all stages of model building and evaluation in
previous work. Yet, as we demonstrate below, different compiler
configurations can have a significant impact on power measure-
ment.

3.4.1. Observation: optimization matters
When deriving the power model, both benchmarks and micro-

benchmarks are often configured to use no optimizations [2] in
order to ensure consistent performance counter readings, thereby
improving regression analysis. This results in a model that provides
a much stronger fit to the training data. While this is desirable,
it implicitly acknowledges that the use of optimization flags will
change execution behavior.

As a first step to understanding and potentially incorporating
such effects into the model, we looked at the impact of two opti-
mization levels on two different types of workload on benchmarks
from the NAS Parallel Benchmark suite. For the optimization lev-
els, -O0 and -O3 were chosen. This is because these are the two
most commonly used configurations. -O0 is used to provide no
compiler optimizations during the use of micro-benchmarks when
deriving the model. Alternatively, -O3 is one of the most commonly
used configurations for standard benchmark execution, providing
a reasonable performance improvement in most situations. For the
benchmarks, a computation intensive workload is represented by
the fast Fourier Transform (FT). In contrast, the Data Cube (DC)
benchmark provides a more memory intensive workload.

The use of optimization when compiling the benchmarks con-
tributes a large amount of noise to the PMC  data, with much more
variation in the power used. An example of this can be seen in Fig. 8,
where two instances of the FT benchmark are shown, each using a
the retired-uops PMC, while the power for each corresponding one
second sample is given on the y-axis. From this it can be seen that
the use of no optimization has a much narrower spread of power
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Table  3
Statistics for different optimization levels.

Power FT -O0 FT -O3 DC -O0 DC -O3

Mean 430.18725 418.92125 291.1435 284.987
Std  21.340075 33.609875 43.483825 38.831125
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Median 439.0 421.125 270.85 266.4
Max  449.3 471.05 410.45 395.025

se for each corresponding PMC  utilization value. Alternatively, the
se of compiler optimization has a much greater spread of power
alues, making it much harder to predict power. Overall, the use
f optimization causes a shift of the main cluster down the x-axis,
ndicating lower retired-uops than that of the instance using no
ptimization. From this initial view, it is clear that the use of opti-
ization for a benchmark changes the runtime utilization levels,

nd power, meaning a power model unaware of optimization may
nd up being inaccurate.

While the optimization reduced the retired-uops intensity, it
id not have an impact on the FPU intensity. The overall impact of
ptimization can be seen in Table 3, where a much greater variation
n power is seen, both from the standard deviation and maximum
alue, however optimization results in lower power usage overall.

The more memory intensive workload—DC—similarly has over-
ll lower power values when more optimization is performed.
owever in contrast to FT, this time a much lower maximum power

eads to the standard deviation being smaller with the use of opti-
ization. This can most likely be attributed to the optimizer’s

bility to reduce the impact on power of the periodic, compute
ntensive phases on the otherwise memory intensive workload.

.4.2. Observation: impact of compiler version
A further source of power variation not visible to the power

stimation model is the compiler version used. Unlike the effects
aused by compiler optimizations, the execution characteristics
f each benchmark does not appear to change significantly with
ifferent compiler versions. Note this may  just be due to limited
esting regarding both compiler versions and benchmarks.

However, changing the version of gcc from 4.6.3 to the older
.4.7 did result in an increased maximum power level reached. This
an be seen in Fig. 9, which plots the power measurements once a
econd for an execution of the FT benchmark. The main point of dif-
erence seen between the two compiler versions is the peak power,
here gcc-4.6.3 has a peak power of 449.4 W,  while gcc-4.4.7 is
.5 W higher at 457.9 W.  Interestingly, there is little variation in
ower at other stable points, such as the period of approximately
10 W power consumption towards the end of execution.
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3.4.3. Discussion
It is widely acknowledged that PMC-based power estimation

models are architecture specific, however it is less well known that
they can be significantly compilation specific. The potential for this
limitation has been shown here with the observations regarding
compiler optimization and the version of compiler used. Such con-
figuration details have not been a significant concern in much of
the existing literature, given that the models and benchmarks used
during evaluation are strictly controlled by the experimenter. How-
ever, if such models are to be used in a more general deployment,
they will have to additionally be capable of estimating power for
user application binaries, where the compiler version and config-
uration are not known and may  vary significantly from that used
when initially deriving the model.

Furthermore, the significance of each compilation parameter
will be architecture specific, meaning that other systems may  suffer
much larger variations in power. For instance, the impact of differ-
ent MPI  libraries was noted in [18], where the two instances had
power values of ≈120 W and ≈140 W,  which is a large percentage
variation.

Some of this impact could potentially be mitigated by incor-
porating some compilation derived variation into both the training
data sets as well as with benchmarks used for evaluating and tuning
the model.

3.5. Myth 5: Metrics for performance evaluation of models are
comparable

A great deal of care is taken to avoid problems while building
the power model, however less care is taken to provide the fairest
possible comparison between different models. In this section we
will show how to present results with comparable metrics, and
make fair comparison among alternative models.

3.5.1. Observation: static versus dynamic power
A commonly omitted metric in a power estimation model is

the amount of static versus dynamic power within a system. Static
power is the constant, workload-independent power consumption
of components like the Power Supply Unit (PSU). Dynamic power
changes according to the workload, with the most obvious exam-
ple being the effect of the CPU. Knowing the amount of static and
dynamic power is important, because PMC-based power models
essentially only model the dynamic power, which is the response
in power to a given change in utilization and performance values.
Making this distinction allows for comparisons to be made between
models evaluated on different systems.

For example, suppose there are two different power models with
an identical mean estimation error of 5%, but for different machines
with an equal total power consumption of 200 W.  Without further
information, the natural conclusion that can be drawn by the reader
is both power models are equally accurate. However, a different
conclusion can be drawn if it was additionally known that machine
‘A’ has a dynamic power (aka workload dependent power) of 30%,
while machine ‘B’ has a larger dynamic power of 60%. Given a total
error of 10W (5% of total 200W) and the constant static power (aka
base power), it is now clear that the model based on machine ‘A’ has
a 16.6% error for dynamic power while the model based on machine
‘B’ has a much lower error of 8.3% for dynamic power. The extra
information on the proportion of static power and dynamic power
enables a fair comparison to be made between the two, otherwise
apparently identical power estimation models.
Therefore, without this additional contextual information, it is
not possible to make a fair, unbiased comparison between different
methodologies, derived and evaluated on two  separate systems,
with different power characteristics.
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sets, this analysis can become time consuming. Therefore, as a
Fig. 10. Power versus time for the DC benchmark.

In some more extreme cases, a high static power can obscure a
ery inaccurate model. This is more likely on commodity systems
hat incorporate energy efficient hardware, such as low power pro-
essors. As a result, they have a very narrow range of operating
ower levels, where the dynamic power makes up a small propor-
ion of total system power. Alternatively, this is not possible with

ore powerful, power hungry enterprise servers, which are capa-
le of having dynamic power ranges in excess of the base static
ower.

Making a distinction between static and dynamic power allows
or comparisons to be made between models, but it can also aid in
valuating the significance of factors contributing errors to power
stimation. For instance, in the last observation, it was  found that

 change in compiler version caused a corresponding change in the
aximum power of 8.5 W,  or just under 2%, which does not seem

ery significant. However, if this error is considered as a change in
ynamic power, it becomes a more sizable impact of 4%, which is
n error worth attempting to mitigate.

.5.2. Observation: statistical evaluation
Having derived a power estimation model, it is important to

dequately evaluate the estimation error for the test benchmark
uite. One of the most common measures for estimation is the
edian error for each test benchmark. However, such a metric is

ot sufficient to truly represent the closeness of fit for the model
nd can lead to a misrepresentation of some results. In the most
aïve cases, the absolute value for the measured error is not taken,

eading to a significantly overstated accuracy of fitting. This is due
o the tendency for the positive errors of over-fitting to cancel out
he corresponding negative values of under-fitting or vice versa.

However, even if the absolute values of errors are used, the
edian error is not descriptive enough to give an adequate repre-

entation of the actual fitting. This is in a large part due to the type
f benchmarks used for model evaluation, scientific workloads,
nd the structure of distinct workload phases. This is illustrated in
ig. 10, which plots power use of the DC benchmark during execu-
ion. The x-axis gives time in seconds, where the power is measured
nce a second, which is then shown on the y-axis. It can be seen
hat DC has two distinct workload phases. The first is a dominant,

emory-bound workload, with low levels of power consumption:
round 260 W.  The other workload is a periodic computation inten-
ive phase represented by the sudden, short spikes in power use.
here is an additional horizontal line in the graph at 262.9 W,  which
epresents the median measured power value. From this, it can
e concluded that the dominant workload is the memory phases,

ecause the median value is down near the bottom of the graph.
herefore, at least half of the time is spent executing this lower
ower phase.
matics and Systems 4 (2014) 83–93

Thus, a power model that is capable of a low estimation error for
the low-power, memory workload will achieve a very low median
estimation error. This in no way  provides any indication that the
estimation model is able to accurately estimate the less common,
computational phases of execution. In fact, it does not have to do
so in previous research in order to achieve a low median error.

A better metric to be used for evaluating the power estimation
model is the Mean Absolute Error (MAE), which calculates the abso-
lute error for every power measurement before taking the average
of all of these values. As opposed to the median, the mean will
be influenced by outliers, meaning that an inability to model the
changes in workload phases will result in larger errors. While this
provides an improvement over median error, a single metric can-
not be guaranteed to provide a fair comparison for the quality of
fitting in all situations. Therefore, the MAE  should be further sup-
plemented with the standard deviation of the errors, providing an
illustration of how widely spread the errors are. This can give fur-
ther insight into the accuracy of the model without requiring a plot
of absolute values.

In summary, care must be taken in using metrics in evaluation of
models in order to make fair comparison between different models.
There is a need in this research field to standardize the metrics used
in model evaluation.

4. Methodology

While it may  be perceived that adopting the guidance provided
with each myth will require significant adaptation to existing mod-
eling methodologies, we  do not believe this is the case. To help
illustrate this point, this section presents a high-level methodol-
ogy for deriving a general power model, adhering to all of the points
previously discussed. The modeling methodology consists of four
primary steps: (1) performance event selection, (2) training data
collection, (3) model construction, and (4) model evaluation. We
leave a more detailed methodology specification and the corre-
sponding implementation for future work.

4.1. Performance event selection

The first step involved in deriving a power estimation model is
to determine the performance events with the strongest correla-
tion to power. To achieve this, performance events are recorded
during the execution of a diverse set of application workloads. It is
important to ensure that these workloads provide a representative
sample of execution characteristics and utilization levels. There-
fore, either an extensive selection of micro-benchmarks are used, or
more commonly, the applications from a benchmark suite, such as
SPEC or NPB. Multiple benchmark iterations will be required when
collecting a reasonable number of performance events, potentially
requiring long data collection times. This is primarily due to the
microarchitectural dependence of some performance events, such
as PMCs, which restricts the number of events that can be simulta-
neously monitored.

Once the data set of power and performance values has been
collected, statistical analysis is used to determine the performance
events providing the best predictors of power. The two most com-
monly used statistical methods are: principle component analysis,
which is a statistical procedure that determines the principal per-
formance events that account for the variation in power, and
correlation analysis, which provides a measure of the strength of
relationship or dependence between two variables. For large data
commonly used compromise, domain specific knowledge is used
to restrict the performance events to those corresponding to key
components of interest. In addition to reducing the time taken to
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nalyze the data set, it will also reduce the number of iterations
erformed during data collection, saving more time.

.2. Training data collection

While the benchmarks used in the previous step provided a
road representation of various application utilization levels, they
till may  not be diverse enough to produce an unbiased, robust
ower model. Therefore, micro-benchmarks play a more promi-
ent role in the collection of model training data. Incorporating a
ailored range of utilization levels ensures the model is not overly
nfluenced by any particular benchmark suite. Configuring the

icro-benchmarks to stress different system components or work-
oad characteristics beyond the typical ranges, ensures additional
obustness. However, the micro-benchmark workloads have the
otential to create misleading effects by utilizing each functional
nit in turn, thereby neglecting cross-component interactions
hich may  be observed during typical benchmark execution,
eaning benchmarks may  still have a small role to play in model

raining.
It will be impractical to run the suite of micro-benchmarks in all

ossible configurations, as the potential search space will be sig-
ificant. A tradeoff between training time, model complexity and
otential accuracy is required. A reasonable balance is achieved
y staying within typical execution ranges for the majority of the
raining time, while collecting a limited set of samples for boundary
ases. This allows the model to accurately reflect expected work-
oad types, while having some knowledge of alternative workloads.

.3. Model construction

The power model can be derived by quantifying the strength of
elationship between the explanatory variables, the performance
vents used to estimate power, and the dependent power variable.
his problem is well suited to regression analysis, which is why
east-squares regression is one of the most broadly adopted model-
ng techniques. A linear model is fitted to the data from the training
et by minimizing the square of the residuals. Despite its simplicity,
inear models have been found to provide good estimation accuracy
n much of the previous work [2], making it an attractive solution.
lternative models have been used, such as the classification-based
aussian mixture models used in [8], but the added complexity is
ften not warranted.

The resulting accuracy of the model will largely depend on
he quality of the input training data set collected in the previ-
us step. For instance, if the training data set largely consists of
PU-intensive workloads, the model will make poor estimations of
ower for memory-intensive workloads, and vice versa. The more
xtensive the set of performance values and power measurements,
he better the model will likely be. However, the appropriateness of
he model and training data will only be revealed after performing

 thorough model evaluation.

.4. Model evaluation

Model evaluation is performed on a benchmark suite, where
ower estimates are compared to the measured power. To ensure
n unbiased evaluation, the benchmark suite should not be the
ame as was used during model training. A well-chosen bench-
ark suite should be capable of validating how well a model will

eneralize across a diverse set of workload types and system utiliza-
ion levels. It will also indicate if the model fails on any particular

orkload type, which may  be a symptom of insufficient or limited

raining data.
One of the best methods for gaining cursory insights into the

ccuracy of the power model is to observe the measured and
matics and Systems 4 (2014) 83–93 91

modeled power on scatter plots. However, this method can be time
consuming and is only appropriate for initial insights or to gain
further insights into potentially anomalous results. The next step
is to apply the statistical methods discussed in Section 3.5. That is,
MAE  and standard deviation, which together provide descriptive
insights into the closeness of fit.

4.5. Discussion

Our proposed, general methodology is no more complex than
many of the alternatively proposed methodologies. Similar to
other models, tradeoffs are required between model complex-
ity, training time and model accuracy. However, these tradeoffs
may  be implementation specific in nature and vary between
different experimental systems. For instance, if the system has
little variation in the dynamic power range, a simple model will
achieve good results. Whereas the same model, applied to a sys-
tem with a more extensive range of dynamic power, will likely
be less accurate. Therefore, the methodology implementation may
require an iterative process to be performed, repeatedly testing
and evaluating various input configurations to achieve a reasonable
accuracy.

While the presented methodology primarily discusses PMCs, it
is general enough to allow for extensions in the type of performance
events being monitored without a detrimental impact on model
complexity. The only effect will be increased training time due to a
larger set of performance events and the likely inclusion of new,
targeted training benchmarks. For instance, kernel performance
statistics, such as the number of packets received/transmitted or
the number of blocks read from/written to disk, could additionally
be incorporated into the model, allowing hard drives and NICs to
be monitored. The ability to model similar peripheral devices will
likely benefit non-processor intensive workloads, like memory-
bound tasks and distributed MPI  applications. By proposing a
suitably general methodology, it can readily be extended to include
new performance events, making it similarly suited to incorporate
the general guidance provided for each myth without detrimental
impact.

5. Related work

Much of the prior work on PMC-based power estimation has
taken the approach of using PMCs to model the underlying architec-
tural components, which are applied in a variety of use cases. Singh
et al. [2] proposed a model which used microarchitectural knowl-
edge to decompose the processor into its four main functional units:
FP Units, Memory, Stalls, and Instructions Retired. PMC  selection
is made from initial data collected from the execution of the SPEC
benchmark suite. A separate micro-benchmark is designed for each
of the four PMCs most strongly correlated with power for each func-
tional unit. The micro-benchmark data is used to form a piece-wise
linear function.

Bertran et al. [4] take an even finer-grained approach by starting
with a set of about 97 micro-benchmarks designed to individually
highlight all possible power components. This results in multi-
ple linear equations with an input for each of the seven derived
power components. During the runtime period, PMC  multiplexing
is required, as the micro-architecture does not allow that many
counters to be collected simultaneously.

Da Costa et al. [3] present a methodology intended to broaden

the range of modeled workloads by supplementing PMC  val-
ues with process and system level statistics. This means the
resulting model, derived through multivariate regression, is not
limited to estimating the power of CPU and memory workloads,
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llowing accurate power estimation of the network and disk syn-
hetic benchmarks.

Such models derive a single, global power estimation function
ypically used for monitoring system power on a per application
asis. Alternatively, Alonso et al. [5] take a more targeted approach

n proposing a framework for instrumenting source code functions
ith power metering. The API logs PMC  data and power values to
erive a specific power model offline, enabling execution traces of
ower to be used during runtime estimation.

Wang et al. [6] take the novel approach of using the fewest PMCs
ossible. The model was built using only CPU operating frequency
nd IPC, making it universal across micro-architectures. It is built
nto the SPAN libraries and interfaces to provide source code power
stimation.

Dhiman et al. [8] presented a model for accurate power estima-
ion in a virtualized environment. A performance counter manager
s run on each host machine, designed to collect and correlate PMC
vents to each VM.  Power estimates are then periodically made for
ach VM using classification-based Gaussian mixture models.

Only a select sample of previous work is presented here to
emonstrate some alternate uses for PMC-based power estima-
ion models. A more comprehensive survey on hardware, software
nd hybrid power estimation techniques can be found in [6]. Given
his varied use of PMC-based power models, each myth within
his paper was presented and discussed without explicit guidance,
nsuring all conclusions remain relevant and universally applicable
o these varied approaches.

. Conclusions and future work

In this paper we have presented and discussed five myths in
MC-based power estimation models: sampling rate and execu-
ion time can be left unspecified; thermal effects are insubstantial;

emory events correlate well with power consumption; compila-
ion configuration does not need to be reported; and metrics for
erformance evaluation of models are comparable. The underlying
isconceptions within each myth are revealed through a series of

bservations made while deriving our own PMC-based estimation
odel.
Such myths have arisen due to a lack of configuration specifica-

ions and accompanying analysis in published literature. This is of
articular importance for PMC-based power estimation as the mod-
ls derived are largely architecture dependent. However, the myths
re not limited to PMCs, but equally apply to many other poten-
ial performance events. As we have seen, changes in hardware
nd software configurations can adversely impact the resulting
ower models. Therefore, a suitably general modeling methodol-
gy, as was discussed, is important for deriving a robust power
odel.
While failing to disclose all relevant information would not

ffect the correctness of the previous work, it can lead to erroneous
onclusions being drawn from the results. In raising awareness
f the impact of this missing, but highly relevant information,
e hope researchers in this community more readily document
ardware and software configurations in the future. Doing so
ill prove to be beneficial to the advancement of the research

ommunity.
In the future we will implement the PMC-based power esti-

ation model, following the general methodology presented. The
eneral guidance corresponding to each of the myths discussed

n this paper will be incorporated into the model. Furthermore,

e intend to include additional sources of performance events,
nabling the power estimation of highly communicating applica-
ions, helping derive a robust and accurate power model.
matics and Systems 4 (2014) 83–93
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