
PMC-based Power Modelling with Workload
Classification on Multicore Systems

Jason Mair, Zhiyi Huang, David Eyers and Haibo Zhang
Department of Computer Science

University of Otago
Dunedin, New Zealand

Email: {jkmair;hzy;dme;haibo}@cs.otago.ac.nz

Abstract—In this paper, we propose a PMC-based power mod-
elling methodology that utilizes workload classification. Unlike
traditional approaches which use a limited set of benchmarks,
our methodology uses a single well-designed micro-benchmark to
collect samples of PMCs and power values for training the power
estimation model. The micro-benchmark can generate a large
variety of representative workloads that are generic in a wide
range of applications. Since the micro-benchmark is independent
from any applications but includes generic workloads of many
applications, our methodology is more widely applicable than
the approaches based on a limited set of benchmarks that may
have similar workloads. Another novelty of our methodology
is that it adopts workload classification. Traditional approaches
usually use multi-variable linear regression to correlate PMCs
with power for all types of workloads. Since different PMCs may
correlate well with power under different workloads, using a
single linear multi-variable function to model power is insufficient
and ineffective. In our methodology, we classify the workloads
and for each workload we use a different, independent linear
function to model the relationship between PMCs and power.
In this way, the resulting power model is refined and its
accuracy of power estimation can be increased. Based on our
methodology, we have implemented a power estimation model
called W-Classifier. Experimental results show that W-Classifier
can estimate power usage well for a larger variety of workload
types than the traditional approaches with a single multi-variable
linear regression function.

I. INTRODUCTION

Given the increasing global power use of computer tech-
nology, there is a continuing drive to develop more energy ef-
ficient and sustainable systems [1]–[8]. One proposed software
approach is to make the operating system more power-aware.
This would allow the operating system to not only allocate
system resources based upon performance, but to additionally
consider the power use of the system in making decisions.
The operating system is required to be capable of evaluating
the tradeoff between performance and power use, ensuring
the system does not consume excessive power. It is desirable
that power caps could be enforced from software, setting a
maximum power value for the entire system or for a virtual
machine in a cloud, or on a per application basis. However,
such developments are dependent upon the availability of fine-
grained, run-time power measurements on a per application
basis.

Unfortunately, making fine-grained, run-time power mea-
surements is not possible with current hardware. Existing
power meters that measure power use from the mains outlet,
can only provide coarse-grained power measurements for the

whole system. Hardware-based power sensors embedded in the
Intel Sandy Bridge micro-architecture provide power measure-
ments limited to the entire processor, not per-core [9], [10].
While hardware-based power measuring techniques have the
potential to provide per-core power readings to the operating
system, they suffer from two key drawbacks. First, the cost
of upgrading or replacing system hardware will be prohibitive
for widespread deployment and adoption. Second, hardware-
based power measurements currently do not provide any of
the required context for the root causes of power use, e.g.,
which functional units are drawing power within the CPU
cores. Depending on the type of the current workload, for the
same power reading, the operating system may actually want
to use a different power saving policy. For instance, a low CPU
power reading could be caused by a memory-bound workload,
which is thus experiencing low CPU utilization. In contrast,
the same measurement might indicate a CPU-bound workload
experiencing a period of thread synchronization, which will
only cause low CPU utilization to occur temporarily. For
a memory-bound workload, the operating system can often
lower the CPU operating frequency to save power without
impacting the overall performance, but this option is not
suitable for the CPU-bound workload. However, without the
context of workload classification, it is hard for a power-
aware operating system to reliably evaluate the power and
performance tradeoffs and to make the most appropriate power
saving decision.

Classifying the type of workload of an application is
possible through the use of the low-level performance mon-
itoring counters (PMCs), which are a set of hardware reg-
isters designed to monitor and record detailed performance
events. Each model of CPU has a specific set of PMCs. Such
events include among many others, floating point unit (FPU)
instructions, retired micro-operations (retired UOPS), L2 cache
misses (l2-cache misses) and dispatch stalls. It is this unique
and recent ability to provide low-level performance events that
has led to the development of PMC-based power estimation
models [8], [11]–[15]. The principle technique of these models
is to find the subset of all available PMCs for which a change
in performance strongly correlates to an observed change of the
measured power. For example, the model in [11] decomposes
the set of PMCs into four categories, based on factors assumed
to connect to the operation of the processor’s main functional
units: FP Units, Memory, Stalls, and Instructions Retired. The
four PMCs that are found to most strongly correlate to each
functional unit are combined into a single multi-variable linear
equation that is used for run-time power estimation. While

these approaches use PMCs for deriving power estimation
models, they do not use these PMC values in performing
any workload classification to add extra context to the power
estimation.

In this paper we present an alternative methodology for
PMC-based power estimation, designed around the require-
ment for workload classification to add context to power
estimation. The model works by first classifying the workload
type for a given PMC sample. It then uses an individual linear
function to estimate power for each specific workload. The
use of workload classification provides the extra contextual
information for the operating system. Based on the work-
load classification, the operating system can more efficiently
make power-aware decisions on resource allocation, e.g. task
scheduling. In addition, the workload classification allows our
power estimation model to be more general and applicable to a
larger variety of applications. Traditional power models based
on multi-variable linear regression have to generalize across
all possible workloads, whereas, in our approach, we are able
to apply a different multi-variable equation to each workload.

The remainder of this paper is organized as follows. We
present our power modeling methodology in Section II. The
experimental setup and configuration is given in Section III.
Section IV evaluates and analyses our power estimation model
with the NAS Parallel Benchmark suite [16]. Related work is
discussed in Section V, while our conclusions and future work
is presented in Section VI.

II. METHODOLOGY

The methodology proposed in this paper derives a col-
lection of workload-specific, linear functions for power esti-
mation. The main principle behind this methodology is that
classifying a given workload type allows for the use of a
specific linear function for power estimation of that workload
type, rather than relying on a single generalized linear function
for all workload types. This model of multiple linear functions
has the distinct advantage of being able to estimate power for
a much broader range of applications than would otherwise
be possible, because it is not feasible to use a single linear
function to characterize the power features of various workload
types in a wide range of applications. For example, floating
point calculations consume power that is linear to the number
of FPU instructions, but these calculations are less related
to the number of cache misses. Data movement in RAM
consumes power that is linear to the intensity of the memory
accesses, but the memory operations are largely independent
of the FPU operations. Deriving a general linear function with
the number of FPU instructions and the number of memory
accesses (or cache misses) is not as effective as using two
linear functions for the two workload types respectively. Since
each linear function has better linear correlation with its corre-
sponding workload type (as we demonstrate in section IV), it
can produce more accurate power estimates than the single
general linear function whose linear correlation with both
workload types is compromised due to the generalization.

Our power model with workload classification is able to
operate over a diverse range of applications. A general clas-
sification is applied to detect, e.g., FPU intensive or memory
intensive workloads. This information helps our power model

meet the more general objective of improving power-aware
task schedulers, by providing extra contextual information for
power measurements, i.e., what workload the power is used
for.

A. Micro-benchmark

For the derived power estimation model to remain ap-
plicable to different architectures, the training data must be
parameterised so as to produce the widest possible range
of workloads. A single benchmark suite is not likely to
provide this generality. Therefore, our model is derived using
a single micro-benchmark designed to reproduce a selection
of synthetic workloads. While some previous work [11] used
two sets of benchmarks, one for selection of correlated PMCs
and the other for deriving the estimation model with linear
regression, we are able to achieve both objectives with the use
of a single micro-benchmark with a parameterized design. This
makes our methodology more readily deployable on different
systems as there is no requirement for designing new micro-
benchmarks based upon the results of the previous steps in the
modeling process, which thus allows the modeling process to
be automated.

To achieve this, our micro-benchmark is designed to ensure
enough workloads are reproduced in order to provide a set of
representative workload samples within the expected range of
applications. Otherwise the model will be incapable of estimat-
ing power for a wide range of applications, as a strong bias
towards a few reproduced workloads would exist. However,
this does not necessarily mean a large number of workloads
have to be used. Based on our experimental analysis, the five
workload types in Table I provide a representative sample of
workloads commonly encountered in a general system. These
five key workloads are built into the micro-benchmark shown
in Program 1, though our micro-benchmark can be easily
extended with new workloads in order to support new, yet
unseen, machine architectures.

The micro-benchmark structure consists of a larger outer
loop, intended to perform a large number of iterations, and
a small for loop for short bursts of each workload type.
While the loop control will create some minor overhead, it
has little impact on the workload type and in any case reflects
the structure of most real-world applications. The inner for
loops execute quickly, ensuring that a mix of workload types
will be represented whenever the PMCs are sampled, i.e. once
a second. Modest variations in this burst time are provided
by the pseudo-random numbers. This is then multiplied by a
ratio, which is designed to allow extra weight to be added to
a particular workload type during power modeling, and is the
key parameterization of our micro-benchmark.

TABLE I. TYPES OF WORKLOAD

workload type Description
FPU Floating point operations
INT Integer operations.

Represents most micro operations
memory Random memory accesses

NOP Idle loop with NOPs
cache Memory accesses with high cache-hit ratio

By default, all ratios are set to one. However, if we are
interested in the impact of a particular workload, e.g. FPU

for large number of iterations do
for pseudo random numbern⇥ fpu ratio do

fpu microbenchmark();
end for
for pseudo random numbern+1⇥ int ratio do

int microbenchmark();
end for
for pseudo random numbern+2⇥ memory ratio do

memory microbenchmark();
end for
for pseudo random numbern+3⇥ nop ratio do

nop microbenchmark();
end for
for pseudo random numbern+4⇥ cache ratio do

cache microbenchmark();
end for

end for

Program 1: Pseudo-code of the micro-benchmark

operations, we increase the fpu ratio, leaving all other ratios
unchanged. This allows each workload type to be analyzed
independently. Note that the code is supposed to run simulta-
neously on multicore systems. Though it does not incur any
synchronization overhead, the synchronization workload can
be represented with a combination of NOP and memory-access
workloads.

B. Deriving our PMC-based Power Estimation Model

The principle behind our PMC-based power estimation
model is to find the relationship between key low-level per-
formance events, the type of workload they represent and the
corresponding power use. For example, if the PMC for FPU
utilization is high, the current workload is FPU intensive,
causing a large power draw. Alternatively, if the number of
cache misses is high, there may be many memory accesses,
resulting in lower utilization of the processor and a lower
power draw from the processor. In quantifying the strength
of such relations, an analytical model can be formed, allowing
run-time power estimation.

To assess the relationship between PMCs and workload
classifications, the micro-benchmark is run with multiple it-
erations under different workload ratios. Adjusting the ratio
for a single workload type, while holding all other ratios
constant, allows the relative impact for the given workload to
be analyzed independently. To further isolate these results from
external influences, two additional steps are taken to mitigate
the impact of temperature changes during execution [17]. First,
each micro-benchmark iteration is configured with a large loop
count, resulting in a long execution time (about 25 minutes).
This ensures a stable operating temperature is reached and
maintained for the majority of the execution. Second, several
minutes of data are removed from the start of each iteration
to eliminate the effect of a slow processor warm-up. We have
written in more detail [17] specifically about the effects that
different types of temperature variation have on CPU power
consumption.

The PMC-based power model is derived from the peri-
odically collected values for a given PMC. The raw PMC,
TSC (Time Stamp Counter) and power-meter measurements
are logged to a file once a second during the execution of
the micro-benchmark. This enables the intensity values for the

event of each PMC to be calculated by taking the difference in
two adjacent PMC samples and dividing by the corresponding
difference in the TSC. Since the TSC provides a low-level time
value, which is recorded as the number of cycle counts since
the CPU was reset, the intensity of each PMC can accurately
be calculated for every sampling period (i.e., one second).

Since it is not known which PMCs will strongly correlate
with the power use of a specific workload, it is important to
use a large variety of PMCs during initial data collection.
However, some architectures support more than 120 event
counters [18], making it prohibitive to perform exhaustive
analysis. Nevertheless, a representative selection of counters
can be used in any case. For example, different levels of
cache and memory accesses, retired instructions, processor
pipeline and any specialized functional units like FPU will
provide metrics related to potentially orthogonal causes of
power consumption within the CPU. The more diverse the
range of used PMCs are, the more likely the model is to
accurately estimate power for workloads across a range of
applications.

Having collected all of the required sample data, the next
step is to determine which PMCs best represent each workload.
This can readily be achieved by calculating the Spearman
rank correlation coefficient for each workload-PMC-power
combination. Spearman’s rank correlation quantifies how well
the relationship between two variables can be described using
a monotonic function.

With the PMCs having the strongest correlation with power,
for a given workload type, the final power estimation model
can be derived using linear least squares fitting. Linear least
squares fitting fits a regression line through the data points such
that it minimizes the sum of the squared differences between
the modeled and observed values. However the model can be
impacted by outliers, so the extra step of removing points that
are more than three standard deviations away from the mean
should be taken first to improve accuracy. Since our methodol-
ogy has no strict requirement on the form of the model for each
workload, different workloads can be modeled with different
PMCs and regression functions. While a regression function
with a single variable may be sufficient for some workloads,
our methodology allows the use of multiple variables for other
workloads in their regression functions if it is necessary for
them. This flexibility additionally allows our methodology
to work on a variety of architectures. For instance, some
architectures may provide performance events for monitoring
memory accesses, thereby only requiring a single variable in
the regression model of a memory workload. Alternatively, an
architecture without this event can use multiple counters to
achieve the same result.

C. Workload Classification

While decomposing the power model into a collection of
workload-specific linear functions will help to improve the
accuracy of power estimation across a range of applications,
it creates the additional requirement for accurate, run-time
workload classification. Though it may seem that significantly
more data will be needed for workload classification, the
classification can be achieved based on the existing set of PMC
sample data.

To illustrate the use of PMC data, Figure 1 plots the
least squares fitting functions, each of which models the
data points of each workload type independently. The figure
shows the relationship between the FPU event (PMCFPU)
intensity and the power for each of the five workload types
of the micro-benchmark in Program 1. The x-axis presents
the PMCFPU intensity, calculated as the difference in two
adjacent PMCFPU values, divided by the difference in the
corresponding TSC values. The y-axis is the whole system
power measurement at the time when the PMCFPU intensity
is collected.

It can be seen in Figure 1 that there is a central crossing
point for all workloads around the PMCFPU intensity of 1.8.
This is due to the fact that all workload types start to execute
with the same parameterization, i.e., with a default value of 1
for all ratios, such as int ratio, in Program 1. As the ratio of
a specific workload is changed, the results begin to radiate
out in different directions, depending on the corresponding
workload type. The fitted line for FPU workload is the only
one to show a strong correlation between the power and the
PMCFPU intensity while the FPU workload is dominant, i.e.,
PMCFPU � 1.8. That means, for FPU workload, FPU ratio
keeps increasing from 1, while the other ratios such as int ratio
are kept to the initial value 1. In this way, the relative weight
of the FPU workload is increasing. We carry out the same
process for other workloads as well.

Figure 1 also shows the fitted lines when other workload
types are dominant. Since those other workloads are domi-
nant, the PMCFPU intensity becomes relatively small, i.e.,
PMCFPU < 1.8.

This observation is true for other workloads, which allows
us to set a classification threshold for each workload type. For
example, if the PMCFPU intensity is greater than 1.8, we can
classify the current workload as FPU workload and use the
longest fitted line in Figure 1 to get the power estimation.

With the clear separation of the fitted lines for different
workload types in Figure 1, observant readers may spot that we
can potentially use only the PMCFPU to get power estimation
for all workloads. This is true to some extent. However, it is
important to note that the PMCFPU intensity has a very small
range for other workload types but with a large span of power
variation. This means the accuracy of the power estimation
using PMCFPU for other workloads could be a problem
because a small error in collecting the PMCFPU intensity
will cause large fluctuations in the power estimation. Also the
reason that the PMCFPU values are always present in Figure 1
is due to the mixed workloads in the micro-benchmark. This
will not be true for real applications as they may not have any
FPU operations at all. Therefore, a different workload needs to
be modeled by other PMCs that can represent the workload and
have stronger correlation with the power when the workload
is dominantly present.

The above workload classification could be further im-
proved by considering multiple dominant workloads. In our
implemented model, we only collect sample data using a single
dominant workload at a time. That means, only five workloads
are explicitly considered. However, a greater mix of workloads
may occur during application execution than was specifically
reproduced by our micro-benchmark. An example of this

 380

 385

 390

 395

 400

 405

 410

 1 2 3 4 5 6 7 8

po
w

er
 (w

at
ts)

PMCFPU / TSC

FPU ratio

FPU ratio
INT ratio

memory ratio
NOP ratio

cache-miss ratio

Fig. 1. regression lines for each micro-benchmark ratio and PMCFPU

would be cache misses, which are not likely to be the primary
workload type, but would occur jointly with compute tasks,
such as INT and FPU workloads. Therefore, we can supple-
ment the classification with these more practical expectations.
In our implementation below, we have considered two mixed
workloads, FPU/cache and INT/cache, which include the effect
of cache on FPU or INT operations using the collected micro-
benchmark data.

Furthermore, as a future work, it would most likely be more
accurate if we proceed to consider additional combinations of
workloads, e.g. a mix of FPU and INT operations that are
both dominant. In this way, we can have more classes of
workloads and model them separately. For the mixed workload,
we will need multiple PMC values for linear regression. For
example, for a mixed FPU and INT workload, we will need to
use both PMCFPU and the PMCs representing the intensity
of INT operations to model the power. Though we have not
implemented such fine-grained classification, our proposed
methodology is general enough to be useful and applicable
when the workload classification is further refined. However,
it is worth considering that as more classifications are used,
the additional run-time overhead will begin to outweigh the
increased accuracy for power estimation.

The use of workload classification enables our power
model to accurately estimate power for a large variety of
workload types and applications, as will be shown in our
experiments (§IV). It additionally helps serve a broader objec-
tive of providing execution context for power use, which can
be utilized by a power-aware operating system in evaluating
power saving policies. This is very important because accurate
power estimation is not all that is required in developing a truly
energy efficient system.

Since our power model is more general and adaptable, it
is more robust to architectural changes than traditional multi-
variable models that use a single linear function to generalize
the relationship between performance events and power. This
architectural independence ensures it will remain usable on
different system architectures and will be able to capitalize on
any future architectural changes, such as new functional units
or an increased selection of PMCs. For example, if a new
independent functional unit is added to a system architecture,
we could simply model its power with an independent linear
function using the performance events related to the unit.

 380

 385

 390

 395

 400

 405

 410

 1 2 3 4 5 6 7 8

po
w

er
 (w

at
ts)

PMCFPU / TSC

FPU ratio - FPU PMC

Fig. 2. Scatter plot for the correlation between PMCFPU and power for
FPU dominant workload

D. Methodology Implementation

The implementation of the methodology proposed in this
paper collected all PMC sample data from 16 concurrent
instances of the micro-benchmark given in Program 1, con-
figured to use workload ratios of 1, 2, 4, 6 and 8. In an
attempt to mitigate the impact of the temperature changes
of the processor during execution, the micro-benchmark was
additionally configured with a large iteration count, causing
execution times of about 25 minutes for each experiment. Also,
the first couple of minutes is trimmed from the sampled data
logs in order to remove the effect of processor warm-up [17].

The set of 13 PMCs (shown in Table II) and the power
meter measurements were logged to a file once every second
during execution. This specific set of PMCs was chosen for
evaluation, as they provide a representative sample of system
performance events for our AMD multicore machine, ranging
from memory accesses to the various levels of the cache
hierarchy to processor utilization.

TABLE II. PMCS POLLED WITHIN OUR EXPERIMENTS

1: FPU 2: Data cache miss
3: dispatch stalls 4: Instruction cache miss

5: CPU clocks not halted 6: l2-cache miss
7: Retired Move ops 8: l3-cache miss

9: Prefetch Instructions Dispatched 10: DTLB miss
11: Retired uops 12: DRAM access

13: Retired Branch Instructions

After collecting all of the sample data, we analyze the
strength of relationship between the workload type and the
PMC intensity with Spearman’s rank correlation, gaining fur-
ther insight by visualizing the relationship on a scatter plot.
For example, Figure 2 plots the PMCFPU intensity values
and their corresponding power readings, with the FPU ratio
increased from 1 in the micro-benchmark. The x-axis shows
the intensity of FPU events, calculated by taking the difference
in two adjacent PMCFPU measurements and dividing by
the difference in the corresponding TSC values. The y-axis
is the corresponding whole system power measurement from
the power meter. The modest spread of data points within
each cluster is due to the micro-benchmark pseudo random-
numbers, while the spread of clusters is a result of the
variations in FPU ratio.

The data points in Figure 2 illustrates the existence of

a strong linear relationship between the PMCFPU intensity
and the power for a FPU dominant workload. It can also
be concluded from the strength of this relationship that a
single PMC is able to represent the power use for a dominant
workload. In analyzing the remaining PMCs and workload
types, similar linear relationships were found for each work-
load type, although not all relationships were as expected.
For example, we were surprised to find that memory related
PMCs, such as l2-cache-misses, did not show a meaningful
relationship with memory-intensive workloads, which we have
presented and discussed in our previous work [17]. This
anomaly is mentioned here as it helps illustrate the importance
of selecting a wide range of PMCs, including PMCs other
than those expected to correlate well, when initially evaluating
performance events for the power model.

Based on the strength of the determined relationships, the
four PMCs to be used in the power model are:1

• FPU—the number of cycles in which at least one FPU
operation is present in the FPU.

• Dispatch stalls—the number of processor cycles
where the decoder is stalled for any reason (i.e., it
has one or more instructions ready but cannot dispatch
them due to resource limitations in execution).

• CPU clocks not halted—the number of clocks that
the CPU is not in a halted state (due to STPCLK or a
HLT instruction).

• Retired UOPS—the number of micro-operations re-
tired. This includes all processor activity (instructions,
exceptions, interrupts, microcode assists, etc.).

Only four PMCs are chosen as this is the architectural
limit for the number of counters which are able to be read
simultaneously on our system. Having selected the counters,
each workload-specific linear function is derived by applying
linear least squares fitting to the appropriate PMC-power data
sets for the specific workload.

Since each workload uses a different linear function for
power estimation, a decision has to be made regarding which
workload the PMC values represent once the PMC values are
collected during power estimation. Given that each selected
performance event is usually the primary descriptor of a work-
load type, it can be used as an indicator of the corresponding
workload type. For example, the FPU PMC can be used to
represent FPU-dominant workload, the PMC for Retired UOPS
can be used to represent INT-dominant workload, and Dispatch
stalls can suggest cache-dominant workload.

The threshold, unique to a specific workload, can be
determined by identifying the boundary point within each data
set, indicating the point of separation between the dominant
workload and other workloads. For example, the threshold
for an FPU-dominant workload can be identified as any
PMCFPU � 1.8, as was previously shown in Figure 1. In
this case, a clear point of separation between the dominant
workload to be classified and all other workloads can readily
be identified with the collected PMCFPU . Alternatively, for
a cache-dominant workload, the boundary threshold will be

1PMC descriptions are taken from the AMD BIOS and Kernel Developers
Guide [?]

determined by the maximum PMC cache for the computation-
intensive workloads. Any PMC cache values greater than this
threshold will indicate a cache/memory-dominant workload.
Applying this general procedure to each workload results in
a set of thresholds. For example, we have determined the
thresholds TFPU (1.8), Tcache (10.0), and TINT (1.0) used
in Program 2 according to the boundary points within the
data sets. They can be used to classify FPU-dominant, cache-
dominant, and INT-dominant workloads respectively. They can
also be used combinatorially to represent mixed workload such
as both INT-dominant and cache-dominant.

The general threshold determination procedure outlined
above enables a rudimentary workload classification algorithm
to be derived. The pseudo-code for the derived classification
algorithm is presented in Program 2.

if PMCcache > Tcache then
if PMCFPU > TFPU then

mixed FPU and cache workload
else if PMCINT > TINT then

mixed INT and cache workload
end if

else if PMCFPU > TFPU then
FPU workload

else if PMCINT > TINT then
INT workload

else
memory/idle workload

end if

Program 2: Pseudo-code for workload classification

As discussed before, considering mixed workloads can help
improve accuracy. We have included two mixed workloads,
FPU/cache and INT/cache, in our classification algorithm so
that power estimation can be more accurate with little extra
overhead in the algorithm.

In future implementations, the selection of threshold values
may be aided by the use of machine learning, such as sup-
port vector machines or decision trees, for the classification
algorithm. These techniques will likely be required when
processing significantly larger data sets that may be caused
by increases in the number of performance events or types of
workload. Our current implementation does not suffer from
these restrictions, as it uses a limited set of performance
events that represent a limited set of workloads. This allows a
manual selection of threshold values from the input data sets.
It also allows insights to be gained which would not have been
possible with a black box approach like a blind multi-variable
linear regression. Despite these details being implementation
specific, they do not impact on the suitability of the general
modeling methodology proposed in this paper.

Our resulting power model and the classification algorithm
are evaluated in Section IV.

III. EXPERIMENTAL SETUP

Our power model is evaluated on a Dell PowerEdge R905
with four quad-core AMD Opteron 8380 processors. Each of
the 16 cores has its own FPU and an architectural limit of four
PMCs. The machine has a total of 16GiB RAM organized
in a NUMA (Non-Uniform Memory Accesses) architecture,

with 4GiB of RAM allocated to each processor. Each core has
four alternate operating frequencies through DVFS (Dynamic
Voltage and Frequency Scaling). However, we restrict the
frequency to the highest (2.5 GHz) for our experiments in this
paper, as it is the most commonly used frequency in practice.

The micro-benchmark is compiled using gcc 4.6.3, with
no optimizations, so as to ensure that none of the workload
operations are optimized away. The power model is evaluated
using the OpenMP benchmarks from the NAS Parallel Bench-
mark suite. Each benchmark is run with 16 threads, utilizing
all available cores, configured with the problem sizes shown
in Table III. The benchmarks were compiled with gcc 4.6.3,
using OpenMP 3.0 [19] and the optimization argument -O3.
All benchmarks are running on a standard installation of Linux
version 2.6.32-25.

The power is measured with the Watts Up? PRO .net power
meter, connected via USB to an external monitoring system.
The accuracy of the power meter is ±1.5% + 0.3 watts. 2 An
iSocket (InSnergy Socket)3 power meter was additionally used
to validate power measurements, which has an accuracy of 1%.
The measured base/idle power (i.e., static power) for our server
is 249W. The monitoring system was additionally configured
to remotely monitor the server’s temperatures using IPMI
(Intelligent Platform Management Interface), while recording
the power consumption.

TABLE III. NAS PARALLEL BENCHMARKS4 USED TO EVALUATE THE
POWER MODEL

NPB Class Description
DC B Data Cube
EP D Embarrassingly Parallel
FT D discrete 3D fast Fourier Transform,

all-to-all communication
LU C Lower-Upper Gauss-Seidel solver
MG D Multi-Grid on a sequence of meshes, long- and

short-distance communication, memory intensive
SP C Scalar Penta-diagonal solver
UA C Unstructured Adaptive mesh, dynamic and

irregular memory access

IV. EVALUATION AND ANALYSIS

We evaluate our power estimation model, W-Classifier, by
running each of the OpenMP multi-threaded benchmarks from
the NAS Parallel Benchmark (NPB) suite on all 16 cores.
When each benchmark is running, W-Classifier is used to
estimate power use for the entire system while the power meter
is measuring the real power use for comparison. We further
compare W-Classifier with a multi-variable regression model,
showing the advantages of workload classification. Finally, we
discuss some interesting factors that impact power estimation.

For comparison, a multi-variable linear regression model
is implemented based on the same sample data collected from
the micro-benchmark. The same four PMCs in Section II-D are
selected in the multi-variable linear regression. To guarantee
fair comparison, the power modeling process is the same as
W-Classifier with the same sample data, except that workload
classification is not used. Therefore, we can take the multi-
variable power model as a special case of W-Classifier where

2https://www.wattsupmeters.com/secure/products.php?pn=0
3Institute for Information Industry, http://web.iii.org.tw/
4Descriptions are taken from http://www.nas.nasa.gov/publications/npb.html

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

DC EP FT LU MG SP UA

po
w

er
 (w

at
ts)

NPB Measured and Estimated Power

measured
classification

multi-variable

Fig. 3. Power estimation for NPB benchmarks

there is only one workload type. The model is derived by using
a multi-variable, linear least squares regression function on
the PMC data for the FPU, INT and cache micro-benchmark
workloads. This subset of workloads was chosen as it provides
a similar workloads to some previous research [12] and gave
better regression results than using all workloads. The CPU-
clocks-not-halted PMC was removed from the model as it
resulted in a coefficient of zero when included. In the derived
model, retired-uops is the strongest explanatory PMC, while
the FPU and dispatch-stalls PMCs accounted for less of the
power variation in the sample data sets for linear regression.

A. Evaluation of power estimation

First, in Figure 3, we show the mean power estimations
for each benchmark by W-Classifier and the multi-variable
model, together with the mean power measured by the power
meter. The mean power estimation of each benchmark, taken
during the whole execution period, provides a coarse-grained
metric of power estimation accuracy. We can see in the figure
that W-Classifier is able to reasonably track the real power
use. Compared with the multi-variable model, W-Classifier is
more accurate in terms of mean power estimation for most
benchmarks. Note that the mean power estimation of the multi-
variable model for SP is out of the scale of the figure.

Figure 4 shows the mean error and Mean Absolute Error
(MAE) of power estimation for both W-Classifier and the
multi-variable model. MAE measures the absolute difference
in the estimated and measured power for every data point, e.g.,
every second. It indicates how well the trend of the estimates
follows that of the real power use measured by the power
meter. An important objective of power estimation is to be able
to accurately estimate run-time power, which requires the trend
of estimated power to closely match the measured real power
use. Therefore, we use MAE for our evaluation as it provides
an indication of trend. In contrast, the mean error simply
measures the difference in mean power for the entire execution,
providing no indication how closely the estimates follow the
real power use. It is conceivable that a low mean error can
be achieved by a model that wildly over-estimates and under-
estimates power use, but the large positive and negative errors
cancel out each other in the mean error. In these situations,
however, MAE would return a more meaningful result with a
large error.

According to Figure 4, W-Classifier has an average mean

 0

 10

 20

 30

 40

 50

 60

 70

DC EP FT LU MG SP UA

pe
rc

en
t %

NPB Estimate Error

classifier mean
classifier mae

multi-variable mean
multi-variable mae

Fig. 4. Mean error and MAE of power estimation in percentage for NPB
benchmarks

error of 5.78% for all benchmarks while the multi-variable
model has an average mean error of 39.94%. W-Classifier
has a much smaller mean error than the multi-variable model
for most benchmarks. The only exceptions are EP and FT
where the multi-variable model is slightly better in terms of
mean error and mean power estimation, though the absolute
differences between them are very small in terms of Watts. The
slightly larger mean errors of W-Classifier for benchmarks EP
and FT, compared with the multi-variable model, can mainly
be attributed to the errors of base power estimation in W-
Classifier, which affects the power estimation of W-Classifier
for all benchmarks to a different degree. One of the possible
factors contributing to this is the varied impact of temperature
on the micro-benchmark and the NPB benchmarks, which will
be discussed further in Section IV-C.

From Figure 4, we find W-Classifier has an average MAE
of 6.95% for all benchmarks, while the multi-variable model
has an average MAE of 40.74%. However, the average MAE
for the multi-variable model is negatively impacted by the
significant errors of 55.6% and 188.6% for the DC and SP
benchmarks respectively. When these two benchmarks are
excluded from the results, W-Classifier has an average MAE
of 6.69%, while the multi-variable model has a significantly
improved average MAE of 8.18%. W-Classifier has a smaller
MAE than the multi-variable model for all benchmarks except
EP. This demonstrates that W-Classifier has a better run-time
tracking ability of power changes during the execution of each
benchmark.

From the figure, it can also be seen that there is a large
difference between mean error and MAE in W-Classifier for
benchmarks like DC and FT. This difference is caused by large
variations in real power use during the execution of DC and
FT, with standard deviations of 41.1W and 32.2W respectively.
All other benchmarks exhibit more constant power use during
execution, with standard deviations ranging from 2.3-8.5W for
real power use.

The overall trend between the estimated and measured
power values can be more easily understood by visualizing
the raw data points on a scatter plot. For example, Figure 5
plots the power values for the DC benchmark, which had a
high standard deviation caused by large variations in power
during execution. The x-axis is the execution time in seconds,
while the y-axis is the corresponding power in Watts. Now it is
possible to easily recognize that the trend of power estimates

 200

 250

 300

 350

 400

 450

 0 200 400 600 800 1000 1200 1400 1600

po
w

er
 (w

at
ts)

execution time (seconds)

NPB DC

measured
classification

multi-variable

Fig. 5. Measured and estimated power for NPB DC

made by W-Classifier closely follows that of measured real
power use. However, the estimates are consistently about 30W
below measured values, indicating the model is currently not
capturing the right value for the base power, as mentioned
previously. The overall strength of the trend supports the
current selection of PMCs for the execution workloads.

It can clearly be seen in Figure 5 that the multi-variable
model significantly over-estimates power consumption. This
is because the DC benchmark largely consists of a mem-
ory dominant workload, with significantly lower processor
utilization levels than most of the other NPB benchmarks.
For instance, the median retired-uops for FT is 22 times
higher than the DC median value, indicating the scale of this
difference. Since retired-uops is the dominant PMC used in the
resulting multi-variable model, it contains a bias towards high
utilization workloads and is therefore not well suited to such
memory dominant workloads. In contrast, W-Classifier detects
two separate workloads due to workload classification and
uses a different linear function for each type of workload. For
some periods of time when the utilization level is high (with
power around 400W), a FPU/cache workload classification is
used for power estimation. For other time periods when the
utilization level is much lower, the workload is classified as
being memory dominant, allowing a different power estimation
function to be used.

In summary, W-Classifier can better track run-time power
changes than the multi-variable model. This is reflected in the
smaller average MAE across all benchmarks, which is 6.95%.
While the multi-variable model is able to estimate power with
an average MAE of only 8.18% for the more compute intensive
benchmarks, the error significantly increases to 40.74% after
the inclusion of DC and SP. This shows W-Classifier has the
distinct advantage of being better able to estimate power for a
broader range of application workloads. This will prove to be
an important feature when estimating power for a wider range
of more general applications, as they are more likely to have
varying execution phases and workloads than the NPBs.

B. Importance of sampling rate

In this section we will discuss the impact of sampling rate
on power estimation. The rate at which PMCs are sampled
during real-time power estimation is not often considered when
using a multi-variable model, as it will not have an impact on
the mean power estimation. This is because the model uses the
intensity values for a constant set of PMCs, where the sum of

each PMC’s intensity values will remain the same for a given
time, regardless of the number of samples collected. However,
this is not the case for W-Classifier due to the selective use of
PMC-based linear functions for different workload types.

For instance, the DC benchmark shown in Figure 5 consists
of two workload types, modeled by different PMCs and
linear functions, as discussed in the previous section. It is
the relatively high frequency, periodic sampling in power
estimation that enables W-Classifier to detect all of these
workload changes at run-time, resulting in the estimation trend
matching the measured real power use. A decrease in the
sampling rate can result in modest increases in the estimation
error. The sampling rate does not have a very significant impact
on the results for NPB benchmarks, because the inherent nature
of these benchmarks exhibit few detected workload changes if
any. However, we would anticipate that sampling rate would
have a significant impact when operating over more general
applications that exhibit a wider range of workload variations.
In these cases, W-Classifier will likely work better for them
than the multi-variable model, based on the results that we
have presented, e.g., the DC and SP benchmarks.

C. Temperature effects

While it is well known that temperature has an effect on
CPU power usage, it remains less well known what steps
should be taken to mitigate some of the impact. Therefore,
in this work we have adopted a range of techniques and good
practices, some of which have been discussed in our previous
work [17].

The most notable technique is the use of long execution
times to ensure the processor reaches a stable operating tem-
perature. For instance, the micro-benchmarks were configured
to run for about 25 minutes. While this may seem excessive,
we had previously found that the processor may take up to
6 minutes before reaching a stable temperature during the
execution of our micro-benchmark. The longer the execution
continues after reaching a stable temperature, the less weight
the warm-up period will have on power modeling. This tech-
nique was additionally applied to the NPB benchmarks shown
in Table III, where each benchmark was configured to run the
smallest class size providing an execution time as close to
10 minutes as possible. While this was not achievable for all
benchmarks due to system resource limitations, it was achieved
on most.

An alternative to mitigating warm-up effects through in-
creasing the execution time, is to merely trim all data points
from the beginning of a data set that are affected by the warm-
up period. A comparison of these two approaches is made in
Figure 6, which plots the MAE for W-Classifier run on the
two alternative configurations of NPBs. The results for long
executions of the benchmarks are given by ‘Including thermal
effect’, while the results for ‘Excluding thermal effect’ have
had the first half of the respective sample data set removed. The
most noticeable variation in MAE is for the DC benchmark,
where the error for warm-up removal is much higher than for
long execution times. However, this variation in estimation
error can easily be attributed to the characteristics of the
benchmark. Looking at the scatter plot for DC in Figure 5, it
can be seen that towards the end of each execution, the power

 0

 2

 4

 6

 8

 10

 12

 14

DC EP FT LU MG SP UA

pe
rc

en
t %

NPB Thermal Impact on MAE

Including thermal effect
Excluding thermal effect

Fig. 6. Impact of excluding thermal effect from NPB

 16

 18

 20

 22

 24

 26

 28

 30

 32

 0 100 200 300 400 500 600 700 800 900 1000

te
m

pe
ra

tu
re

 C

execution time (seconds)

NPB DC and memory workload temperatures

DC
memory workload

Fig. 7. DC temperature comparison with a memory workload

values begin to fluctuate frequently, resulting in a significantly
noisier data set once the warm-up is removed. Therefore,
neither technique provides a significant advantage over the
other in helping to improve power estimation.

The techniques discussed so far are only capable of affect-
ing the dynamic temperature changes from processor warmup.
They do not address the potentially more significant impact
of differences between steady-state operating temperatures.
Such a difference can be seen in Figure 7, which plots the
temperatures (in degrees Celsius) measured while executing
the DC benchmark and our micro-benchmark with a memory
dominant workload. The observed difference in the measured
temperatures (about 12 degrees) is quite significant, which
is over a third of the measured maximum for our micro-
benchmark.

Such a significant difference in temperature between two
similar workloads in DC and our benchmarks has unquestion-
ably impacted on the accuracy of our derived power model
in W-Classifier. Because the sampled power values when the
micro-benchmark is run is lower than the real power use of
DC for a similar workload due to the temperature difference,
the estimated power of DC by W-Classifier is no doubt lower
than the measured real power, as shown in Figure 5. This
highlights the necessity of incorporating temperature values
into the power model, which can help correct the variation be-
tween the measured and estimated power by W-Classifier. Any
difference in operating temperature between the training micro-
benchmark and evaluated benchmarks will contribute some
error to the power estimation. This temperature difference
partly contributed to the errors of the base power estimation
in W-Classifier, as mentioned previously.

V. RELATED WORK

Much of the prior work on PMC-based power estimation
has taken the approach of using PMCs to model the underlying
architectural components. For this, a set of architecture specific
micro-benchmarks try and affect the power use of targeted
processor units. Singh et al. [11] proposed such a model,
which used micro-architectural knowledge to decompose the
processor into its four main functional units: Floating Point
Units, Memory, Stalls, and Instructions Retired. PMC selection
is made from initial data collected from the execution of
the SPEC benchmark suite. A separate micro-benchmark is
designed for each of the four PMCs most strongly correlated
with power for each functional unit. The micro-benchmark data
is used to form a piece-wise linear function.

Bertran et al. [13] take an even finer-grained approach
by starting with a set of 97 micro-benchmarks designed to
individually highlight all possible processor power compo-
nents. This results in multiple linear equations with an input
for each of the seven derived power components. During the
runtime period, PMC multiplexing is required, as the hardware
micro-architecture does not allow that many PMC values to be
collected simultaneously.

Such models are derived from a very selective set of micro-
benchmark workloads, designed with the sole intention of
affecting the power use of target hardware components. This
results in a model strongly correlated to a specific micro-
architecture, which may not generalize well across a large
variety of workloads. In our work we have taken the opposite
approach, where we attempt to generalize the power model
by starting with a set of varied workload types. During the
execution of each workload, the PMC values are collected for
a range of hardware components, allowing the most applicable
components to be used to model each specific workload type.

Da Costa et al. [12] present a methodology intended to
broaden the range of modeled workloads by supplementing
PMC values with process and system level statistics. This
means the resulting model, derived through multivariate re-
gression, is not limited to estimating the power of CPU and
memory workloads, also allowing accurate power estimation
of the network and disk synthetic benchmarks.

A limitation for this existing work is the requirement for
a number of benchmarks and micro-benchmarks to be used
while deriving the model. The use of specific benchmark suites
can restrict portability, while the micro-benchmarks can be
time consuming, both for execution and their architecture-
specific development. In contrast, our approach uses a single
parameterized micro-benchmark, which is general enough to
be cross-platform, with little requirement for further develop-
ment time. A further limitation of the related research work is
the development of single, global power estimation functions.
While developing such functions is a desirable goal, it will
inevitably lead to some form of over-generalization, where a
given application is outside the range of the behavior that is
able to be reliably estimated with the current set of PMCs. This
limitation is the key principle behind our use of a workload
classification system and the corresponding workload specific
power models.

Workload classification is adopted in [20], where the PMC
details and static power for each workload is stored in a

single lookup table. The power for a given workload is
obtained by locating the corresponding table entry. However,
this technique relies on the assumption that a corresponding
workload has previously been stored, creating the requirement
of an exhaustive training process to be performed. Dhiman
et al. [21] propose an alternative classification method using
a gaussian mixture model for power estimation in virtualized
environments. The resulting model provided for more accurate
power estimation than the linear and multi-variate regression
models. In comparison, our proposed modeling methodology
uses simple linear regression to model power, while overcom-
ing many of the previous limitations. W-Classifier is able to
achieve general workload classification across the entire NPB
suite, without imposing any additional requirements on model
training data collection.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented W-Classifier: a PMC-
based power model for estimating the power consumption
caused by software tasks on modern multicore CPUs. We have
evaluated the model on a variety of applications, such as the
benchmarks within the NPB suite. For those benchmarks, we
have shown that the MAE (Mean Absolute Error) is 6.95%.
This is significantly lower than the 40.74% MAE incurred by
a multi-variable estimation model that is run on the same
set of benchmarks—such multi-variable estimation models
are the dominant technique currently used in software power
estimation systems. The error for W-Classifier is sufficiently
low to allow fine-grained decisions to be made within power-
aware task scheduling in an operating system. Our future
work will include further efforts to determine the cause of
the remaining error, and hopefully provide bounds on it.

A key concept that we have emphasized is the importance
of including workload classification into W-Classifier. This
enables accurate power estimates for a wide range of applica-
tions, through the use of workload specific power models. This
has been shown to increase the precision of power estimation
compared to typical multi-variable approaches that do not
perform workload classification. We are able to derive W-
Classifier from the training dataset gathered from a single
parameterized micro-benchmark.

Our future work aims to include additional system metrics
into our energy model, such as determining how temperature
affects base power draw, and how the base power draw
operates across multicore configurations that are operating
with different per-core utilization levels. Finally, we would
like to incorporate CPU temperature metrics themselves into
the estimation model, given the significant effect to which
temperature has been found to affect power consumption.
These factors are not currently included within the existing
software power consumption estimation models that we are
aware of.

REFERENCES

[1] C.-H. Hsu and W.-C. Feng, “A power-aware run-time system for
high-performance computing,” in Proceedings of the 2005 ACM/IEEE
conference on Supercomputing. IEEE Computer Society, 2005, p. 1.

[2] L. A. Barroso and U. Holzle, “The case for energy-proportional
computing,” Computer, vol. 40, no. 12, pp. 33–37, 2007.

[3] J. Park, D. Shin, N. Chang, and M. Pedram, “Accurate modeling and
calculation of delay and energy overheads of dynamic voltage scaling
in modern high-performance microprocessors,” in Proceedings of the
16th ACM/IEEE international symposium on Low power electronics
and design, 2010, pp. 419–424.

[4] W. Bircher and L. John, “Complete system power estimation: A trickle-
down approach based on performance events,” in Performance Analysis
of Systems and Software, IEEE International Symmposium on, vol. 0.
Los Alamitos, CA, USA: IEEE Computer Society, 2007, pp. 158–168.

[5] Y. Zhang, Y. Wang, and X. Wang, “Electricity bill capping for cloud-
scale data centers that impact the power markets,” in Proc of Interna-
tional Conference on Parallel Processing (ICPP), 2012.

[6] Z. Zong, X. Qin, X. Ruan, K. Bellam, M. Nijim, and M. Alghamdi,
“Energy-efficient scheduling for parallel applications running on het-
erogeneous clusters,” in Proceedings of the International Conference on
Parallel Processing, vol. 0. Los Alamitos, CA, USA: IEEE Computer
Society, 2007, p. 19.

[7] M. A. Suleman, M. K. Qureshi, and Y. N. Patt, “Feedback-driven
threading: Power-efficient and high-performance execution of multi-
threaded workloads on CMPs,” in Proceedings of the 13th international
conference on Architectural support for programming languages and
operating systems, 2008, pp. 277–286.

[8] X. Chen, C. Xu, R. Dick, and Z. Mao, “Performance and power mod-
eling in a multi-programmed multi-core environment,” in Proceedings
of the 47th Design Automation Conference. ACM, 2010, pp. 813–818.

[9] A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weissmann, “Power
management architecture of the 2nd generation Intel Core microarchi-
tecture, formerly codenamed Sandy Bridge,” in Hot Chips: A Sympo-
sium on High Performance Chips, 2011.

[10] E. Rotem, A. Naveh, A. Ananthakrishnan, D. Rajwan, and E. Weiss-
mann, “Power-management architecture of the Intel microarchitecture
code-named Sandy Bridge,” IEEE Micro, vol. 32, no. 2, pp. 20–27,
2012.

[11] K. Singh, M. Bhadauria, and S. A. McKee, “Real time power esti-
mation and thread scheduling via performance counters,” in SIGARCH
Computer Architecture News, vol. 37, no. 2. ACM, 2009, pp. 46–55.

[12] G. Da Costa and H. Hlavacs, “Methodology of measurement for energy
consumption of applications,” in 2010 11th IEEE/ACM International
Conference on Grid Computing (GRID), 2010, pp. 290–297.

[13] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade,
“Decomposable and responsive power models for multicore processors
using performance counters,” in ICS ’10: Proceedings of the 24th ACM
International Conference on Supercomputing. New York, NY, USA:
ACM, 2010, pp. 147–158.

[14] P. Alonso, R. M. Badia, J. Labarta, M. Barreda, M. F. Dolz, R. Mayo,
E. S. Quintana-Ortı́, and R. Reyes, “Tools for power and energy analysis
of parallel scientific applications,” in Proc of International Conference
on Parallel Processing (ICPP), 2012.

[15] S. Wang, H. Chen, and W. Shi, “SPAN: A software power analyzer for
multicore computer systems,” Sustainable Computing: Informatics and
Systems, vol. 1, no. 1, pp. 23–34, 2011.

[16] H. Jin, M. Frumkin, and J. Yan, “The OpenMP implementation of NAS
parallel benchmarks and its performance,” NASA, Tech. Rep. NAS-99-
011, 1999.

[17] J. Mair, Z. Huang, D. Eyers, and H. Zhang, “Myths in PMC-based
power estimation,” in Energy Efficiency in Large Scale Distributed
Systems, 2013, pp. 35–50.

[18] AMD, “BIOS and kernel developer’s guid (BKDG) for AMD fam-
ily 10h processors,” http://support.amd.com/us/Processor TechDocs/
31116.pdf, 2013.

[19] O. A. R. Board, “OpenMP application program interface version 3.0,”
http://www.openmp.org/mp-documents/spec30.pdf, May 2008.

[20] G. L. T. Chetsa, L. Lefevre, J.-M. Pierson, P. Stolf, and G. Da Costa,
“DNA-inspired scheme for building the energy profile of HPC systems,”
in Energy Efficient Data Centers, 2012, pp. 141–152.

[21] G. Dhiman, K. Mihic, and T. Rosing, “A system for online power
prediction in virtualized environments using Gaussian mixture models,”
in Design Automation Conference (DAC), 2010 47th ACM/IEEE, 2010,
pp. 807–812.

