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Abstract. Izhikevich [6] has proposed that certain strongly connected
groups of neurons known as polychronous neural groups (or PNGs) might
provide the neural basis for representation and memory. Polychronous
groups exist in large numbers within the connection graph of a spiking
neural network, providing a large repertoire of structures that can poten-
tially match an external stimulus [6,8]. In this paper we examine some of
the requirements of a representational system and test the idea of PNGs
as the underlying mechanism against one of these requirements, the re-
quirement for consistency in the neural response to stimuli. The results
provide preliminary evidence for consistency of PNG activation in re-
sponse to known stimuli, although these results are limited by problems
with the current methods for detecting PNG activation.

Keywords: spiking network, polychronous neural group, activation,
representation, memory.

1 Introduction

It is widely assumed that synaptic plasticity provides the neural basis for long-
term memory in the brain [1,2,9] although the precise nature of the underlying
representation is still unclear [3]. Izhikevich [6] has proposed that certain strongly
connected groups of neurons known as polychronous neural groups (or PNGs)
might provide this representational mechanism. An understanding of this under-
lying mechanism is particularly relevant to the developing field of neuromorphic
computing, but is also of interest to researchers in machine learning, or even
information retrieval [5]. In this report we examine some of the requirements of
a representational system and test the idea of PNGs as a mechanism of repre-
sentation against one of these requirements, the requirement for consistency in
the neural response to stimuli.

Polychronous groups arise from an interaction between the precise firing times
of spatio-temporal input patterns and the variability of axonal transmission delays
between neurons. Figure 1 shows a schematic example of such an interaction. The
input stimulus is composed of a sequence of firing events, each representing the
firing of a specific neuron at a precise point in time. The stimulus in this example
forms an ascending spatio-temporal pattern as shown in Fig. 1 (unfilled circles).
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In this model network there exists a polychronous group whose intra-group ax-
onal delays are congruent with the input stimulus (gray-filled circles). As shown
in panels A, B and C, the spatio-temporal arrangement of three of the firing
events that make up the stimulus (filled black circles in Fig. 1) interacts with
the axonal delays, producing convergent input to group neurons. This firing
event triplet acts as a trigger for PNG activation, producing a wave of neural
firing that propagates throughout the polychronous group (only the first step is
shown). Without this convergent input the neurons in the group would fail to
reach the firing threshold and the input stimulus would not propagate.
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Fig. 1. Polychronous group activation following stimulation with an ascending firing
pattern (unfilled circles). The precise timing of three of the firing events in the pattern
(denoted by filled black circles) matches the axonal delays between group neurons,
producing activation of the polychronous group. Other firing event combinations might
produce additional group activations (not shown). Firing events resulting from PNG
activation are shown with gray-filled circles. The first of the three firing events is fired
in panel A, producing spikes that take time to propagate to PNG neurons. In panel
B, the convergence of the propagating spike and the second of the triplet firing events
is sufficient for a PNG neuron to reach the firing threshold (panel C). Further group
firing events are supported by the axonal delays between group neurons (panel D).

This propagation of neural firing across the group is called group activation.
When activated, the neurons in the polychronous group are said to polychro-
nize in a causal chain of firing events that is both precisely timed and repro-
ducible [6,8]. However, not all PNGs are capable of activation. Structural PNGs
are defined purely topologically, as groups of neurons with connection latencies
commensurate with a given input stimulus [10]. For polychronization to occur
the synaptic connections converging on each group neuron must be sufficiently
strong to allow the post-synaptic neuron to reach the firing threshold. Poly-
chronous groups with compatible synaptic weights can activate when presented
with a triggering stimulus at which point they are known as activated PNGs.

Izhikevich [6] observed that the number of structural PNGs in a network
is typically many times larger than the number of neurons. Given this large
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repertoire of structural PNGs, how might we use it to build a representational
system? Several attributes present themselves as necessary for a robust system
and we will refer to these with the terms selectivity, consistency, stability and
capacity. A selective system produces PNG activations in response to a stimulus
that are sufficiently specific to allow the unique identification of the stimulus.
A consistent system is able to dependably produce PNG activations on every
presentation of the stimulus. A stable system is able to maintain long-term rep-
resentations in the form of structural PNGs that are capable of activation, and
a system with good capacity allows a biologically plausible number of these
structural representations.

Activated groups produce distinct spatio-temporal signatures within the flood
of firing events generated by the network and the analysis of the firing response
to stimuli should therefore allow the detection of PNG activation. Izhikevich has
used such a technique to study the selectivity of the neural response to repeated
stimulation [6]. In this experiment he tracked the evolution of polychronous
groups in response to one of two input patterns and found that different groups
were activated for each pattern, suggesting that the underlying structural groups
might provide a unique long-term representation of each pattern.

Although this experiment provided some initial evidence in support of selec-
tive PNG activation, it did not address any of the other attributes necessary
for a representational system based on PNGs. In addition, the method used in
Izhikevich [6] for measuring PNG activation is not described, providing some
hurdles to the reproduction of these results. The experiments described below
employ a template matching technique for detecting PNG activation (methods
outlined below and in more detail in a separate technical report [4]).

In the remainder of this report we will focus on the requirement for a con-
sistent representational system, using the pattern-specific activation of poly-
chronous groups to measure the dependability of the neural response to known
stimuli. Polychronous groups exist in a competitive medium in which the group
affiliation of individual neurons is constantly fought over [8] and this dynamic
environment therefore calls into question the reliability of a representational sys-
tem based on PNG activation. Although PNG activation is often described as
“stereotypical” and “reproducible”, a specific PNG will not necessarily activate
on every presentation of a triggering stimulus [6]. However, other PNG activa-
tions may result from the same stimulus and a stimulus-specific neural response
consisting of some subset of the set of all stimulus-specific PNG activations may
therefore occur with some consistency. In the following experiments we will as-
sess the empirical probability of this stimulus-specific neural response given the
presentation of a known stimulus. Does every stimulus presentation produce a
relevant group activation, or only some presentations?

2 Methods

Twenty independent networks were created for these experiments, each com-
posed of 1000 Izhikevich neurons (800 excitatory and 200 inhibitory) with param-
eters as described in [6]. The networks were matured for two hours by exposure
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to 1 Hz random input generated by a Poisson process. Following maturation, the
networks were trained on one of two input patterns or were left untrained. The
current experiments reproduce the few known details of the repeated stimulation
experiment described in [6], namely a twenty minute training period, and the
use of an ascending or descending input pattern as the stimulus (see Fig. 2).
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(a) Ascending Pattern (b) Descending Pattern

Fig. 2. The ascending and descending patterns: each spatio-temporal input pattern is
composed of 40 firing events. Both patterns share the same neurons, differing only in
the temporal order of their firing events.

The technique used by Izhikevich [6] for detecting PNG activations in the fir-
ing data was not described and therefore needed to be redeveloped for the current
experiments. It was clear that this technique needed to discriminate pattern-
specific PNG activations from unrelated PNG activations, and from other spiking
events generated by the network. The original method was assumed to make use
of the Izhikevich search algorithms [7] (see also [10]) to find structural PNGs in
the network, suggesting the use of a template matching technique for the detec-
tion of PNG activation. The default behavior of these algorithms is to initiate a
PNG search based on all combinations of three neurons in the network. However,
we created a small modification that limits the search to triplet combinations
that occur only in the training patterns. Any polychronous groups found by this
modified algorithm are referred to as pattern-specific PNGs, as the activation of
these groups is initiated by a firing event triplet that occurs in the input pattern.

The assumed template matching technique involves isolating PNGs from a
trained network and using them as templates to probe for group activation. The
technique is reproduced as follows: first, a network is trained with a specified
input pattern and pattern-specific structural PNGs are isolated from the net-
work at regular intervals; the isolated PNGs are then used as spatio-temporal
templates to match the firing data. For convenience, the experiment is split into
two phases: in an initial training phase, the network is repeatedly stimulated
with the ascending or descending pattern at 5 or 25 Hz for twenty minutes; in
the following test phase of the experiment, the network is stimulated with the



90 M. Guise, A. Knott, and L. Benuskova

same ascending or descending pattern at 1 Hz, and pattern-specific templates
isolated during the training phase are used to probe for group activation.

At one minute intervals throughout the training phase a search is initiated for
structural PNGs that can act as pattern-specific templates. The search involves
testing all triplet combinations (i.e. combinations of three firing events) from the
input pattern for their ability to discover structural PNGs in the network [4].
However, not all PNGs will be found as the algorithm is limited for performance
reasons to testing combinations of just three firing events.

The test phase involves scanning the stream of firing events generated by
the stimulated network for template matches. For each temporal offset in the
network firing data, each of the templates is matched in sequence and successful
matches are saved to a file. A matching threshold of 50% means that at least
half the firing events in each template must match the the firing time and the
neuron fired in the network event stream (although the firing time is allowed a
jitter of ± 2 milliseconds). Each successful template match provides evidence of
PNG activation in response to the stimulus.

The use of a 1 Hz stimulation frequency in the test phase creates a well-
defined temporal frame for each stimulus and its response. Stimulus onset occurs
at t = 0 in each one second response frame, and the remainder of the frame has
sufficient temporal length to include all of the firing events in the resulting neural
response. A 1 Hz random background pattern is also presented throughout each
test period. For a more detailed description of the methods see the accompanying
technical report [4].

3 Results

Together the training and testing phases of the experiment produce a large set of
data that supports multiple analyses. Training phase data provides a view of the
evolution of structural PNGs in response to the stimulus, while test phase data
provides a snapshot of the process of PNG activation. Figure 3 uses a combina-
tion of both datasets to show a selection of three matching templates following
low-intensity (1 Hz) test stimulation of a network. These matching templates
are sampled from a larger pool of pattern-specific templates that match PNG
activations triggered by some triplet combination from the ascending input pat-
tern. The first few firing events in each of the templates in Fig. 3 are therefore
upward-sloping, reflecting the isolation of the template from a network trained
on the ascending pattern. Each group consists of multiple convergent connec-
tions that support the propagation of neural firing across the members of the
group before terminating at an inhibitory neuron (gray-filled circles).

Temporal alignment of just these first few firing events for all matching tem-
plates (and with all other firing events removed) produces sloping firing patterns
that can be seen in Fig. 4. Recall that the first few firing events in each tem-
plate (the initial triplet) correspond to the stimulus trigger that leads to PNG
activation. The gray-scale intensity in this figure encodes the number of times
the corresponding firing event acted as a trigger for the initiation of PNG ac-
tivation, where activation was measured by the number of matching templates
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Fig. 3. A selection of three templates that match the firing data following stimulation
with the ascending input pattern. The x- and y-axes for each template represent time
in milliseconds and neuron index respectively (the y-axis is ordered so that inhibitory
neurons are at the top of the graph). Nodes depict firing events generated by excitatory
or inhibitory neurons and are drawn using either open circles (excitatory neurons) or
gray-filled circles (inhibitory neurons). Lines between nodes represent causal connec-
tions between firing events.

accumulated across twenty independent networks. The figure therefore provides
a picture of which of the input pattern firing events succeeded or failed at initi-
ating PNG activation. Many of the forty firing events that make up each input
pattern failed to initiate a responding group over the ten minutes (six hundred
response frames) of the testing phase. Significantly, the majority of these fail-
ures are clustered in the later stages of the input pattern, suggesting that group
response is concentrated on the early part of each stimulus presentation.

Nevertheless, the PNG activation response as a whole exhibits a high degree
of consistency. Figure 5 shows the activation response of 40 networks (20 trained
on the ascending pattern and twenty untrained networks) in the first 100 sec-
onds of the 10 minute test run (only the first 100 of 600 response frames are
shown in Fig. 5). The stimulus is presented at the start of each frame and any
templates that match the firing events in the remainder of the frame are taken
as evidence of PNG activation. Each row in Fig. 5 represents a single network
and is divided into one hundred segments representing each of the one hundred
response frames. The presence of a filled circle in each segment indicates the
detection of a PNG activation response in the corresponding response frame. If
there was no response, or the method was unable to detect the response, the
segment is left empty.
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Fig. 4. The initial triplets from all templates that match the ascending input pattern
(left) or the descending input pattern (right). The first three firing events from each
matching template were extracted and aligned in order to show the coverage of the
input pattern firing events. Firing events are represented by filled circles; the intensity
of the fill color for each firing event represents the number of templates that matched
PNG activations triggered by the event. This number, accumulated across twenty in-
dependent networks, is greatest in the early stages of each input pattern (darker fill
color) and decreases in later stages of the input pattern (lighter fill color). The missing
firing events in the later stages correspond to input pattern firing events that failed to
initiate a group response during the test period.

The first 25 frames in this experiment used the ascending pattern, the next
25 used the descending pattern, the third group of 25 frames repeated the use
of the ascending pattern, and in the final 25 frames no input pattern was pro-
vided (the null pattern). Using a combined pool of all templates to measure the
PNG activation response, the twenty trained networks at the top of Fig. 5 show
a consistent response to the ascending pattern but little or no response to the
descending pattern or the null pattern. In contrast, the twenty untrained net-
works at the bottom of Fig. 5 show only sporadic activation and no apparent
correlation with the type of input pattern. Comparing the activation response
of the trained networks with the response of the untrained networks, we see a
high degree of consistency in the response to the ascending pattern only where
the network has been previously trained on the ascending pattern.

The PNG activation response to each stimulus presentation is assumed to
occur in the early portion of each response frame, shortly after stimulus pre-
sentation at t = 0. Over this period, one of more PNG activations triggered by
the stimulus have the opportunity to match the pool of PNG templates. Some
insight into the temporal evolution of PNG activation is provided by computing
the proportion of matches that occur at each temporal offset within the frame
(the template match ratio) to produce an empirical measure of the likelihood of
PNG activation at each offset. Firstly, each one second response frame is sliced
into 1000 consecutive sub-frames and the number of template matches at each
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Fig. 5. The PNG activation response of twenty trained networks and twenty untrained
networks over one hundred response frames. Trained networks were trained on the as-
cending pattern. A filled circle represents a positive response to the stimulus while an
empty space denotes a lack of response. The stimulus for the first and third quarter
of the one hundred frames was the ascending pattern and the stimulus for the second
quarter was the descending pattern. No stimulus was provided in the fourth quarter
(null pattern). The top figure shows the measured response for a network trained on the
ascending pattern at 5 Hz and the bottom figure shows the result using an untrained
network. The trained networks in the top figure were derived from the untrained net-
works in the corresponding row of the bottom figure.

one millisecond sub-frame is counted. The template match ratio for each offset
is then computed by aggregating the number of matches for each offset across all
response frames. Using this procedure we expect to see an isolated peak in the
number of matches at a short delay following the stimulus at time t = 0, reflect-
ing the transient activation of a responding PNG. However, due to limitations in
the template matching method the delay can only be calculated to within half
the length of each template (i.e. ±15 milliseconds), depending on where on each
template the match occurs.

Figure 6 shows the template match ratios for each network distributed over
the first twenty sub-frames of each response frame. As predicted there is an
isolated peak that consistently occurs in the first ten milliseconds following the
stimulus. Within this small temporal window the likelihood of a template match
typically reaches 50% or more, indicating that PNG activation is in full swing.
As PNG activation comes to an end, the likelihood of a template match decreases
to zero and remains at zero for the remainder of the response frame.

Although these positive results support the consistency of PNG activation, it
is worth noting that the majority of templates are ineffective in matching the
firing data. Here, we define an effective template as one that is able to match
the firing data at least once during a ten minute period of stimulation with the
corresponding input pattern. On average, just 32% of ascending templates and
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Fig. 6. Template match ratios distributed over each one second frame for each of
twenty independent networks. The template match ratio was computed for each one
millisecond slot in the response frame, accumulated over multiple frames. The response
for each network is confined to the first ten milliseconds following the stimulus and
therefore only the first twenty milliseconds of the frame are shown.

43% of descending templates were effective at finding a match (averaged across
twenty independent networks). The template matching performance between
networks is also very variable with some networks averaging as few as three
matches in each response frame. In some frames, the evidence for PNG activation
is based on a single template match suggesting that the template matching
method is near to its sensitivity limit for some networks.

4 Discussion

The template matching method attempts to match spatio-temporal templates
derived from the structural PNGs found in a trained network with the sequence
of firing events that are produced when the network is stimulated with the same
pattern. To ensure that template matches were pattern-specific, the selected tem-
plates were restricted to structural PNGs that were triggered by triplet combi-
nations of the input pattern firing events. We can imagine that structural groups
exist in the network that require larger, more complex, triggering patterns al-
though it seems likely that the probability of finding groups with larger triggers
decreases with the size of the triggering pattern. Templates that match the firing
data such as those shown in Fig. 3 provide an impression of the corresponding
PNG activations that occur in the milliseconds following each stimulus. However,
looking at a selection of matching templates creates only a partial picture of the
complex pattern of neural firing in response to spatio-temporal stimuli. Visual-
ization of all of the PNG activations that are initiated by combinations of firing
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events from the input pattern produces a complex graph in which individual
PNGs interact and merge (results not shown).

Izhikevich [8] has proposed that competitive interactions occur between the
polychronous groups in the network, with neurons that are shared by multiple
PNGs synchronising their firing times with different polychronising pathways at
different times. However, cooperative interactions are also possible in which firing
events generated by separate PNG activations together produce the required
spatio-temporal initiators for additional PNG activations. The emerging picture
is one in which the activation response to complex stimuli is a composition of
individual PNG activations that interact and merge in a complex manner.

Interestingly, all of the templates that found a match in the neural response
were initiated by firing event triplets from just the early portion of the input
pattern. This effect was found across all networks and for both the ascending
and descending input patterns. A possible explanation is that competition during
PNG formation for use of shared neurons creates an interference effect between
early PNG activations and those that come later, with the earlier activating
groups forming first and therefore dominating the available neural resources.

This explanation has implications for the maximum number of simultaneous
activations that a network of a given size is able to support, and might in turn im-
pact the maximum number of representations that can simultaneously be “held
in mind” in a representational system based on polychronous groups. However,
note that this explanation does not contradict the extraordinary potential ca-
pacity of a PNG representational system [6] because any potential limitation
in the number of simultaneous activations supported by a representational sys-
tem does not necessarily affect the network capacity i.e. the total number of
representations that can be stored within the network.

Despite any interference caused by interactions between simultaneous activa-
tions, the template matching method provides good support for the consistency
of a PNG-based representational system. Using a combined pool of all tem-
plates, one or more template matches are detected in almost every response
frame, suggesting a consistent PNG activation response following each stimulus
presentation. The best single template for each network is also able to show
quite a high degree of consistency, although most individual templates match
only rarely.

Computing the template match ratio for each one millisecond time-slot in the
response frame shows that all matches are confined to a narrow temporal window
following each stimulus presentation (see Fig. 6). This strong interaction between
the time of the stimulus and the time of template matching supports the view
that template matching reflects the causal relationship between stimulus onset
and subsequent PNG activation. The template match ratio can also be computed
at frame level (i.e. the proportion of matching frames), producing a value that
reflects the empirical likelihood of PNG activation given the stimulus. With
the combined templates, this likelihood value approaches certainty for many
networks, although there is considerable inter-network variation in performance.
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Together these results indicate a high degree of consistency in the PNG acti-
vation response following a stimulus. However, despite this consistent response
there are occasional response frames where no neural response is detected, de-
spite the presence of a known stimulus. The lack of a detectable response does
not mean that PNG activation did not occur and may instead be due to limi-
tations in the template matching method. Examination of the precise timing of
the firing events in consecutive response frames shows considerable jitter in the
spike times of PNG neurons between frames (results not shown). Competition
for neural resources between activating groups may increase this jitter to the
point where the corresponding template fails to match.

The lack of tolerance of the template matching method to temporal jitter
is just one of the flaws of this method for detecting PNG activations. Although
this technique is able to respond selectively to substantially different stimuli (e.g.
discriminating between the ascending and descending patterns, or the ascending
and null patterns in Fig. 5), the lowmatching threshold used in these experiments
potentially allows templates to match unrelated spatio-temporal patterns. The
template matching method may therefore have difficulty in resolving stimuli that
are too closely related.

Another problem with the template matching method is that it treats match-
ing as a local process when it is likely to be a global one. The neural response
to a complex stimulus is a unique set of PNG activations ; it is therefore the set
as a whole and not individual activations that provide a unique signature of the
stimulus. Given a set-oriented view of the neural response, if a single template
happens to match a single PNG activation, does this provide good evidence of the
presence of the stimulus? For example, two stimuli with partial overlap in their
spatio-temporal firing patterns could both match the same template and may
therefore not be individually resolvable. In recognition of a set-oriented view of
the neural response, the template matching method makes use of a pool of tem-
plates that are able to detect multiple PNG activations. However, this method
does not take into account the number of unique matches in each response frame
and is therefore unable to counter the problem of overlapping stimuli.

Each of the templates generated in the training phase contribute to the time
it takes to scan the firing data in the testing phase. It is therefore a problem that
the majority of templates are ineffective, with less than half of the templates ever
able to generate a match. Although the single best template for each network
matches the neural response very consistently, the majority of templates that
match at all do so only rarely. In addition, the number of matches in each
response frame is sometimes very low suggesting that this method is close to the
threshold for maximum sensitivity for some networks.

It is likely that Izhikevich [6] used a similar technique to show selectivity in
the activation response, despite the flaws of the template matching method. The
issues with this method, while limiting the scope and accuracy of the current
results, do not invalidate our overall finding. Here we provide preliminary evi-
dence for the consistency of PNG activation in response to stimuli, suggesting
that polychronous groups may be able to meet at least one of the necessary
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criteria for a representational system. The neural response to complex stimuli
appears to involve multiple interacting PNG activations suggesting that an al-
ternative method for measuring the neural response must treat any single PNG
activation as only partial evidence in favor of a particular stimulus. Work is in
progress on such an alternative technique that will address these limitations.
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