
NOKMeans: Non-Orthogonal K-means Hashing

Xiping Fu(B), Brendan McCane, Steven Mills, and Michael Albert

Department of Computer Science, University of Otago, Dunedin, New Zealand
{xiping,mccane,steven,malbert}@cs.otago.ac.nz

Abstract. Finding nearest neighbor points in a large scale high dimen-
sional data set is of wide interest in computer vision. One popular and
efficient approach is to encode each data point as a binary code in Ham-
ming space using separating hyperplanes. One condition which is often
implicitly assumed is that the separating hyperplanes should be mutu-
ally orthogonal. With the aim of increasing the representation capability
of the hyperplanes when used for indexing, we relax the orthogonality
assumption without forsaking the alternate view of using cluster centers
to represent the indexing partitions. This is achieved by viewing the data
points in a space determined by their distances to the hyperplanes. We
show that the proposed method is superior to existing state-of-the-art
techniques on several large computer vision datasets.

1 Introduction

Finding nearest neighbor points is of wide interest in several areas of computer
vision including feature matching [1], image retrieval [2] and object recogni-
tion [3]. For example, in content-based image retrieval (CBIR), the task is to
retrieve similar images when given a query image. This is often done by repre-
senting all of the images as points in a specific space, and then retrieving the
nearest neighbor points as similar images. Naive exhaustive searching is linear in
the number of images in the collection and becomes infeasible for very large col-
lections. Even specialised data structures such as KD-trees deteriorate to linear
search complexity or worse if the dimensionality of the data is large [4]. Since
computer vision problems often have very large collections and high dimensional
data, approximation algorithms are of interest.

A popular approach for approximate nearest neighbor search is to represent
each feature as a point (binary code/hash code) in Hamming space which enables
fast retrieval and reduces storage space. As a case in point, one SIFT feature
takes 128 × 4 = 512 bytes if it is stored as a 128 dimensional floating point
vector, while it only occupies 128/8 = 16 bytes if it is represented as a point
in 128D Hamming space. Further, calculating the distance between two points in
Hamming space is very quick since it only involves a bitwise XOR operation
followed by a bit count.

Locality sensitive hashing (LSH) [5,6] pioneered the use of hashing for fast
approximate nearest neighbor searching. In 1998, Indyk et al. introduced the
concept of a locality sensitive function family. Each function in this family has
c⃝ Springer International Publishing Switzerland 2015
D. Cremers et al. (Eds.): ACCV 2014, Part I, LNCS 9003, pp. 162–177, 2015.
DOI: 10.1007/978-3-319-16865-4 11

NOKMeans: Non-Orthogonal K-means Hashing 163

the property that it can preserve the similarity between data points. Thus, by
randomly choosing functions from this family, a binary code for each data point
can be constructed. In order to preserve the similarity between data points when
they are represented in Hamming space, however, a large number of bits are
usually needed [7]. LSH has been generalized to Euclidean-LSH [8] for differ-
ent similarity measures, and to shift kernel hashing [9] and Circulant Binary
Embedding [10] by introducing different locality sensitive function families.

Machine learning techniques have also been used to design data depen-
dent hashing algorithms. Borrowing ideas from manifold learning [11], Spectral
Hashing [12] calculates the binary code by embedding the data points into
Hamming space. The optimal embedding is determined by the following charac-
teristics: neighbourhood relationships should be preserved, the code should be
balanced (−1’s and 1’s should occur with roughly equal frequency), and bits
should be pairwise independent. Spectral Hashing also leads to data dependent
hashing algorithms. Various hashing algorithms have been proposed recently,
including ones that use boosting based methods [13–16], exploit the spectral
property [7,17,18], utilize the order of distance information [19,20], use super-
vised information [21–25], and so on.

Fig. 1. Visualization of different encoding approaches. The left figure shows two hyper-
planes in general position. The space is divided into four partitions. The binary code
of a data point in this space can be determined by its relative positions to these hyper-
planes. The middle figure shows that when the hyperplanes are mutually orthogonal,
we can find a set of indexing centers (red points) whose binary codes have been pre-
defined. The binary code of the points in this space can be determined by assigning
the same code to its nearest indexing center. The right figure is a visualization of our
proposed method. The purple points are the implicit indexing centers which are viewed
in the re-represented space (Color figure online).

Since these algorithms use a binary encoding, the input space is divided into
two pieces for each bit. Most of the hashing algorithms address this kind of
partition problem by learning a set of hyperplanes which can be viewed either
in the original space or in the Reproducing Kernel Hilbert space (RKHS). Each
data point is encoded by its relative position to these hyperplanes, −1 for one
side of the plane, 1 for the other. The left picture in Fig. 1 shows the space

164 X. Fu et al.

partitioned by two hyperplanes in 2D space. When the hyperplanes are mutually
orthogonal, we can find a set of data points (indexing centers) such that the
partition of the space (Voronoi diagram) according to this set coincides with the
space partitioned by the hyperplanes. The hash code for the indexing centers can
be predefined since these points are chosen from the vertices of a hyper-cube [26]
or hyper-cuboid [27]. The middle picture in Fig. 1 shows such a set of indexing
centers (red points). Thus the encoding process for each data point can also be
viewed as assigning the same binary code to its nearest indexing center. Both
ITQ [26] and Orthogonal K-means (OKmeans) [27] aim to learn the mutually
orthogonal hyperplanes such that the total quantization error between the data
point and its indexing center is minimized.

The focus of this paper is to design a compact binary code based on minimiz-
ing quantization error. We propose a novel hashing algorithm: Non-Orthogonal
K-means (NOKMeans). The essential idea of this algorithm is that increasing
the freedom of the separating hyperplanes can lead to a better binary code in
the sense of the recall of retrieval performance. We achieve this by relaxing the
orthogonality constraints in [26,27] to a near orthogonal assumption. One prob-
lem introduced by this relaxation is that the explicit indexing centers cannot
be found in the original feature space any more. This is because for any given
indexing centers, the space will be divided into Voronoi cells if we index each
data point by its nearest indexing center. When the hyperplanes are not mutu-
ally orthogonal, it is impossible to find center points such that the hyperplanes
are exactly the separating boundaries for the Voronoi diagram. We address this
problem by viewing the data points in a re-represented space where we can find
specific indexing centers. After encoding each data point into its nearest index-
ing center, the hyperplanes are exactly the separating boundary of the Voronoi
diagram. In the right picture in Fig. 1, the purple points are viewed as a set of
indexing points after re-representation.

2 Background

2.1 Notation

Here are the common notations we use throughout the paper. Suppose we want
to build a binary code index for the data set {x1, x2, · · · , xN}, xi ∈ RD. Denote
X ∈ RN×D as the data matrix where each row is a data point. The binary code
for this data set is denoted as B ∈ {−1, 1}N×d where each row corresponds to a
d bit binary code in Hamming space. sign(X) is a function returning a Hamming
matrix of equal size to X, with −1 or 1 as entries depending on the sign of the
input entries. Assuming the data set is already centered and the hyperplanes
pass through the origin, each hyperplane can be fixed by its normal direction.
Therefore, the d hyperplanes, which are used to determine the binary code,
can be specified by a hyperplane matrix (projection matrix) A ∈ RD×d where
each column corresponds to one normal direction. Another view of the space
which is partitioned by the hyperplanes is that the space is divided into regions

NOKMeans: Non-Orthogonal K-means Hashing 165

(partitions) where the data points in the same region have the same binary code.
We use 1 to represent an all ones column vector and I is the identity matrix.

2.2 Related Work

When given a set of indexing centers, the encoding process shares some similarity
with the K-mean clustering algorithm. Each data point is encoded into a binary
code according to its nearest indexing center which behaves as a cluster center in
the K-means algorithm. ITQ [26] aims to find an optimal binary code in the sense
of minimal quantization error. Specifically, the data points are preprocessed by
centering and then projecting to a low dimensional space by PCA, and then
solving an optimization problem. The main idea of the optimization problem is
to find a rotation R ∈ Rd×d in order to minimize the quantization error between
the rotated data points and their corresponding indexing centers. Suppose V ∈
RN×d is the preprocessed data, and B ∈ {−1, 1}N×d is the encoding binary
matrix. The optimization problem of ITQ is:

min J(R,B) = ||B − V R||2F (1)
s.t. R′R = I

B ∈ {−1, 1}N×d

If we combine the PCA projection matrix P and the final orthogonal matrix
R together, we can see that ITQ aims to find a set of mutually orthogonal
hyperplanes, and its optimization model is to find minimum quantization error
in the subspace obtained from PCA, and its index centers are from the vertices
of a rotated d-dimensional hyper-cube in the PCA subspace. The left picture
in Fig. 2 shows a visualization of ITQ. Two hyperplanes are used to partition
the data points. The red points are the corresponding indexing centers. The
data points in the space can be encoded by either its relative position to the
hyperplanes or its nearest indexing center.

OKmeans [27] generalizes ITQ by embedding the vertices of a d dimensional
hyper-cube in RD, then the vertices are rotated by R ∈ Rd×D, scaled by S ∈
Rd×d (S is a diagonal matrix) in the corresponding directions and translated
by µ ∈ RD. Thus the indexing centers can be viewed as points chosen from
the vertices of a rectangular hyper-cuboid. Finally, the optimization objective is
modelled as minimizing the quantization error which is formulated as:

min J(R,µ,B, S) = ||X − 1µ − BSR||2F (2)
s.t. R′R = I

µ ∈ RD

B ∈ {−1, 1}N×d

S ∈ Rd×d, Si,j = 0 if i ̸= j ∈ {1, 2, · · · , d}

If we view µ ∈ RD as the ‘origin’ of the data points, the columns of the rota-
tion matrix behave as the normal directions of the corresponding hyperplanes,

166 X. Fu et al.

the regions of the data points which have the same index are separated by these
hyperplanes. A visualization of OKmeans is shown in the right picture of Fig. 2.
From the visualization of both ITQ and OKmeans, we can see that both of the
partitions from ITQ and OKmeans are divided by mutually orthogonal hyper-
planes, and the indexing centers of ITQ and OKmeans are chosen from a unit
hyper-cube and a rectangular hyper-cuboid respectively.

Fig. 2. Visualization of data points encoded by ITQ and OKmeans. The black point
is the center of the data points. The red points are the indexing centers. The index-
ing centers are chosen from the vertices of a square (ITQ) and rectangle (OKMeans)
respectively (Color figure online).

3 Proposed Algorithm

As discussed above, the main idea of ITQ and OKmeans is to find a set of
mutually orthogonal hyperplanes. The hyperplanes are used to divide the data
points into partitions, thus we can index each data point as a point in {−1, 1}d
according to its relative position to the hyperplanes. In this work, we investigate
the situation when the orthogonality assumption used in ITQ and OKmeans is
relaxed. Specifically, we adopt the ‘near’ mutually orthogonal property which
is also used in [24]. One advantage of the relaxation is that it will increase the
representation capability of the hyperplanes. The quality of the hash code is
closely related to the position of the hyperplanes since the hyperplanes behave
as the separating boundary of different index regions. Thus the flexibility of
the position of the hyperplanes can lead to smaller overall quantization error.
Furthermore, as discussed in [24], the ‘near’ mutually orthogonal condition is
favored since the mutually orthogonal condition has some practical problems
even though it is an approximation to the bit independent property. Therefore, to
some degree, the near orthogonal constraint is a trade off between independence
[12] and representation capability.

When the separating hyperplanes are orthogonal to each other, we can find
appropriate indexing centers in the original space. For example, if we view the
red points in Fig. 2 as indexing centers, and then index each data point accord-
ing to its nearest indexing center, we will find that the region of different index

NOKMeans: Non-Orthogonal K-means Hashing 167

partitions is exactly the same as the space partitioned by hyperplanes. When the
hyperplanes are not orthogonal, it is impossible to find indexing centers in the
original space; when given a set of data points as indexing centers, the resulting
segmented space will have a general Voronoi diagram structure and the hyper-
planes will not coincide with the boundary diagram when the corresponding
hyperplanes are not orthogonal. The left picture of Fig. 3 shows the resulting
Voronoi cells for the indexing centers (purple points) in the original space. We
can see that it is impossible to find two hyperplanes to separate these cells.

Fig. 3. Visualization of the Voronoi diagrams under different views. The purple points
in the left picture are viewed as the indexing centers in the original space. The resulting
Voronoi cells can never be separated by two hyperplanes since the indexing centers are
in general position rather than from the vertices of a square or a rectangular. The
right picture shows the resulting Voronoi cells when the purple points are viewed as
the indexing centers in the re-represented space (Color figure online).

In this work, we view the indexing centers in a transformed space used to
re-represent the data points. In this way, if we index each data point by its
nearest center, the hyperplanes coincide with the boundaries of different index
regions. The intuitive idea is as follows: suppose the hyperplanes are fixed, we
can re-represent each data point by its relative distance to the hyperplanes.
Figure 4 shows one way to re-represent the data points. There are three hyper-
planes in the original space. After re-representation, the data point is represented
as a point in 3D space. In the new representation space, the vertices {−1, 1}d
can be viewed as the indexing centers. If we encode every data point as the
binary code of its nearest indexing center, we can see that the hyperplanes are
exactly the boundary of the different indexing regions. An example of partition-
ing with non-orthogonal hyperplanes is shown in Fig. 3, the purple points can be
viewed as the indexing centers in the new representation space. One advantage
of this view is that the hyperplanes can be viewed as the boundary of the dif-
ferent indexing regions. This re-representation trick allows us to formulate the
problem by minimising the quantisation error between data points and indexing
centers.

168 X. Fu et al.

Fig. 4. Visualization of re-representing the data point. The original two dimensional
space is partitioned by three hyperplanes, and each data point is represented by its
distance to the hyperplanes. We can see that each indexing regions corresponds to one
octant (there are 23 of them) in the right figure.

3.1 Formulation

When the orthogonal assumption is relaxed to near orthogonal, we propose the
following optimization model to learn the hyperplanes which can be used to
index the data points:

min J(A,B) =
1
2N

||XA − B||2F +
λ

4
||A′A − I||2F (3)

s.t. A ∈ RD×d

B ∈ {−1, 1}N×d

In above optimization model, the columns of A behave as the normal direc-
tions of the hyperplanes, and B ∈ {−1, 1}N×d is the encoding matrix. When
each column of A has a unit norm, the resulting re-represented data points are
represented using the distance information of the data point to each hyperplane,
i.e. each data point is represented by a vector where each element is correspond-
ing to the signed distance between the data point and one specific hyperplane.
When the columns do not satisfy the unit norm property, the new representation
can be viewed as a scaling effect on the data points represented by distance infor-
mation. The first part in the objective function is used to minimize the average
quantization error, the second part is used as a regularizer in order to maintain
the near orthogonal property, λ is the regularization parameter and the fraction
is kept for convenience in further calculation. The constraint on hyperplanes has
an effect on the final binary matrix indirectly since it guarantees the balance
condition on B to some degree.

For solving the above optimization problem, we use alternating descent to
find a locally optimal solution:

Fix. A it is easy to see that B = sign(XA) is the optimal solution.
Fix. B we use first order gradient descent to update the projection matrix A:

∂J(A,B)
∂A

=
1
N

X ′(XA − B) + λ(AA′ − I)A (4)

NOKMeans: Non-Orthogonal K-means Hashing 169

Therefore, A can be updated by A− γ ∂J(A,B)
∂A . For the step length γ, we use

a simple line search strategy, i.e. start with γ = 1, if the updated A does not
improve the cost function, update the step length γ with sγ. The process is
continued until the total cost is reduced.

Algorithm 1. Non-Orthogonal K-means
Input: N training data points x1, x2, · · · , xN , Imax is the maximum iteration for the

overall optimization problem and Istep is the maximum iteration for finding the
step length.

Output: The hyperplane matrix A
1: Center the training data points, denote the centered data points as X ⊂ RD×N ,

and initializing the hyperplane matrix A.
2: for i = 1 to Imax do
3: Update B:

B ← sign(XA)

4: Calculate the gradient direction by (4)
5: Search the step length γ by backtracking line search with at most Istep iter-

ations. If the maximum number of step length search iterations is reached, stop
training stage.

6: Update A by:

A ← A − γ
∂J(A,B)

∂A
7: end for

In all of the following experiments, the initialization of A is obtained by the
PCA projection times a random rotation matrix which is a common approach
used in hashing algorithms, and the s is set to be 0.125. The backtracking line
search process takes 10 to 20 iterations to find the appropriate step length.
Thus, in order to make the computational complexity of the proposed algorithm
measurable, we set the maximum iteration for the line search step as Istep =
50. When the maximum number of iterations is reached, we stop the training
stage since the projection is almost unchanged if we continue to update A by a
very small step length. Finally, the maximum iteration Imax for the alternative
descent method is set to 50 which is the same value used in ITQ and OKmeans.

3.2 Computational Complexity

In each iteration, updating B takes Θ(NDd). For updating the projection matrix
A, it takes two steps. The first step is to calculate the gradient which takes
Θ(ND2 + NDd). Here Θ(ND2) is used for calculating X ′X. For establishing
the step length, in each iteration, we have to check the appropriateness of the
current γ, this involves calculating the objective function which takes Θ(NDd).
Suppose the maximum iteration for the overall optimization problem is I and
the maximum iteration for finding the step length is Istep, thus the overall

170 X. Fu et al.

computational complexity is Θ(Imax(NDd + ND2 + NDd + Istep(NDd))) =
Θ(ImaxND2 + ImaxIstepNDd). Θ(ND2) is used for calculating the X ′X which
can be precalculated, therefore the overall computational complexity of the train-
ing stage is Θ(ND2 + ImaxIstepNDd) which takes more computation than ITQ
and OKmeans (Θ(Imax(Nd2+d3) and (Θ(Imax(NDd+D3)) respectively). Dur-
ing the training stage on our machine (implemented in MATLAB with single
core), NOKMeans takes about 2.820 s per iteration when N , D and d are set to
105, 128 and 64 respectively, while for the same setting, the ITQ and OKmeans
take 0.259 and 0.419 respectively. Since the line search step requires the most
computation in the current implementation, the training stage can be sped up
by choosing an appropriate initial step length γ and backtracking parameter s
or a faster line search algorithm.

Finally, for encoding data and query points, it takes the same computational
complexity as most hashing based algorithms, i.e. each data point takes Θ(Dd)
time to compute the binary code. For retrieving the K nearest neighbor points
in Hamming distance, we use exhaustive search in all of our experiments since
the distance calculation is efficient in Hamming space and it is easy to find the
nearest neighbor points due to the distance property which only take values from
{0, 1, 2, · · · , d}. To speed up this process, one can build a hash table or use fast
nearest neighbor searching designed for Hamming space [28].

3.3 Discussion

The proposed method shares some similarity with ITQ. For ITQ, the final pro-
jection matrix is the PCA projection matrix P multiplied by the learned rota-
tion matrix R, and, for the proposed algorithm, the projection matrix is learned
during the optimization process directly. When the parameter λ is infinite, the
projection matrix A in NOKMeans shares the orthogonal property, i.e. A′A = I.
Nevertheless there are still some differences between these two algorithms even
as λ tends to infinity. For example, the quantization error in ITQ is calculated in
the PCA subspace, while the quantization error in the proposed method is cal-
culated in the space determined by A which is learned during the optimization
process.

Compared to OKmeans, the proposed algorithm also utilizes a rectangular
hyper-cuboid to some degree. When the parameter λ is positive, the learned
projection matrix can be decomposed into A = QS where each column in
Q ∈ RD×d has a unit norm, and S is a diagonal matrix which has a scaling
effect in each direction. Notice that the overall quantization error ||XA−B||2F =
|S|2||XQ−BS−1||2F , thus our proposed method can be viewed as re-representing
each data point by its distance information to each hyperplane, and then encod-
ing the data point according to the indexing centers from the vertices of a hyper-
cuboid. This hyper-cuboid is obtained by scaling the unit hyper-cube by S−1

in the corresponding directions. On the other hand, the S in the optimization
objective in OKmeans is viewed as an independent variable. One advantage of
modeling the scale effect is that the resulting indexing centers will fit better to
the data points in the sense of the quantization error, but it also introduces a

NOKMeans: Non-Orthogonal K-means Hashing 171

distortion problem. For example, the Hamming distance between neighboring
vertices is always 1, but their Euclidean distance is not fixed due to the scale
effect of the hyper-cuboid in different directions. With the regularization para-
meter λ in our method, the scale value will be constrained to around 1, and
therefore the scale distortion is minimal.

4 Experiments

We evaluate the proposed hashing algorithm on four real data sets: SIFT1M
[29], SIFT10M, SIFT1B [30], GIST1M [29], and compare the performance of
related algorithms: LSH [5], Spectral Hashing [12], ITQ [26], OKmeans [27], on
these data sets. SIFT1M, SIFT1B, and GIST1M are three benchmark data sets
which are used for testing the performance of different nearest neighbor searching
algorithms. In SIFT1M and SIFT1B, each data point is a 128D SIFT feature
[31] extracted from Flickr images and INRIA Holidays images [32]. In GIST1M,
each data point is a 960D GIST feature which is extracted from the tiny image
set of [33], Holidays image set and Flickr1M [34].

SIFT10M is our own dataset. Each data point in this set is a SIFT feature
which is extracted from Caltech-256 [35] by the open source VLFeat library [36].
Caltech-256 is a benchmark image data set in computer vision, that features a
large number of classes (256) and high intra-class variations in each category.
For SIFT10M, the base data points, training data points, and the query points
are randomly chosen from all SIFT features extracted from the image set. The
true nearest neighbor points are provided by exhaustive nearest neighbor search
in 128D Euclidean space. For the other three benchmark data sets, we use the
publicly available base points, training points, and query points, and true nearest
neighbor information for the query points directly. Detailed information about
these data sets including the number of training points, query points and base
data points used in our experiments are summarized in Table 1.

Table 1. Datasets which are used for evaluating different approximate nearest search
algorithms

Data set Data type Dimension Base points Training points Query points

SIFT1M SIFT feature 128 1,000,000 100,000 10,000

SIFT10M SIFT feature 128 10,000,000 1,000,000 10,000

SIFT1B SIFT feature 128 1,000,000,000 1,000,000 10,000

GIST1M GIST feature 960 1,000,0000 500,000 1,000

4.1 Performance Measurements

We adopt recall as an indicator of retrieval performance since this is an important
indicator of retrieval performance and it also has internal relationships with other
common measurements. For instance, higher recall often corresponds to higher

172 X. Fu et al.

precision. For each query data point, we retrieve its nearest N data points in
the sense of the Hamming distance. Recall@N is the percentage of true nearest
neighbor points in the retrieved data set, i.e.:

Recall@N =
#retrieved true nearest neighbor points

#true nearest neighbor points

We have varied N from 1 to Nmax = 10, 000 to give a better overall picture
of performance. In order to evaluate the overall retrieval performance of the
hashing algorithm, we introduce the m-Recall (mean recall) measure. m-Recall
is calculated as:

m-Recall(λ) =
∑Nmax

i=1 Recallλ(i)
Nmax

here Nmax is the maximum retrieved nearest points in Hamming space and
Recallλ(i) is the average recall of retrieving i nearest neighbor points for the
regularization parameter λ.

m-Recall shares some similarity with mean average precision which is often
used to measure the overall performance of retrieval algorithms. The main dif-
ference between these two measurements is that Nmax is set to the total number
of data points in mean average precision, while here, Nmax is relatively small
compared to the whole data base. For evaluating the performance of hashing
algorithms, the data sets often contain millions or billions of points and retriev-
ing part of the data set is of interest in practice. m-Recall is introduced to
evaluate the overall performance when only part of the data set is retrieved.

4.2 Parameter Selection

When using this model to learn the hyperplanes, we have to decide the value
of the parameter λ. In order to test the sensitivity of the parameter λ in the
optimization, we choose λ from {101, 102, 103, 104, 105, 106, 107}. The m-Recall
for different λ is shown in the right image in Fig. 5. From Fig. 5, we can see that,
at beginning, the m-Recall increases as λ increases. After reaching the peak, the
m-Recall dips moderately as λ keeps increasing. This motivates us to have a
strategy to learn the index for different data sets. For each data set, λ is fixed by
choosing from {101, 102, 103, 104, 105, 106, 107} for one specific task, and choosing
the parameter such that it reaches peak performance, then use this parameter
for the whole data set. In the following experiments, the parameter is fixed
as 104, 105, 106, 105 for SIFT1M, SIFT10M, SIFT1B and GIST1M respectively.
However it is worth noting that performance is similar for values of λ in the
range 104–106 on all four data sets.

4.3 Results

We have evaluated the proposed algorithm, ITQ, OKmeans, Spectral Hashing
and LSH on the four data sets. Figure 6 shows the recall curves of different
algorithms for searching nearest neighbor points. For each SIFT feature data set,

NOKMeans: Non-Orthogonal K-means Hashing 173

100 101 102 103 1040

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

Re
ca

ll@
N λ=101

λ=102

λ=103

λ=104

λ=105

λ=106

λ=107

ITQ

101 102 103 104 105 106 1070.75

0.8

0.85

0.9

0.95

1

m
−R

ec
al
l

λ

Fig. 5. Retrieval performance on SIFT1M data set with different λ. Each data point
is encoded into 128 bits, and the task is to retrieve the nearest neighbor point for each
query. The performance of ITQ (red line) is also reported as a baseline (Color figure
online).

we report the recall performance when the data points are encoded by 64, 96 and
128 bits respectively. The experimental results enable us to view the performance
of different algorithms from two dimensions, i.e. increase the number of bits
to encode the SIFT feature and the scale of the data sets. From these two
dimensions, we can see that, generally speaking, the more bits used to encode
the feature points, the higher the recall. On the other hand, the nearest neighbor
point searching problem becomes more difficult for bigger data sets. When each
data point is indexed to a 64 bit binary code, the proposed algorithm has a
comparable recall performance to the state of art result (OKmeans), and has
a much better recall performance than the remaining algorithms. When we use
more bits to encode the data set, we find that the proposed algorithm has the
highest performance among these algorithms. For the GIST1M data set (Fig. 7),
which has the highest number of dimensions among our test scenarios, a similar
pattern is observed. From the plot, we can see that the performance gain of our
proposed algorithm is larger when the number of encoding bits is increased.

The performance of the proposed algorithm coincides with our model assump-
tion. This is because when few bits are used, the independence property, which
leads to the mutually orthogonal condition, plays the main role when designing
the hash code. When more bits are used to index the feature points, the mutual
orthogonality condition leads to the loss of representation capability. Take the
following toy example. Suppose the data points are distributed in a 2D sub-
space in 3 dimensional space, and we use three bits to encode the data points.
If the three hyperplanes are mutually orthogonal, the data points are effectively
encoded with two bits since the 2D subspace is partitioned into 4 different index
regions. When the orthogonality condition is relaxed, the 2D space can be par-
titioned into 6 different indexing regions. So when the mutual orthogonality
condition is relaxed, the separating capability of the hyperplanes will increase.

As discussed in [18,37], retrieving different numbers of nearest neighbor
points affects the performance of searching algorithms. Figure 8 shows the perfor-
mance of retrieving different K neighbors. Here the K ranges from {1, 5, 10, 20,
50, 100}, and each data point is encoded as a 256 bit binary code. The top left
figure presents the performances of different algorithms for retrieving 1 nearest

174 X. Fu et al.

100 101 102 103 1040

0.2

0.4

0.6

0.8

1

N

Re
ca

ll@
N

Proposed
ITQ
LSH
Spectral Hashing
OKmeans

100 101 102 103 1040

0.2

0.4

0.6

0.8

1

N

Re
ca

ll@
N

Proposed
ITQ
LSH
Spectral Hashing
OKmeans

100 101 102 103 1040

0.2

0.4

0.6

0.8

1

N

Re
ca

ll@
N

Proposed
ITQ
LSH
Spectral Hashing
OKmeans

100 101 102 103 1040

0.2

0.4

0.6

0.8

1

N

Re
ca

ll@
N

Proposed
ITQ
LSH
Spectral Hashing
OKmeans

100 101 102 103 1040

0.2

0.4

0.6

0.8

1

N

Re
ca

ll@
N

Proposed
ITQ
LSH
Spectral Hashing
OKmeans

100 101 102 103 1040

0.2

0.4

0.6

0.8

1

N

Re
ca

ll@
N

Proposed
ITQ
LSH
Spectral Hashing
OKmeans

100 101 102 103 1040

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N

Re
ca

ll@
N

Proposed
ITQ
LSH
Spectral Hashing
OKmeans

100 101 102 103 1040

0.2

0.4

0.6

0.8

1

N

Re
ca

ll@
N

Proposed
ITQ
LSH
Spectral Hashing
OKmeans

100 101 102 103 1040

0.2

0.4

0.6

0.8

1

N

Re
ca

ll@
N

Proposed
ITQ
LSH
Spectral Hashing
OKmeans

Fig. 6. Retrieval performance on SIFT feature data sets. Different data sets are
reported in different rows (SIFT1M, SIFT10M, SIFT1B respectively). For each SIFT
feature data set, we show the Recall@N when each data point is encoded with 64, 96,
128 bits for columns 1, 2 and 3 respectively.

100 101 102 103 1040

0.2

0.4

0.6

0.8

1

N

Re
ca

ll@
N

Proposed
ITQ
LSH
Spectral Hashing
OKmeans

100 101 102 103 1040

0.2

0.4

0.6

0.8

1

N

Re
ca

ll@
N

Proposed
ITQ
LSH
Spectral Hashing
OKmeans

100 101 102 103 1040

0.2

0.4

0.6

0.8

1

N

Re
ca

ll@
N

Proposed
ITQ
LSH
Spectral Hashing
OKmeans

Fig. 7. Retrieval performance on GIST1M data set. The left figure shows the retrieval
performance of different algorithms when each data points are encoded into 64 bit
binary code. The following two figures show the retrieval performance when using 128
or 256 bits to encode.

neighbor point. The top middle shows the performances of retrieving 5 near-
est neighbor points, followed by retrieving 10, 20, 50, and 100 nearest neighbor
points. As the trend shows, we can see that the overall recall value keeps going

NOKMeans: Non-Orthogonal K-means Hashing 175

100 101 102 103 1040

0.2

0.4

0.6

0.8

1

N

Re
ca

ll@
N

Proposed
ITQ
LSH
Spectral Hashing
OKmeans

100 101 102 103 1040

0.2

0.4

0.6

0.8

1

N

Re
ca

ll@
N

Proposed
ITQ
LSH
Spectral Hashing
OKmeans

100 101 102 103 1040

0.2

0.4

0.6

0.8

1

N

Re
ca

ll@
N

Proposed
ITQ
LSH
Spectral Hashing
OKmeans

100 101 102 103 1040

0.2

0.4

0.6

0.8

1

N

Re
ca

ll@
N

Proposed
ITQ
LSH
Spectral Hashing
OKmeans

100 101 102 103 1040

0.2

0.4

0.6

0.8

1

N

Re
ca

ll@
N

Proposed
ITQ
LSH
Spectral Hashing
OKmeans

100 101 102 103 1040

0.2

0.4

0.6

0.8

1

N

Re
ca

ll@
N

Proposed
ITQ
LSH
Spectral Hashing
OKmeans

Fig. 8. Retrieval results on GIST1M data set for retrieving different K nearest neighbor
points. Here, the K ranges from {1, 5, 10, 20, 50, 100}, and each GIST feature is encoded
by 256 bits.

down. This means that retrieving the K-th nearest neighbor point is more dif-
ficult as K increases. Another phenomenon we can see from the plot is that,
in order to retrieve more true nearest neighbor points, it is better to retrieve a
relatively large number of points in the Hamming distance. For example, if we
retrieve 1000 nearest neighbor points in Hamming space, the recall of finding
100 nearest neighbor points is much lower than the recall of searching 1 nearest
neighbor point, while for retrieving 10,000 points in Hamming space, the recall
gap between different nearest neighbor points is relatively small.

5 Conclusion

In this paper, we have investigated a minimum quantization error based hash-
ing algorithm. Specifically, our focus is on the quantization error of the re-
represented data points. In this way, the Voronoi diagram in the original space is
the same as the space which is separated by hyperplanes. Compared to the pre-
vious quantization based algorithms, the hyperplanes learned in our algorithm
are without the constraint that they are mutually orthogonal. We believe this
relaxation leads to a better binary code index for large scale high dimensional
data. We have tested the proposed algorithm on three benchmark data sets as
well as a new SIFT data set. The experimental results shows that our method
performs better than current state of the art methods especially when encoding
high dimensional data points.

176 X. Fu et al.

References

1. Brown, M., Lowe, D.: Recognising panoramas. In: ICCV, pp. 1218–1225 (2003)
2. Frome, A., Singer, Y., Sha, F., Malik, J.: Learning globally-consistent local distance

functions for shape-based image retrieval and classification. In: ICCV, pp. 1–8
(2007)

3. Torralba, A., Fergus, R., Weiss, Y.: Small codes and large image databases for
recognition. In: CVPR pp. 1–8 (2008)

4. Weber, R., Schek, H., Blott, S.: A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces. In: Proceedings of the 24th
VLDB Conference, pp. 194–205 (1998)

5. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the 30th Annual ACM Symposium on
Theory of Computing, pp. 604–613 (1998)

6. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In:
Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Comput-
ing, pp. 380–388 (2002)

7. Shen, F., Shen, C., Shi, Q., Hengel, A.V.D., Tang, Z.: Inductive hashing on mani-
folds. In: CVPR, pp. 1562–1569 (2013)

8. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Symposium on Computational Geom-
etry, pp. 252–262 (2004)

9. Raginsky, M., Lazebnik, S.: Locality-sensitive binary codes from shift-invariant
kernels. In: NIPS (2009)

10. Yu, F.X., Sanjiv, K., Gong, Y., Chang, S.F.: Circulant binary embedding. In: ICML
(2014)

11. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding
and clustering. In: NIPS (2001)

12. Weiss, Y., Antonio, T., Robert, F.: Spectral hashing. In: NIPS, pp. 1753–1760
(2008)

13. Jin, Z.M., Hu, Y., Lin, Y., Zhang, D.B., Lin, S.D., Cai, D., Li, X.: Complementary
projection hashing. In: ICCV, pp. 257–264 (2013)

14. Kim, S., Kang, Y., Choi, S.: Sequential spectral learning to hash with multiple
representations. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C.
(eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 538–551. Springer, Heidelberg
(2012)

15. Xu, H., Wang, J., Li, Z., Zeng, G., Li, S., Yu, N.: Complementary hashing for
approximate nearest neighbor search. In: ICCV, pp. 1631–1638 (2011)

16. Wang, J., Kumar, S., Chang, S.F.: Sequential projection learning for hashing with
compact codes. In: ICML, pp. 1127–1134 (2010)

17. Liu, W., Wang, J., Kumar, S., Chang, S.F.: Hashing with graphs. In: ICML,
pp. 1–8 (2011)

18. Weiss, Y., Fergus, R., Torralba, A.: Multidimensional spectral hashing. In:
Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012,
Part V. LNCS, vol. 7576, pp. 340–353. Springer, Heidelberg (2012)

19. Wang, J., Liu, W., Sun, A., Jiang, Y.: Learning hash codes with listwise supervi-
sion. In: ICCV, pp. 3032–3039 (2013)

20. Wang, J., Wang, J., Yu, N., Li, S.: Order preserving hashing for approximate
nearest neighbor search. In: Proceedings of the 21st ACM International Conference
on Multimedia, pp. 133–142 (2013)

NOKMeans: Non-Orthogonal K-means Hashing 177

21. Norouzi, M., Fleet, D., Salakhutdinov, R.: Hamming distance metric learning. In:
NIPS, pp. 1070–1078 (2012)

22. Norouzi, M., Fleet, D.: Minimal loss hashing for compact binary codes. In: ICML,
pp. 353–360 (2011)

23. Kulis, B., Darrell, T.: Learning to hash with binary reconstructive embeddings. In:
NIPS, pp. 1042–1050 (2009)

24. Wang, J., Kumar, S., Chang, S.F.: Semi-supervised hashing for scalable image
retrieval. In: CVPR, pp. 3424–3431 (2010)

25. Liu, W., Wang, J., Ji, R., Jiang, Y., Chang, S.F.: Supervised hashing with kernels.
In: CVPR, pp. 2074–2081 (2012)

26. Gong, Y., Lazebnik, S.: Iterative quantization: a procrustean approach to learning
binary codes. In: CVPR, pp. 817–824 (2011)

27. Norouzi, M., Fleet, D.: Cartesian k-means. In: CVPR, pp. 3017–3024 (2013)
28. Norouzi, M., Punjani, A., Fleet, D.: Fast search in hamming space with multi-index

hashing. In: CVPR, pp. 3108–3115 (2012)
29. Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor

search. IEEE Trans. Pattern Anal. Mach. Intell. 33, 117–128 (2011)
30. Jegou, H., Tavenard, R., Douze, M., Amsaleg, L.: Searching in one billion vectors:

re-rank with source coding. In: ICASSP, pp. 861–864 (2011)
31. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-

put. Vision 60, 91–110 (2004)
32. Jegou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image

search. Int. J. Comput. Vision 14, 316–336 (2010)
33. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large database

for non-parametric object and scene recognition. IEEE Trans. Pattern Anal. Mach.
Intell. 30, 1958–1970 (2008)

34. Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric con-
sistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.)
ECCV 2008, Part I. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008)

35. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Technical
report, pp. 1–20 (2007)

36. Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer
vision algorithms. In: Proceedings of the International Conference on Multimedia,
pp. 1469–1472 (2008)

37. He, K., Wen, F., Sun, J.: K-means hashing: an affinity-preserving quantization
method for learning binary compact codes. In: CVPR, pp. 2938–2945 (2013)

	NOKMeans: Non-Orthogonal K-means Hashing
	1 Introduction
	2 Background
	2.1 Notation
	2.2 Related Work

	3 Proposed Algorithm
	3.1 Formulation
	3.2 Computational Complexity
	3.3 Discussion

	4 Experiments
	4.1 Performance Measurements
	4.2 Parameter Selection
	4.3 Results

	5 Conclusion
	References

