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Abstract—Because of the increasing popularity of camera-
equipped mobile devices, image matching techniques offer a
potential solution for indoor localisation problems. However,
image matching is challenging indoors because different indoor
locations can look very similar. In this paper, we compare
two image-based localisation approaches on realistic datasets
that include images from cameras of varying quality. The first
approach is based on 3D matching and the second on 2D match-
ing. The comparison shows that 3D image matching crucially
depends upon on the quality of the camera and its correct
image matching accuracy ranges from 62-92% depending on the
dataset. In contrast, the matching accuracy of 2D image matching
is consistent across all cameras and ranges from 80-95%. In terms
of computational efficiency, the 2D method is five times more
efficient, but both methods are fast enough for many applications.
We further investigate the performance of the 2D approach on
four realistic indoor datasets with 50 indoor locations, such as
corridors, halls, atrium or offices. Four out of five test sets have
correct acceptance greater than 85% showing that image-based
methods are viable for indoor localisation applications.

I. INTRODUCTION

The Global Positioning System (GPS) is the most com-
monly used system for determining outdoor location, but it
is not reliable indoors and it is also hard to extract reliable
elevation details. Indoor localization without GPS is still an
open research problem and alternative techniques have become
a focus of research during the past decade. However, existing
indoor localization systems are still limited because most of
them either require expensive infrastructure (infrared) [1],
provide low accuracy (audible sound) [2] or produce large
errors (inertial sensors) [3]. On the other hand, computer
vision offers the potential for a good solution because of
the emergence of cheap smartphones equipped with cameras.
Computer vision solutions either use 2D training images or 3D
training models to match a query image to determine an indoor
location. The primary question relating to such use, which we
answer affirmatively in this paper, is if such solutions can be
accurate enough for indoor positioning applications.

A. Related Work

In computer vision, the problem of image based localisation
has been addressed by several authors in the past, mostly con-
sidering outdoor scenes. The most successful image matching
approaches rely on wide baseline matching techniques based
on features [4]. The basic idea behind these techniques is

to extract features from images and perform feature match-
ing often followed by image geometry based verification to
compute the position of a query image with respect to a
database of registered images or views [4]–[6]. To handle most
image deformations, such as viewpoint changes or illumination
differences, these methods use robust features like SIFT [7].

One of the earliest image localization frameworks for an
urban environment has been presented by Robertson and
Cipolla [4]. The database contains a set of 200 rectified
views of building facades, which are manually registered by
the authors onto a city map. During localization, the system
performs feature matching to identify a nearby database view
followed by the computation of the relative pose between the
nearby database and query views from planar homographies.
In contrast, Schindler et al. present an automatic recognition
system based on a visual vocabulary tree for image matching
on a city-scale database of 30000 GPS annotated images [6].
The system identifies the most informative training features
and uses them to develop a visual vocabulary for efficient
retrieval of relevant images against a query image during
localization.

Using a 3D model to represent a location offers the addi-
tional advantage that the full camera pose can be determined.
For high localization accuracy, use of a 3D map of the
environment is needed [8]–[11]. The basic idea is to compare
2D features of a query image with 3D points to determine 2D
to 3D correspondences followed by pose estimation during
localization. The 3D model giving a successful pose against
a query image is picked as the best match and indicates the
corresponding location.

Irchastra et al. generate a set of synthetic camera views
from 3D models [8]. Original and synthetic views are then
combined to form a database, which is then compressed by
reducing the number of views based on spatial information.
During localization, the system estimates the pose of a query
image from compressed data of city scale environments and
provides real time localization performance. The main problem
with such approaches is that the search time for 2D to 3D
correspondences increases with the size of 3D data, which
decreases the overall efficiency. To address this problem,
several schemes have been proposed to first reduce the size
of 3D data and then use a smaller set of 3D points to identify
2D to 3D correspondences for pose estimation efficiently [9],



[10]. In these systems, the priority of a 3D point is directly
related to the number of registered images in which a 3D point
is seen.

The underlying problem with 3D based image localization is
that a rich 3D model needs to be generated. Otherwise, it will
result in fewer 2D to 3D correspondences and a poor pose.
On the other hand, 2D based approaches require relatively
many correct correspondences to generate a hypothesis. Klas
et al. proposed to use a hybrid set of feature correspondences
including both 2D to 2D and 2D to 3D correspondences to
estimate the pose of a query image during localization [12].
Most localization works have used high quality query images
for localization in urban environments. However, Arth et al.
use a smartphone having a 3.2 MP camera to capture indoor
query images for 3D based indoor localization and obtain
correct image matching accuracy up to 88% in several rooms.

In this paper, we evaluate 2D and 3D image matching
approaches. Our 3D approach differs from other works be-
cause it incorporates both feature based matching and pose
estimation techniques while other 3D based works mostly
perform only pose estimation. On the other hand, our 2D
approach is different from feature based approaches because it
uses a layered architecture with a voting module, verification
method and a post-verification step. Such a layered approach
is useful for correct image matching in large self-similar
indoor environments. To the best of our knowledge, there is
no previous work that evaluates and compares 3D localization
with 2D localization across indoor query images captured from
different mobile device cameras. The contributions of this
paper are two-fold. We compare 2D and 3D indoor localization
approaches across different cameras and we develop several
indoor datasets for evaluation.

The paper is structured as follows. Section II discusses the
3D based localization approach. Section III discusses 2D based
localization approach followed by datasets and performance
metrics in Section IV. The experimental results are presented
in Section V and the article is finally concluded in Section VI.

II. 3D BASED IMAGE LOCALIZATION

A scene reconstruction system processes a number of input
images to generate a 3D model of a location. The accuracy of
a reconstructed scene is proportional to the number of input
images successfully registered with a 3D model. A 3D model
of a location is a dense cloud of 3D points obtained from
registered images. Each 3D point has a list of:
• corresponding 2D features from registered images, which

are used to triangulate that 3D point.
• registered images in which the 3D point is detected, also

known as “visibility”.
Recent advancements in structure from motion (SfM) has

made it possible to construct 3D models of large scale envi-
ronments effectively [8]–[10]. In 3D based image localization,
pose is estimated between a query image and pre-computed
3D models. A pose indicates the position of the camera and the
number of correspondences between features of a query image
and the 3D points of the 3D model, which have contributed to

its computation, often called inliers. The 3D model giving a
reliable pose (i.e. maximum number of inliers) against a query
image is picked as the best match and indicates the indoor
location. We will refer to 2D features of images simply as
features and 3D points of 3D models simply as points in the
remainder of this paper.

A. 3D model generation

We have used the Bundler system [13] to generate 3D mod-
els of indoor locations. We use the idea of [10] and represent
each point of the 3D model by averaging its corresponding
features, which results in compact 3D point representations.
Compact representations have been shown to improve image
matching accuracy and efficiency during localization [8].

After building the 3D models, different inclusion criteria can
be used to select a subset of points from these 3D models for
matching with features of query images. Our criteria of point
selection is based on the visibility of points from multiple
images in the image set:

1) All Visible (A):- All points from 3D models are picked.
2) Less Visible (L):- Only those points which are seen in

exactly two images are picked. These points should be
highly discriminating.

3) Highly Visible (H):- Only those points which are seen
in more than two images are picked. These points should
allow matching from multiple camera positions.

B. 3D based image matching approach (3DM)

The proposed 3DM approach consists of two subsystems: a
naive matcher (NM) and a pose estimator (PE). During data
acquisition, indoor 3D models with all visible (A), less visible
(L) or highly visible (H) points are generated. Features are also
extracted from registered images and are stored along with
the 3D models. Registered images and 3D models are both
annotated with location information.

1) Naive Matcher (NM): This module uses a 2D image
matching approach. It extracts features from a query image
and compares them with features of each registered image.
Two compared features are considered similar if the Euclidean
distance between them is less than 170 [14], an empirically
determined similarity measure to ensure many correct feature
matches. The registered image with the most feature matches
is picked as the best match. This is one of the simplest 2D
matching schemes (hence naive), but it tends to generate the
highest number of correct matches.

2) Pose estimator (PE) : The problem with NM is that
it can produce incorrect images matches. To minimize local-
ization errors, the PE module validates the potential match
from NM. The PE module selects the indoor 3D model based
on the location information produced by NM. It compares
features of the query image with points of the selected 3D
model to determine 2D to 3D correspondences. To find a cor-
respondence, we determine the two closest points from the 3D
models using the Euclidean SIFT distance (this is a distance
in feature space, not in 3D space). The correspondence of a
query feature is accepted if its two best matched points pass



the ratio test of 0.7 [10]. This ratio is determined empirically
and ensures many correct 2D to 3D correspondences between a
query image and a 3D model. Correct correspondences need to
be picked to generate a reliable pose, but it is unreasonable to
expect all 2D to 3D correspondences to be correct. To address
this, PE uses the best 50 correspondences only and applies
three different pose estimation algorithms: ITR [15], P3P [16]
and EPnP [17] one by one. The reason for using more than
one algorithm is to increase the probability of getting a reliable
pose i.e. large number of inliers, which indicates a high level
of consistency between features and points.

PE then selects the best pose (with maximum inliers) from
each of the pose estimation algorithms and uses it to re-project
those points of the 3D model, which have matched with query
features. With a reliable pose, most re-projected points should
overlap approximately with the corresponding query features.
If the number of matching re-projected points is greater than 7
(an empirically determined value), the 3D model is considered
a match. Otherwise, the match is not found and a “no-location”
message is returned. The PE module tends to reject query
images unless it is very confident in the match. Therefore we
expect the correct match rate to be lower but the incorrect
match rate to be almost zero.

III. 2D BASED IMAGE MATCHING APPROACH (2DM)

2DM uses a visual Bag of Words based algorithm to match
indoor query images against a database of annotated indoor
images. Before the system can be used, the image database
and index must be built.

A. Data acquisition and indexing

Firstly, the user captures a number of images of indoor
buildings (training images) from a digital camera and stores
them along with location annotations. 2DM then automatically
generates the following data:
• SIFT features are extracted from training images and

stored along with location annotations.
• Clustering is performed on features of training images

with 30000 cluster centers. The obtained cluster centers
are called visual words and a set of all visual words is
called a visual vocabulary. The features of the training
images are mapped to the closest visual words to obtain
a visual word distribution for each training image. A data
structure called an inverted index is then created which
records visual word distributions for every training image.
The inverted index helps for quick retrieval of relevant
images against a query image and is a standard document
retrieval data structure. 2DM stores the visual vocabulary
and the inverted index for later use.

• Every indoor location is represented with a reduced set
of features (LTF features from [18]) and are stored along
with location annotations.

B. Online localization

To localize a query photo, 2DM first uses the inverted index
to quickly retrieve the most similar 200 training images. The

distribution of visual words is then computed for the query
image and is compared with the distributions of retrieved
images to generate a ranked list of database images. The top
fifty ranked images are then used to decide upon the final
location using the following three modules:

Voting scheme: If the first three ranked images refer to the
same location, the voting scheme simply returns that location.
Otherwise, it means that the voting scheme cannot make a
consistent decision and it calls the verification method.

Verification method: Image geometry information, such as
the fundamental matrix [15] or planar homography [19], is
used to match a query image with the first 50 ranked images
one by one. The verification method stops once it matches a
ranked image with a query image. It does not compare the
remaining ranked images with the query image and returns
the location of the matched ranked image. The fundamental
matrix uses a full structure match between a query and a
ranked image whereas planar homography considers planar
matches only. The fundamental matrix computation is more
physically plausible than homography but also more costly.
There are three possible outputs from the verification method:
• It fails to find a match in all ranked images, which means

that the location cannot be determined i.e. “no-location”
message.

• It finds a match within the first 10 ranked images, then
it simply returns the location of the best matched ranked
image.

• It finds a match outside the first 10 ranked images, which
means that the match is not confident. It then calls the
post-verification method to validate the location output.

Details of the homography and fundamental matrix methods
are as follows:
• Homography: Features in one image are related to corre-

sponding matched features in another image by a homog-
raphy. This verification method picks the 10 best feature
correspondences based on Euclidean distances between
feature descriptors. Potential homographies are then com-
puted via Random Sample Consensus (RANSAC). For
a computed homography, features of a ranked image
are transformed to new locations (spatial coordinates)
based on the homography. If at least seven transformed
features of a ranked image come approximately at the
same location as features of a query image and are also
similar to each other (feature distance is less than 150)
then a perceptive correspondence is recorded between
query and ranked images. The ranked image giving at
least three perspective correspondences against a query
image is considered a match.

• Fundamental matrix: The fundamental matrix encapsu-
lates the intrinsic projective geometry between images.
If x and x′ are matched features in two images, the
fundamental matrix, F , relates the matched features by
the following equation:

x′TFx = 0 (1)



The matched features between two images are used to
compute a fundamental matrix and corresponding inliers.
Inlier points are those points which match according to
the fundamental matrix equation:

xi
′TFxi < ε, i = 0, 1, ..n (2)

where x′i and xi are matched features in two images, and
ε is an empirically determined threshold. A larger number
of inliers indicates a reliable match between two images.
This verification method uses the top 20% best feature
correspondences to compute the fundamental matrix us-
ing the 8-point algorithm with RANSAC [15]. If at least
20% inliers are found, then the location of that image is
returned.

Post-verification method: This method computes feature
correspondences between features of every indoor location
with the features of a query image. The indoor location
giving maximum feature matches is picked as the best match
for a query image. If the indoor location matches with the
indoor location determined by the verification method, then
the location output is considered authentic and is returned.
Otherwise, the post-verification method returns “no-location”.

IV. DATASETS AND PERFORMANCE METRICS

A. 3D models

We developed 3D models of four places in the Computer
Science building, which is a standard office building. We
used four indoor locations because the initial plan was to
compare the performances of 3DM with 2DM on a small
scale. The statistics for all 3D models are shown in Table
I, which indicate that fewer features are obtained for corridors
due to the lack of textures. The less visible points represent
about 72% of the overall points while the remaining are highly
visible.

TABLE I: Statistics of indoor 3D Models

3D Model Images #Registered Cameras # of 3D points
Coffee Room 60 56 58985

Graphics Corridor 15 14 24948
Graphics Library 63 56 68541
Office Corridor 60 60 12825

Total 198 186 165209
Less Visible 118950

Highly Visible 46259

B. 2D trained data

Table I shows that a total of 186 images out of 198 are
registered with the four 3D models. We selected all registered
images for the 2D training dataset, and a total of 53848
training features were extracted. All registered images were
captured from a Nikon D3000 DSLR Camera.

C. Query images

We captured 60 query images for each indoor location
from seven different mobile devices. The query images were
captured 2 months after capturing the images used for the

3D model reconstruction. Therefore, some degree of changes
can be expected between registered and corresponding query
images as shown in Figure 1.

(a) Registered (b) Query (c) Registered (d) Query

Fig. 1: Sample registered and corresponding query images.

D. Mobile devices

We used relatively cheap mobile devices in experiments
rather than more expensive ones like the iPhone5, Samsung
Galaxy S3 etc. The specifications of the used mobile devices
are stated in Table II.

TABLE II: Mobile device specifications.

Operating system Type Camera Release date
Nokia N95 Symbian Phone 5 MP 2008
iPhone 3Gs iOS 6.0 Phone 3.0 MP 2009

Galaxy I7500 Android 1.5 Phone 5 MP 2009
Nokia C3 Symbian Phone 2 MP 2010

IDEOS U8150 Android 2.2 Phone 3.15 MP 2010
Slim S7 Android 2.2 Tablet 3.15 MP 2011

HTC Wildfire S Android 2.3 Phone 5 MP 2011

E. Realistic indoor datasets

A larger, more representative indoor dataset was also cre-
ated. The training images were captured by a Sony Cybershot
camera (8MP) and all query images were acquired with the
camera of a HTC Wildfire S (5MP). The query images were
captured several weeks after capturing the training images. For
every query location, there are multiple training images of the
same location. The datasets are as follows:

1) Owheo (OW): Contains images of an office building
at the University of Otago, New Zealand. It contains
1534 images for training and 750 images for testing.
The dataset covers 25 indoor locations. The test images
of OW dataset contains images taken during day and
night times. We split the OW into two datasets based on
test data:

a) Owheo-D: Contains 537 day-time test images.
b) Owheo-N: Contains 213 night-time test images.

The number of training images are kept same for the
above two datasets i.e. 1534.

2) Commerce (CM): Contains images of an office building
at the University of Otago, New Zealand. It contains
864 images for training and 234 images for testing. The
dataset covers 14 indoor locations.

3) Otago Museum (OM): Contains images of Otago Mu-
seum, New Zealand. It contains 1045 images for training
and 135 images for testing. The dataset covers 7 indoor
locations.

4) Dunedin Stadium (DS): Contains images from the
Forsyth Barr Stadium, New Zealand. It contains 455



images for training and 75 images for testing. The
dataset covers 4 places within the building.

F. Performance metrics

The following definitions are used to define the performance
metrics for 2DM and 3DM:
Qt Total number of query images.
Nc No. of query images correctly matched.
Nd No. of query images for which no decision is made.
The following evaluation metrics are used in this work:
Ca Refers to the correct acceptance rate.

Ca = Nc/Qt (3)

Higher is better for this metric.
Wm Refers to the wrong match rate

Wm = 1.0− (Nc +Nd)/Qt (4)

Lower is better for this metric.
The values of above metrics ranges from 0-1.

V. EXPERIMENTAL RESULTS

A. 3DM analysis

A query image is considered correctly matched if the
corresponding matched training image belongs to the query
location. We computed the correct acceptance rate (Ca) for
3DM with 3D models as shown in Figure 2. The results show
that 3DM produces very low Ca for mobile devices which have
2-3MP camera. The Ca improves for the three 5MP cameras.
However, the corresponding wrong match rate (Wm) is zero
for 3DM against all mobile devices. The results indicate that
the Ca for 3DM improves as the resolution of the camera
increases.

Figure 2 also shows that there is nothing much to differ-
entiate between the performance of all visible (A) and highly
visible (H) points. 3DM is found to perform best with less
visible (L) points and takes about 5 seconds on average to
match a query image. We suspect that highly visible points are
seen in almost every registered image due to similar texture
or pattern followed in the office building, which may decrease
the matching performance.

Fig. 2: The Ca for 3DM approach.

We initially suspected that the NM module was producing
a number of wrong image matches and was the reason for

the lower Ca of 3DM. To check this, we computed the Ca

for the NM module alone as stated in Table III, which shows
that the NM module provides excellent Ca and determines
the correct location most of the time. This indicates that in
failure cases, PE cannot estimate the pose between the query
image and the selected 3D model despite the match being
correct. There are two reasons for this: the 3D models are
somewhat limited because it is difficult to construct them
in some locations (especially corridors) due to the lack of
discriminating features; poor quality query images produce
poor 2D to 3D correspondences leading to poor pose as shown
in Figure 2 and is the cause of significant error for low-
resolution cameras.

TABLE III: The Ca for the NM module.

C3 3Gs IDEOS S7 N95 Sam HTC
Ca 0.97 0.93 0.93 0.97 0.98 0.97 0.95

B. 2DM analysis
We have tested three variants of 2DM:
1) 2DM(H): With homography verification method.
2) 2DM(F): With fundamental matrix verification method.
3) 2DM(base): With no layered architecture. It works sim-

ilar to standard visual BoW in which the first top ranked
image is considered the best match. This is used as the
baseline method for comparison with other variants.

We computed the correct acceptance rate (Ca) for 2DM
against query images of all mobile devices as shown in Figure
3. The results show that 2DM produces higher Ca than 3DM
across queries of all mobile devices, because it rejects fewer
query images than 3DM. As a consequence it suffers from
some wrong matches (Wm) as shown in Table IV. This is
expected because it is very hard to reject all wrong image
matches in 2D image matching.

-
Fig. 3: The Ca for 2DM variants.

TABLE IV: The Wm for the 2DM.

C3 3Gs IDEOS S7 N95 Sam HTC
2DM(base) 0.13 0.12 0.12 0.03 0.1 0.1 0.02

2DM(F) 0.13 0.07 0.05 0.02 0.07 0.08 0.02
2DM(H) 0.05 0.05 0 0.02 0.03 0.03 0.02

All variants take about 1 second to find an image match
and perform comparably to the base method i.e. 2DM(base),



but with fewer wrong image matches. The reason is that
2DM(base) selects the first top ranked image as the best match
without performing any geometric verification and hence gives
more wrong matches. 2DM(H) performs best because it offers
a lower Wm and reasonable Ca compared to other variants.

2DM has performed better than 3DM for low resolution
cameras such as 2-3MP. 2DM is efficient and provides a high
correct acceptance rate but at the cost of slightly higher wrong
match rates compared to 3DM. 2DM offers a reasonable trade-
off between image matching performance and efficiency, and
therefore seems to be a better choice for image matching
especially for smartphones having low resolution cameras.

For more analysis, we further evaluate the performance of
2DM on large realistic indoor datasets. In these datasets, all
training images are treated as a single training collection and
the performance of 2DM variants for image matching are
shown in Figure 4. The results show that 2DM(H) provides
low Wm and its Ca is also comparable to other variants.
2DM(F) also does better than 2DM (base) but its Wm is
slightly higher than 2DM(H). 2DM(H) offers 60-93% correct
image matching performance, while its wrong image match
rate varies from 3-11%. All variants perform poorly with the
Owheo-N dataset because query images were taken at night.
The OW building has many glass windows, which significantly
changes the scene at night due to glass reflections and results in
poor performance. One possible solution to tackle this problem
may be to capture training images at night as well.

Fig. 4: The results for 2DM variants. The curves that are higher
and further to the right indicate a better performance.

C. Runtime performance

3DM takes about 5 seconds to match a query image. On the
other hand, 2DM(H) and 2DM(F) both are quite efficient and
take about 1 second. The longer match time of 3DM is due
to its PE module, which performs an expensive operation and
alone takes about 2 seconds on average. On realistic indoor
datasets, 2DM(F) and 2DM(H) both take less than 2 seconds
to match a query image on average.

VI. CONCLUSION

In this paper, we show that it is possible to achieve indoor
localization using a single image from off-the-shelf camera
phones with 2D or 3D matching, which offers a cheap solution
compared to other technologies, such as infrared or inertial

sensors. We first propose and compare 3DM with 2DM across
query images from different cameras and our evaluations show
that 3D matching does not suit low resolution cameras, such
as 1-3 MP. However, its performance improves with the 5MP
camera. On the other hand, 2D image matching is efficient
and correctly matches many query images but at the expense
of some wrong image matches.

The results show that 3DM works reasonably well for high
resolution cameras and therefore is probably a good option for
the future as new smartphones have higher resolution cameras.
On the other hand, 2DM seems to be a better choice for our
current indoor positioning system due to it efficiency and good
matching performance across all resolution cameras.
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