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Abstract—This paper proposes a data driven approach to
perform scene localization in indoor environments. The proposed
algorithm named p-BoW is designed to cope with self-repetitive
and confusing patterns in indoor environments of any type. The
algorithm uses the Visual Bag of Words (BoW) model along
with proposed voting scheme to perform scene localization from
a database of captured images. In the first phase, a small subset
of images closer to the query image is found via standard BoW.
In the second phase, verification is performed (if required) to
identify the best matched image from this subset against the
query image.

Normalised term frequency (ntf ) weighting scheme has been
found to outperform normalised term frequency- inverse docu-
ment frequency (ntfidf ) scheme in matching precision. Proposed
algorithm makes use of visual BoW based on SIFT features in the
first phase and perspective transformation during the verification
phase for image matching. The resulting proposed system has
been able to perform scene matching efficiently in our indoor
environment (having about 35 indoor locations) with an accuracy
of more than 91% on different cluster sizes.

I. INTRODUCTION

Localization in an indoor environment without any global
positioning information (GPS) is a challenging problem. In-
door localization is a basic requirement for navigation of
robots and blind people. This area has been widely studied by
robotics and computer vision researchers. In robotics, a system
able to autonomously build a map while estimating its position
in the indoor environment is the optimal solution and is
referred as Simultaneous Localization and Mapping (SLAM)
[1]. A key part of most of the SLAM implementations is
the detection of previously visited locations by the robot
[2]. The target application for this work is a vision-based
navigation system for blind people in indoor environments
using common hardware (preferably smart phones). The first
stage in this process is location recognition. We envisage that
a user will take a photo using their smart phone, the phone
may perform some initial processing then send a representation
of the image to a server for location recognition which is
then communicated back to the phone. In this paper, we
focus purely on the location recognition problem and assume
that a suitable database of labeled images has already been
collected for the building in question. Such a system would
be particularly suitable for office buildings.

A. Related Work

Visual Bag of Word Model (BoW) has recently been used
for recognition of scenes and video event analysis due to its
robustness and good accuracy. There is a substantial amount
of research work in the area of image retrieval but most of it
focuses on outdoor images.

Few researchers have worked on indoor environments [3]–
[5]. In [3], SIFT, hue and texture features are used for
visual BoW followed by a voting scheme to perform scene
localization. Although it has been tested for a small scale
indoor environment it has not been shown to work in office
buildings which have similar color/texture schemes in many
places. In [4], the inverse document frequency (idf ) weighting
scheme based on global and local statistics is used to perform
scene localization in large scale indoor office environments.
Their algorithm is efficient and robust. The algorithm utilizes
the trained images distances information to identify the best
match from top 8 image matches.

More recently, object detection and probabilistic semantics
have been used in a small scale indoor environment to identify
the place type [5]. Their work should be applicable to indoor
environments of any type/scale but will perform slower as
objects segmentation, objects classification and then use of
semantics is usually slow.

The closest work to that described in this paper is proposed
in [6]. In that work, camera’s are assumed calibrated (or at
least approximately so), and database images are assumed
rectified. Features are identified using the Harris corner de-
tector and a RANSAC based algorithm for image registration
is applied. The query image is matched against each database
image and the closest match is returned as the location.

In some ways, our work can be viewed as an extension
of that of [6]. On the one hand, we update their approach
using SIFT features and the BoW algorithm. We also note
that plane homographies can be used in many environments
and not just building facades as with [6]. In our case, only
coarse localisation is necessary and therefore we do not require
camera calibration. Finally, we show that the normalised term
frequency (ntf ) weighting scheme is superior for this dataset
than the more popular normalised term frequency - inverse
document frequency (ntfidf ) scheme.



B. Approach

We propose a planar homography based Bag of Word
Model (p-BoW) in this paper. p-BoW can perform scene
localization efficiently in an indoor environment with good
precision. The environment is represented as an image based
topological map [7], [8]. We have developed a database of
indoor images of our building for evaluation purposes [9] .
It is a standard office-type building with some classroom size
computer laboratories — many different locations within the
building look very similar. Figure 1 shows an example of our
system in which a captured indoor image is matched against
the stored images for localization. Our p-BoW works requires
only database of labeled images and works efficiently. Section
2 of paper discusses the first phase which uses traditional
BoW based on two weighting schemes. Then in Section 3, we
discuss the validation techniques for verifying the potential
candidates. Results are presented in Section 4 followed by
conclusions in Section 5.

Fig. 1. Scene Localization by the system. Colored circles indicate the
identified indoor places against the corresponding input images.

II. IMAGE MATCHING PHASE

A. Key points Extraction

Features or key points from the images can be detected
either as salient patches using Harris, Laplacian, DoG or Max-
imal Stable Extreme Region [10]–[13] or by visual descriptors
using SIFT, SURF, PCA-SIFT [12], [14], [15].

We have used SIFT descriptors in our work. The SIFT
implementation is our own and we have used shorter 96
dimensional SIFT descriptors. In our proposed SIFT, the
image size is kept constant and some orientation values are
skipped from 4 x 4 orientation rows obtained in the ”Key-point
descriptor” phase resulting in shorter 96D SIFT features [16].
These shorter SIFT descriptors are found to give almost the
same classification accuracy on different benchmark datasets
as we get with 128D SIFT features with the benefit of being
twice as fast with lower memory requirements.

B. Vocabulary Building

We build the vocabulary by applying clustering on the
extracted SIFT features from the training images. Different
clustering techniques have been used by researchers such as
k-mediods, hierarchical clustering etc [3], [4], [17]–[20]. For
large scale databases, a very large vocabulary is needed and
time complexity will be high. We have used Approximate k-
means clustering (AKM) and have performed nearest neighbor
search by kd trees [21] to reduce the time complexity to
N log k where N is the number of features and k is the number
of clusters. AKM has been reported to be superior than HKM
in performance [20].

Vocabulary can be built using hard and soft assignment of
words. In hard assignment, features are mapped to one closest
cluster during clustering while in soft, features are mapped to
multiple nearest cluster centers. In practice hard assignment
may lead to errors because of variability in the feature de-
scriptor such as image noise, varying scene illumination etc.
This may result in the same surface patch being assigned to
different visual words in different images.

We have used both hard and soft assignment of visual words
in our experiments. People have used different vocabulary
sizes ranging from 0.8K to 1M [3], [18]–[20], [22], [23] but
trade off between discrimination and generalization motivates
the use of appropriate dictionary size [24]. We have tested 7
vocabulary sizes ranging from small to large ones i.e. 1K to
50K.

C. Keywords Weighting Scheme

We obtain word distributions or histograms for every train-
ing image via a weighting scheme. We have used two weight-
ing schemes: normalized term frequency (ntf); normalized
term frequency-inverse document frequency (ntfidf) [24].

In term frequency, each histogram bin refers to the actual
count of visual words in an image d. With vocabulary size
of K and nd as the total number of visual words in the
image d, we use a K-bin histogram Td = [td1, td2..tdK ] where
each histogram bin refers to a normalized frequency count
i.e. tdi = ndi/nd . Normalization eliminates the difference
between short and long documents.

In ntfidf , we penalize visual words which appear in many
images and give more weight to those words which appear in
few images. For a vocabulary of size K, normalized ntfidf
can be computed as follows:

tdi =
ndi
nd

. log
N

ni
, (1)

where N is the total number of images and ni is the number
of images having visual word i.

D. Classification via Inverted Indexing

To classify a query image, we are using the inverted index-
ing scheme to quickly retrieve 200 trained images which could
be similar in appearance to the query image. We then compare
the histograms of the query image against the obtained images
using either ntf or ntfidf to form a ranked list of potential



candidate images. Image with highest rank can be considered
to be the best match. Histograms are compared using the χ2

distance. χ2 can be computed between two histograms, (H1)
and (H2), as follows [3]:

||H1−H2||2 =
∑ (H1,i −H2,i)

2

H1,i +H2,i
(2)

E. Weighting Schemes Analysis

Most people have preferred ntfidf weighting scheme in
their works [3], [4], [17]–[20]. We analyzed from experiments
that ntf scheme performs better on our indoor dataset. We
decided to use other indoor and outdoor datasets to verify
our hypothesis. We have evaluated our simple BoW with both
weighting schemes on the following benchmark datasets:

1) UK Benchmark (U.K.B): Contains outdoor images and
is used as a standard for classification tasks [18]. There
are 4 different images of 2500 objects i.e.10,000 images
in total. We have used the first 4000 images i.e. 3000
for training and 1000 for testing. The 1st image is used
for testing and remaining object images are used for
training. 3000 trained images have been used to ensure
there are a large number of trained SIFT features i.e.
0.99M for reasonable BoW analysis.

2) Indoor Environment (I.E): Contains images of indoor
environments (i.e. from one floor of a building having
official setup) taken over some period of time [4], [25].
There are 8000 images for training and 100 images for
testing. We have used 3000 out of 8000 images for train-
ing and all 100 images for testing in our experiments. A
reasonable number of SIFT features are extracted from
trained data i.e. 14M.

3) CS Indoor (CS): Contains indoor images of our build-
ing. Details are stated in Section IV.

Figure 2 shows that traditional BoW with ntf scheme has
performed better then ntfidf on all datasets thus making ntf
scheme more feasible.

Fig. 2. Traditional BoW Matching Performance on different datasets.

III. VERIFICATION PHASE BASED ON HOMOGRAPHY

In the simple BoW model there is no verification phase.
The 1st candidate image in the top 200 images (subset)

is considered to be the best match for the query image.
However, the simple BoW model does not take into account
the spatial configuration of features or other image attributes
(such as colour) and this often leads to spurious matches.
Nevertheless, the correct matching image is often in the top
few candidate matches, and incorporating a verification phase
should significantly improve performance.

The proposed verification algorithm works as follows:
1) Use Inverted Indexing to retrieve top 200 images.
2) Calculate ntf or ntfidf histograms of 200 images.
3) Compute image rankings using χ2 measure.
4) Take top 50 ranked images in increasing order.
5) If top 3 ranked images refer/vote to same location:

a) Best Case: Then return that location.
6) Else [Worst Case Scenario]

a) Perform validation on top 50 images one by one.
b) If any image matches with query; return location.
c) if no match found in 50 images; this means ”no

decision” i.e. no match found.
Inverted indexing helps in efficient retrieval of images similar
to the query image. In our proposed scheme, if any of
top 3 images disagrees, we perform validation on top 50
images. Validation is performed on every image one by one
(if required). We compute best SIFT correspondences between
query and top ranked candidate image. We use RANSAC to
pick four of these correspondences randomly and compute a
plane homography. We then transform the candidate features
to new locations. If both images are the same, then most of the
transformed features will be in the field of view and will be
approximately at the same location as corresponding features
are. But this may be the case sometimes when two images
are different. So we identify such transformed features and
check the feature similarity with corresponding query features
to correctly identify the perspective correspondences. If we
find sufficient number of perspective correspondences with
different homographies then we select the current candidate
image as the best match. Otherwise, we pick next candidate
image and repeat whole process. Details of the algorithm are
given in Section III-C.

Validation can be performed for every query image but
it is expensive operation. Incorporation of voting results in
efficiency gains. As in many cases, we get localization decision
via votes. Any number of top images rather then 3 can be
picked to check the votes. We experimented different number
of images for voting (i.e. 5, 7 and 9) and identified that
top 3 images should be picked because this configuration
gives best results i.e. more then 99% accuracy on average.
Other configurations yield more wrong matches thus making
them less feasible. So proposed verification algorithm is a
reasonable trade-off between accuracy and efficiency.

We have compared our homography based validation tech-
niques with two other proposed validation techniques i.e.
sift-distance based (sd-BoW) and selective-hue matching (sh-
BoW) for performance comparison. Algorithms for all valida-
tion techniques are as follows:



A. sift-distance Validation (s-BoW)

1) For each candidate image:
a) Compute SIFT correspondences with query image.
b) Use 150 threshold to compute features similarity.

2) If correspondences >= 3; return location.
3) Else pick next top ranked image and repeat steps (1-2).
4) If no match found in 50 images; refers to ’no decision’.

B. selective-hue Validation (sh-BoW)

1) We use spatial information. The candidate image will be
considered best match only:

a) IF its SIFT Correspondences are >= 3 against
query image.

b) AND also if its Hue Histogram = Query Hue
Histogram by at least 50%.

2) If no match found, use next image and repeat steps (1-2).
3) If no match found in 50 images; refers to ’no decision’.
4) For Hue Computation:

a) We have used 5 x 5 regions around key-points.
b) To check histograms similarity, we use χ2 measure.

C. Homography Validation (p-BoW)

1) For each candidate image:
a) Find 10 best SIFT correspondences against query.

2) Declare numPerspective = 0.
3) Use RANSAC for random picking of 4 SIFT correspon-

dences 15 times.
4) For every set of 4 SIFT correspondences:

a) Compute transformation matrix.
b) Transform all candidate features to new locations.
c) Note the transformed features coming with in 3 x

3 window of corresponding query features.
d) Check all such features similarity with query fea-

tures (150 threshold) and record the ”COUNT”.
e) If COUNT>= 3;

i) return numPerspective++; else return 0.
5) If numPerspective >= 3;

a) return candidate location.
b) Otherwise pick next image and do steps (1-5).

6) If no match found in 50 images; refers to ’no decision’.
7) Note: [The 4 points in both images which are used to

compute homography are excluded in step 4 (c-d)].

IV. EXPERIMENTAL RESULTS

A. Dataset

Our indoor dataset contains about 700 images taken from 35
places over three floors of the building [9]. 70 images are used
for testing and 630 for training. Test images contain images
of every place. 15-fold cross-validation with different test and
training sets is performed to compute average performance.
About 0.17M SIFT features are extracted on average. The
dataset is quite challenging because of the similarity of many
locations and is therefore a good test set for many localization
problems.

B. Proposed BoW Analysis
We have evaluated the performance of our proposed valida-

tion techniques against the simple BoW with ntf and ntfidf
schemes to identify the best among them. For evaluation, we
have used seven cluster sizes in experiments. and have run
simple BoW and all proposed BoW 15 times on our dataset.
The average matching precision and standard deviations are
shown in Figures 3 and 4. Results indicate that proposed
p-BoW performs best in terms of matching precision and
stability (due to its low standard deviation) as compared to
simple BoW and proposed s-BoW, sh-BoW. sh-BoW performs
slightly better then s-BoW and appears to be more stable due
to incorporation of color information as shown in Figure 4.

Fig. 3. Simple and proposed BoW Models Performance Evaluation with
seven clusters on our indoor dataset

C. Weighting Schemes Analysis
We analyzed that for ntf scheme, worst case scenario

i.e. frequency of invoking of validation technique (in %) is
less then ntfidf . For very small cluster sizes, worst case
occurrence is similar for both however with increase in cluster
sizes ntf scheme holds and performs better then ntfidf as
shown in Table I. This also supports our hypothesis in Section
II that ntf scheme performs better then ntfidf .

TABLE I
WORST CASE OCCURRENCE FOR BOTH ntf AND ntfidf SCHEMES

1K 5K 10K 25K 30K 35K 50K
NTFIDF 76 60 57 57 52 51 53

NTF 76 58 48 43 42 41 40

Fig. 4. Proposed BoW Models Standard Deviation for ntf and ntfidf



D. Validation Techniques Analysis
Some query images contain less discriminatory information

and are difficult to recognize even with human eye. Such
images are called ’confusing’ and algorithms mostly find
wrong matches against such images. p-BoW also performs
some wrong matches. Sometimes the central hall of 3rd floor
is matched with the central hall of 2nd floor, rooms may
be wrongly matched, corridors of different floors may be
mismatched etc. Some examples of such wrong matches and
confusing query images are shown in Figure 5.

Fig. 5. p-BoW (a) Wrong matches (b) Confusing Images

For validation techniques analysis, we have considered only
those query images for which worst case happens and valida-
tion techniques are invoked to find the best match. Proposed
validation techniques have been evaluated in terms of:

1) No Decision Rate (R.R): Number of query images
against which validation cannot find best match.

2) Correct acceptance rate (C.A): Ratio of correct
matches i.e. average matching accuracy.

We evaluated average performance of all techniques w.r.t
above parameters. Figure 6 clearly shows that the perspective
transform validation technique outperforms others tested here
for both weighting schemes. For ’confusing query images’,
the top 50 images may not contain the desired match against
the query image. s-BoW and sh-BoW do not handle such
cases well and normally finds the wrong match resulting in
lower accuracy. For sh-BoW, the R.R is a bit higher then
s-BoW. The incorporation of hue and SIFT features make
this validation technique better then s-BoW. On the other
hand, in p-BoW use of homography ensures avoidance of
most of the wrong matches. The R.R is higher for p-BoW
which prevents many wrong matches against confusing query
images resulting in better accuracy. The R.R of homography

validation technique can be reduced at the cost of computation
by applying validation on more than 50 images.

Fig. 6. Validation Techniques (s-BoW, sh-BoW and p-BoW) Average Correct
Acceptance Rate for ntf and ntfidf schemes

E. Scene Confusion Matrix

For a blind person, it is important that they know the type
of place in which they are present even if specific location
information is not available. A scene confusion matrix has
been developed for 25K cluster configuration for both p-BoW
ntf and ntfidf as shown in Table II that groups place type as
opposed to simply location. As can be seen, the type of place
is recognized extremely well. These results are quite good and
are comparable with results shown in [5].

F. Soft vs Hard Assignment

We experimented with soft assignment of visual words in
simple BoW for both schemes. We mapped features to 2, 3 and
5 nearest cluster centers resulting in 3 BoW models i.e. S, S1
and S2. We compared proposed soft assignment based BoW
performance with BoW based on hard assignment i.e. H-BoW.
Results in Figure 7 show that soft assignment does not make a
significant difference for ntf scheme as compared to hard one.
However soft assignment resulted in 1-2% improvement for
ntfidf scheme for larger clusters. This makes soft assignment
feasible for ntfidf scheme. But soft assignment increases the
computational cost and its difficult to determine the number of
nearest cluster centers for mapping, as we find no significant
pattern via choosing different number of cluster centers.

V. CONCLUSION

In real time applications, a blind person can be asked to take
4-5 pictures of current scene and place recognized mostly by
p-BoW can be considered to be the desired location. This will
further reduce the chances of wrong matches and system will
be able to perform very precisely in real time.

We have presented in this paper a localization technique
which can work very well in challenging indoor environments.
The major findings of this work are:

1) Use of homography improves validation of candidate
matches significantly.

2) p-BoW is reproducible and robust.
3) ntf weighting scheme is superior to the ntfidf scheme

for indoor and outdoor environments.



TABLE II
SCENE CONFUSION MATRIX FOR P-BOW FOR 25K CLUSTERS(ntf AND ntfidf SCHEMES). LEGEND: AL, ALL LABS; CR, CONFERENCE ROOM; COR,

COFFEE ROOM; C, CORRIDORS; H, HALLS; W, WASHROOM; O, OFFICES.

25K NTF 25K NTFIDF

AL CR CoR C H W O A.L C.R. CoR C H W O
All labs 99% 0.70% 0% 0% 0% 0% 0.3% 99% 1% 0% 0% 0% 0% 0%

Conf. Rm 0% 100% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%
Coffee Rm 0% 0% 97.8% 0% 0% 0% 2.2% 0% 0% 100% 0% 0% 0% 0%
Corridors 0% 0% 0% 99.7% 0% 0% 0.3% 0% 0% 0% 100% 0% 0% 0%

Halls 0% 0% 0% 0% 100% 0% 0% 3% 0% 0% 1% 96% 0% 0%
Washroom 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 100% 0%

Offices 0% 0% 0% 2% 0% 0% 98% 2% 0% 0% 0.5% 0% 0% 97.5%

Fig. 7. Soft vs Hard Assignment in Visual BoW

4) Smaller sized SIFT descriptors can be used for BoW.
5) More clusters are generally superior to fewer clusters.
6) Hard assignment should be used for ntf scheme in

indoor environments. Soft assignment may be used for
ntfidf but at the cost of expense and on an ad hoc basis.

7) sh-BoW validation technique is another good alternative
as compared to s-BoW. Incorporation of hue information
plays a good role in performance improvement.

8) SIFT features should be used in conjunction with other
information for more precise matching indoors.
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