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Abstract. In this paper, we develop a neural network model that learns
representations of 3D objects via tactile exploration. The basic princi-
ple is that the hand is considered as an autonomous ‘navigating agent’,
traveling within the ‘environment’ of a 3D object. We adapt a model of
hippocampal place cells, which learns the structure of a 2D environment
by exploiting constraints imposed by the environment’s boundaries on
the agent’s movement, and perceptual information about landmarks in
the environment. In the current paper, our focus is on 3D analogues of
these 2D information sources. We systematically investigate the informa-
tion about object geometry that is provided by navigation constraints in
a simple cuboid, and by tactile landmarks. We find that an asymmet-
ric cuboid conveys more information to the navigator than a symmetric
cuboid (i.e., a cube) – and that landmarks convey additional information
independently from asymmetry.

Keywords: Hippocampal place cells · 3D object representation · Tactile
exploration · Landmarks · Recurrent self-organizing map.

1 Introduction

When a human being enters an environment, hippocampal place cells develop
a cognitive map of the environment. While the person reaches one location in
the environment, one place cell or multiple place cells fire simultaneously, which
represents such a location in the navigation environment. The process of hip-
pocampal cells encoding spatial locations by the integration of linear and angular
self motions is called ‘path integration’ or ‘dead reckoning’ [9, 10].

Even though the exploring agent’s movements are defined in an ‘egocentric’
reference frame, as are the perceptual stimuli it receives, the hippocampus can
somehow derive from this egocentric information an ‘allocentric’ or ‘environment-
centered’ representation of its location in the environment. In our current paper,
we explore a 3D analogue of this navigation scenario, where the agent’s hand
is construed as traveling around the environment of a 3D object. Here again,
information about the hand’s movements and about landmarks arrive in an
egocentric reference frame. We will focus on tactile information, which is more
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Fig. 1. By executing ‘egocentric’ movements, an agent (here a snail) learns the ‘allo-
centric’ representation of the explored object, i.e, (a) a cube, (b) a cuboid, and (c) a
cube with landmarks.

direct than visual information. The egocentric information in this case is defined
in a ‘hand-centered’ coordinate system. From this egocentric information, the
agent can construct an allocentric (i.e., object-centered) representation of the
object’s geometry.

For concreteness, we can visualize the ‘agent’ traveling around the cube as
a snail, as shown in Fig. 1. The agent can move by translation (forward, back,
left or right), or can change its orientation by rotating on its current plane. It
can detect when it crosses onto a different plane of the cube. It can also sense
tactile landmarks that it is sliding over (the colored dots). From these egocentric
(snail-centered) cues, the agent can derive an environment-centered (i.e., object-
centered) representation of the cube.

It is not yet understood how this is done. However, as a starting point, we can
consider models of the 2D place cells system, which is one of the most studied
and best understood structures in the brain [3–5]. The place cells model we will
adopt is one that uses a self-organizing map (SOM) [7]: specifically, a SOM is
modified to take recurrent input, called a modified SOM (MSOM) [11]. Note that
we are not suggesting that hippocampal place cells are involved in haptic ob-
ject exploration; there is good evidence that object representations derived from
touch are developed in the parietal cortex [1, 2, 12]. However, we suggest that the
parietal circuitry for learning haptic object representations might be isomorphic
in some way to the hippocampal circuitry for learning 2D environment represen-
tations. Based on this assumption, we investigate what allocentric information
about object geometry can be provided by constraints on hand navigation, and
by tactile landmarks.

The organization of this paper is summarized as follows. Section 2 presents
the background knowledge, which consists of MSOM, the relationship between
constrained action sequences and the object topography and a revisit of a exist-
ing MSOM model activated by translative movements (T-MSOM) for 3D object
representations shown in [13] with its drawbacks pointed out. The proposed
translative and orientational movements activated MSOM (TO-MSOM) model
and the landmarks together with translative and orientational movements acti-
vated MSOM (L-TO-MSOM) model are presented in Section 3. Section 4 shows
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simulative results of the proposed models for learning representations of two
typical 3D objects. Finally, Section 5 concludes the paper with final remarks.
The main contributions of this paper are highlighted as follows.

– Based on the authors’ knowledge, this is the first time to present a neural
network model for learning representations of 3D object via tactile explo-
ration by executing both translative and orientational movements.

– Simulative results based on a 3D cube and cuboid demonstrate the effective-
ness of the proposed models for learning representations of 3D objects. More
importantly, the statistics and systematic analysis verify that the models are
more accurate to learn a representation of a cuboid than a cube, which is
owing to the contributive asymmetrical topography of a cuboid.

– The positive effect of landmarks is verified by the statistics analysis of sim-
ulative results of the models representing the cube and cuboid.

2 Background

In this section, we present the background knowledge for the proposed mod-
els. Specifically, the detailed description of MSOM algorithm is firstly presented.
Then, the constraint of object topographies placed on action sequences for explo-
ration is identified. After that, for comparison and for showing the contribution
of this paper, drawbacks of the existing T-MSOM model are pointed out.

2.1 Modified Self-Organizing Map (MSOM)

Owing to the added previous state input, MSOM comes to learn frequently
occurring input sequences, which is different from SOM learning the frequently
occurring input patterns [3]. Regarding an input x(t) ∈ Rm at time instance t,
the activity of unit i of a MSOMM∈ Rn×n at that time instance is defined as

ai(t) = exp(−ηdi(t)), (1)

where i ∈ 1, 2, · · · , n2, η > 0 is a design parameter, and di(t) is a distance
function, which is defined as a weighted sum of two parts. The first part is
‖x(t)− wi(t)‖22 with ‖·‖2 denoting the 2-norm of a matrix or vector, which is to
evaluate the distance between the input x(t) and the weight wi(t) of unit i (for
simplicity, we name it as regular weight); and the second part is ‖c(t)− ci(t)‖22,
which is to evaluate the distance between the context weight c(t) for the mapM
at time instance t and the individual context weight ci(t) of unit i. By introducing
a weight factor ξ ∈ (0, 1) to adjust the effect of such two parts on di(t), the
distance function di(t) is formulated as

di(t) = (1− ξ)‖x(t)− wi(t)‖22 + ξ‖c(t)− ci(t)‖22. (2)

The context weight c(t) for the mapM in (2) is defined as

c(t) = (1− κ)w∗(t− 1) + κc∗(t− 1), κ ∈ (0, 1), (3)
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Algorithm 1 MSOM
Input: Input data x(t) ∈ Rm

Output: A convergent MSOMM∈ Rn×n

1: Randomly initialize all m-dimensional regular weights wi(0) ∈ (0, 1) and set all
context weights ci(0) = 0 ∈ Rm, i = 1, 2, . . . n2

2: while feature map is not convergent do
3: Sampling: draw sample input x(t) ∈ Rm

4: Competition: find best matching unit based on a distance discriminant function:

f(x(t)) = argmin
i

(1− ξ)‖x(t)− wi(t)‖22 + ξ‖c(t)− ci(t)‖22,

where c(t) = (1− κ)wf(x(t−1))(t− 1) + κcf(x(t−1))(t− 1), ξ ∈ (0, 1) κ ∈ (0, 1)
5: Cooperation: select f(x(t)) neuron’s neighbourhood neurons defined by a time-

varying decreasing neighbourhood function H(i, f(x))(t)
6: Adaptation: update regular weights and context weights of all selected neurons:

wi(t+ 1) = wi(t) + L(t)H(i, f(x(t)))(t)(x(t)− wi(t)),

ci(t+ 1) = ci(t) + L(t)H(i, f(x))(t)(c(t)− ci(t)),
where L(t) is a time-varying decreasing learning rate function.

7: end while
8: return M

where w∗(t − 1) and c∗(t − 1) denote the regular weight and context weight of
the unit in MSOM with the maximal activity ai(t) at previous time instance
t− 1, respectively. By norming the activities of all MSOM units shown in (1),

pi(t) =
ai(t)∑n2

j=1 aj(t)
, (4)

which denotes the activity probability of unit i for the current input at time
instance t. During training, the regular weight wi(t) is updated as

wi(t+ 1) = wi(t) + L(t)H(i, f(x(t)))(t)(x(t)− wi(t)), (5)

and the individual context weight ci(t) is changed as

ci(t+ 1) = ci(t) + L(t)H(i, f(x))(t)(c(t)− ci(t)), (6)

where L(t) and H(i, f(x(t)))(t) are a time-varying decreasing learning rate func-
tion and neighbourhood function respectively with f(x) denoting the index of
the unit in MSOM with the maximal activity for the current input x(t). At the
beginning of training, the regular weight wi(0) ∈ (0, 1) is randomly selected and
the context weight ci(0) = 0. The process of MSOM is shown in Algorithm 1.

2.2 Action Sequences Constrained by Object Topographies

To lay a basis for further investigation, in this subsection, we present the rela-
tionship (more specifically, the constraint relationship) between navigation ac-
tion sequences and object’s topographies. Regarding the constraint on action
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Fig. 2. Geometrical description of a cube with four locations L1, L2, L3 and L4.
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Fig. 3. Schematic of relationships among object topography and agent location, action
sequences and the MSOM.

sequences played by object topographies, we can refer to a cube shown in Fig. 2.
Assuming a navigation agent starts in location ‘L1’ facing Right, after moving
directly forward, it reaches location ‘L2’ facing Right. Then, the agent could
reach location ‘L3’ by moving forward over the edge or could get location ‘L4’
by moving right over the edge. Thus, from the same starting exploration po-
sition and orientation, different action sequences lead the navigation agent to
different locations. Different object topographies support different exploration
action sequences and thus, constrained action sequences implicitly contain ob-
ject topography information. Relationships among action sequences, the object
topography plus navigation location and the MSOM are illustrated in Fig. 3.

Without performing orientational movements, starting from ‘L2’ facing Right,
after moving forward over the edge to reach ‘L3’, moving right over the edge to
reach ‘L4’ and moving back over the edge to go to ‘L2’, the agent is back in its
starting location – but importantly, it is now facing a different direction than it
did when it started. This highlights an important geometrical property of nav-
igation in 3D space – the ‘non-commutativity of rotations’ (a good discussion
is given in [6]). For our purposes, the key point about this property is that our
navigating agent needs the ability to rotate in its current plane, as well as to
translate, to make the task of returning to a given state tractable. We begin
by presenting a model with translative movements but no rotational movements
(i.e., T-MSOMmodel), and then introduce a model including orientational move-
ments as well (i.e., TO-MSOM model).

2.3 T-MSOM

A basic model T-MSOM to learn representations of 3D objects based on transla-
tive movements and surface information is presented in the previous work [13,
14]. Since orientational movements of a navigation agent are normally performed
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Fig. 4. Architectures of TO-MSOM model and L-TO-MSOM model for learning to
represent 3D objects via translative movements (↑: move forward; ←: move left; →:
move right and ↓: move back) and orientational movements (�: rotate 90° counterclock-
wise and �: rotate 90° clockwise) together with the surface transition signal, where the
blue frame shows the architecture of TO-MSOM model and the red frame illustrates
the architecture of L-TO-MSOM model.

in practice and without such kind of movements, an agent could not go back to
the start position with the same orientation, an improved and more practical
model with orientational movements considered is of significance. Meanwhile,
because objects generally do not have the differences among surfaces, to be
more realistic, the surface information included in T-MSOM model should be
left out. What’s more, [13] presented the informal one test result about the effect
of object asymmetry on the model’s performance, while in the current paper,
we present a statistics and more systematic study of the effect and extend the
analysis to consider the effect of tactile landmarks on the object’s surface.

3 Proposed Models

In this section, the proposed TO-MSOM and L-TO-MSOM model are presented.

3.1 TO-MSOM Model

By deleting the not generally-existed surface information in T-MSOM model
and considering widely-performed orientational movements, TO-MSOM model
is developed and its architecture is shown in a blue frame in Fig. 4. As illustrated
in the figure, TO-MSOM model mainly consists of four parts: the input, MSOM
units, next action distribution and action selected. The input to MSOM units is
to simulate the circuit of object representations from the somatosensory cortex
to the parietal cortex, and the next action distribution to action selected is to
imitate the circuit from the premotor cortex to the motor system. The details
of such four parts are illustrated as below.
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Algorithm 2 TO-MSOM model
Input: Constrained action sequences of the object to be explored and represented
Output: A representation of the object explored
1: Randomly initialize the exploration starting position and orientation of the agent
2: while training steps are not finished do
3: Input: input the executed constrained action
4: MSOM units: activate MSOM units to be responsive to the current input
5: Next action distribution: predict next possible actions allowed by the object
6: Action selected: select the most possible action allowed by the object and perform
7: end while
8: return

Input The input of TO-MSOM model is composed of the constrained action
sequences, which is comprised of translative and orientational movements. Note
that the bit of surface translation signal is to encode the difference between
the movement of moving directly (that is, moving forward, left, right, back di-
rectly) and moving over the edge (that is, moving forward, left, right, back over
the edge). The input part is to encode and simulate the obtained sensorimotor
information from the peripheral sensors.

MSOM units The units in MSOM are driven to learn the frequently occurring
action sequences, which are constrained by the object’s topography. As pointed
out above, starting from the same location and orientation, the navigation agent
can lead to different locations and/or orientation by executing different action
sequences. Therefore, with regard to one starting exploration location, each unit
in MSOM comes to be responsive to one/many particular location(s) on the ob-
ject via learning constrained action sequences. After training, given a particular
MSOM activity pattern, the learning model could reconstruct or say predict the
navigation agent’s position owing to the learnt representation of such an object.
Note that this MSOM units part aims to imitate neurons involved in the circuit
of object representations fulfilled in the parietal cortex.

Next action distribution Regarding each input at one time instance, there is
an activity pattern in the MSOM, which denotes one particular location on the
object. Based on the learnt representation of such an object, the model attempts
to predict the next action possibly available to be preformed. In this model, the
MSOM activity pattern is the input to a network, which is implemented by
a multiple layer perceptron (MLP), and the output of MLP is the probability
distribution of all actions predicted to be possibly performed.

Action selected After obtaining the possible action’s probability distribution,
the next action to be executed is then selected, which is based on the Boltzmann
selection. Note that the selection procedure can be regulated by setting the
selection decision policy involved in the Boltzmann selection. Regarding this
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model, if the navigation agent fails to execute one action to reach a new location
for perceiving object’s information, the probability of such an action is set to be
zero, which implies that it cannot be selected for the next action to be performed.
Moreover, in the model, for expediting the learning process, the navigation agent
is commanded to find the boundary of the object as quickly as possible and
therefore, the probability of the moving forward action is increased by a positive
reinforced bias number. This part is to simulate the circuit of action selection
performed in the premotor cortex.

After the next action to be performed is selected, an encoded signal of such
an action is transferred to the motor system to perform. The performed action
then leads the navigation agent to a different location, which gives rise to an
update of the sensory information about the object and contributes to represent
such an object. The flow diagram of the model is shown in Algorithm 2.

3.2 L-TO-MSOM Model

Landmarks in an environment are reported to have an effect on a navigation
agent for exploring the environment, such as leading to remapping of the same
environment and speeding up finishing a navigation task [8]. To investigate the
effect of tactile landmarks on object representations, L-TO-MSOM model is de-
veloped with its architecture illustrated in the red frame in Fig. 4. Differing
from TO-MSOM model, L-TO-MSOM model is not only activated by the con-
strained action sequences but also the landmarks on the object to be explored.
The landmark in L-TO-MSOM model mainly denotes tactile landmarks, such
as the temperature and texture differences among locations on the object. Since
the implementation flow diagram of L-TO-MSOM model is similar to that of
TO-MSOM model, it is omitted in the paper.

4 Simulation Results and Comparisons

To evaluate the effectivenesses of the proposed models and investigate effects
of object asymmetries and landmarks on representing objects, two typical 3D
objects–a 2× 2× 2 cube and a 3× 2× 1 cuboid–are assigned to be represented.

4.1 Effects of Object Asymmetries

To validate the effectiveness of TO-MSOM model for representing 3D objects as
well as investigate the effect of encoding approach for the translative movements
over the edge on the model, three kinds of TO-MSOM models, named TO-
MSOM-1, TO-MSOM-2 and TO-MSOM-3, are assigned to explore the cube and
cuboid with a random initial exploration position. Specifically, TO-MSOM-1 is
the model using one bit of surface transition signal together with the four directly
translative movement bits to denote the four translative over the edge movements
(i.e., moving forward, left, right and back over the edge); TO-MSOM-2 is the
model by utilizing four independent bits to denote such four translative over the
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Table 1. Probability distribution of Pmax, represented as Pmax ∼ N (µ, σ2) with µ
and σ denoting the mean and standard deviation respectively, for TO-MSOM-1, TO-
MSOM-2 and TO-MSOM-3 models when representing a cube and cuboid

Model TO-MSOM-1 TO-MSOM-2 TO-MSOM-3

#Cube (6.59%, 0.90%2) (6.47%, 0.66%2) (6.63%, 0.72%2)

#Cuboid (11.19%, 1.10%2) (11.72%, 1.20%2) (11.26%, 1.58%2)

Table 2. 95% confidence interval of Pmax for TO-MSOM-1, TO-MSOM-2 and TO-
MSOM-3 models when representing a cube and cuboid

Model TO-MSOM-1 TO-MSOM-2 TO-MSOM-3

#Cube [4.75%, 8.43%] [5.12%, 7.82%] [5.16%, 8.10%]

#Cuboid [8.94%, 13.44%] [9.27%, 14.17%] [8.03%, 14.49%]

edge movements, and TO-MSOM-3 is the model by using four bits of surface
translation signal and four directly translative movement bits. Note that each
model is to explore such two three objects for 30 sampled random tests/paths.
Each test has 20 epochs and each epoch contains 100 exploration steps. The
following results are based on statistics analysis of sampled 30 tests.

To evaluate effectivenesses of the proposed model, a criterion Pmax is intro-
duced, which is defined as

Pmax =
T (α = β)

φ
, (7)

where φ denotes a fixed size of a sliding window, T (·) denotes how many times
a given event happened in a given window in the sliding window series, α de-
notes the probability of the actual agent position in the reconstructed probability
distribution and β denotes the maximal value in the reconstructed probability
distribution. Furthermore, another criterion Dgeodesic is also developed and de-
fined as

Dgeodesic =

m∑
i=1

4∑
j=1

g(i, δ)pij , (8)

where g(i, δ) denotes the geodesic distance between position i and the actual
agent position δ, m denotes the number of available exploration positions on
the object; j = 1, 2, 3, 4 is used to respectively denote North South East West
orientations; and pij denotes the probability of the agent being in location i and
with the particular j orientation in the reconstruction distribution. Regarding
details about such two criteria, please refer to [13, 14].

When exploring the cube and cuboid, the models’ statistics probability dis-
tributions of Pmax ∼ N (µ, σ2), with µ and σ denoting the mean and standard
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Fig. 5. Statistics means of Pmax of TO-MSOM-1, TO-MSOM-2 and TO-MSOM-3 mod-
els when representing a cube and cuboid.

Table 3. Probability distribution of Dgeodesic, represented as Dgeodesic ∼ N (µ, σ2) with
µ and σ denoting the mean and standard deviation respectively, for TO-MSOM-1, TO-
MSOM-2 and TO-MSOM-3 models when representing a cube and cuboid

Model TO-MSOM-1 TO-MSOM-2 TO-MSOM-3

#Cube (2.48, 1.45%2) (2.48, 1.18%2) (2.48, 1.39%2)

#Cuboid (2.39, 1.73%2) (2.39, 1.81%2) (2.38, 2.02%2)

deviation respectively, are illustrated in Table 1. From the table, we can see that
1) the models have advantages in representing the cuboid over the cube, which is
owing to the additional asymmetry topography information of the cuboid; 2) the
models are effective on representing 3D objects; and 3) the encoding technique for
translating over the edge movements does not make a difference on the model’s
representing ability. Corresponding t-based 95% confidence intervals and statis-
tics means of Pmax are shown in Table 2 and Fig. 5 respectively, which suggests
the positive effect of asymmetry topography on TO-MSOM model’s representing
ability. Corresponding statistics probability distributions of Dgeodesic for TO-
MSOM models are illustrated in Table 3, which further verifies the contributive
effect of the asymmetry geometry. Note that the accuracy of TO-MSOM model
could be improved by adding other perceptual information, such as tactile land-
marks (discussed later) and surface information (presented in [13]) or by making
the navigation agent articulated, which is more like mammals’ hands and can
perceive and detect information on different surfaces of the object in parallel.
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Fig. 6. Statistics means of Pmax and Dgeodesic for L-TO-MSOM model when represent-
ing a cube and cuboid.

4.2 Effects of Landmarks and Object Asymmetries

To investigate the effect of landmarks, L-TO-MSOM model is commanded to
explore and represent the cube and cuboid. Similarly, each model with different
numbers of landmarks explores such two 3D objects for 30 random tests/paths
and the following results are based on the statistics analysis.

The statistics means of Pmax and Dgeodesic when L-TO-MSOM represents a
cube and cuboid are illustrated in Fig. 6. As we can see from the figure, we can
draw the conclusion that the simulation result validates 1) the effectiveness of
the model for representing 3D objects; 2) the positive effect of landmarks on the
model’s learning representations ability; and 3) the superiority of a cuboid to a
cube for representation due to the asymmetry topography of the cuboid.

5 Conclusion and Future Work

In the paper, TO-MSOM model activated by translative and orientational move-
ments has been proposed to learn representations of 3D objects. To investigate
the effect of landmarks as well as object asymmetries, L-TO-MSOM model acti-
vated by landmarks together with translative and orientational movements has
been developed. Statistics simulative results of TO-MSOM model and L-TO-
MSOM model for learning representations of two typical 3D objects– a 2× 2× 2
cube and a 3 × 2 × 1 cuboid–demonstrate that 1) the proposed models are ef-
fective on learning representations of 3D objects; 2) object asymmetries have
a positive effect on representations; 3) landmarks also positively contribute to
learn representations. Future work is to design a more realistic and practical
model to learn representations of 3D objects with an articulated agent, which is
to simulate human beings’ hands and consists of multiple independently moving
‘fingers’ to compete and coordinate for achieving a task. Another interesting
direction is about investigating the model’s representation ability for a more
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complicated 3D object, such a cup with curved surfaces, and a situation, such
as a cup on a desk.
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