
Improved Spectral Clustering using
Adaptive Mahalanobis Distance

Xiping Fu
Dept. of Computer Science

University of Otago
Dunedin, NZ

xiping@cs.otago.ac.nz

Shawn Martin
Software Systems Research

Sandia National Laboratories
Albuquerque, NM 87185, USA

smartin@sandia.gov

Steven Mills
Dept. of Computer Science

University of Otago
Dunedin, NZ

steven@cs.otago.ac.nz

Brendan McCane
Dept. of Computer Science

University of Otago
Dunedin, NZ

mccane@cs.otago.ac.nz

Abstract—In this paper, we consider the manifold clustering
problem. In manifold clustering, data are sampled from multiple
manifolds and the goal is to partition the data accordingly.
Spectral clustering algorithms have been developed to solve this
problem, but they tend to fail when the underlying manifolds
are very close to each other and/or they intersect. We propose
an improvement to spectral clustering algorithms using adaptive
neighborhoods computed using Mahalanobis distance. We show
the effectiveness of this approach on some artificial data. We fur-
ther incorporate the modification into recent related algorithms
and compare the results on datasets in motion segmentation,
handwritten digit recognition, and object rotation.
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multiple manifolds clustering; motion segmentation;

I. INTRODUCTION

Clustering is widely used in fields such as computer
vision, machine learning, and information science. The goal of
clustering is to partition data into different groups according
to inherent similarity. Clustering has been widely studied and
there are many approaches available [2]. As an example, k-
means is a simple algorithm which partitions a dataset into k
groups by minimizing within cluster Euclidean distance.

Spectral clustering algorithms have been developed to
overcome some of the shortcomings of traditional clustering
methods [6], [9]. Traditional algorithms often assume normally
distributed clusters, while spectral algorithms are capable of
clustering non-Gaussian, non-linear data. Spectral clustering
works by representing data similarity as a weighted graph.
Each point in the dataset is a node in the graph, and the non-
zero edges in the graph connect similar data points. This graph
can be mapped into a new space by computing eigenvectors
(spectra) of an associated matrix. Finally, k-means is used to
cluster the data in the new space.

In the past few years, a lot of work has been done to
extend clustering algorithms to even more difficult problems.
Specifically, algorithms have been designed to cluster data
sampled from multiple manifolds. These manifolds may be
very close to each other and may even intersect. For this
kind of clustering problem, we need to construct elaborate
similarity matrices to group the data using spectral clustering.
Chen et al. have constructed a similarity matrix based on
the polar sine, which is a high dimensional generalization of
the sine function [3]. This is a global algorithm which has
good performance on linear manifolds. Wang et al. incorporate

tangent space information into the similarity matrix [14]. They
use a mixture of probabilistic principal component analysis
(MPPCA) [11] to obtain the tangent space information, fol-
lowed by distance information to construct a similarity matrix.
Gong et al. estimate the local tangent space using a weighted
low-rank matrix factorization which penalizes neighborhood
points according to their distance from the neighborhood center
[4]. This tangent space information is used to construct a
similarity matrix using both distance and angle information.
Finally, Arias-Castro et al. have proposed three algorithms
which address the manifold intersection problem [1]. The
central idea behind these algorithms is to incorporate local
covariance information.

In this paper, we propose an algorithm designed to improve
the selection of neighborhoods in the case of data sampled
from multiple neighborhoods. By improving neighborhood
selection, we improve the similarity matrix used by spectral
clustering algorithms. Like previous works [4], [14], [1], we
are trying to construct a better similarity matrix for spectral
clustering. Unlike previous work [4], [14], we do not explic-
itly estimate local tangent spaces, nor do we use a single
covariance measurement to reject certain edges [1]. Instead, we
select edges by employing an iterative Mahalanobis distance
calculation. Since we are concerned only with neighborhood
selection, the modified neighborhood selection method can be
applied as a pre-processing step for various spectral clustering
algorithms [4], [14], [9].

We organize our presentation as follows. In Section II, we
introduce the necessary background for the modified neighbor-
hood selection method, including details on spectral clustering
and the Mahalanobis distance. In Section III, we describe
how to select manifold respecting neighborhoods using an
iterative computation of Mahalanobis distance. We provide
examples and discuss computational complexity. In Section IV,
we incorporate the modified neighborhood selection method
into other algorithms and compare the resulting performance
on some real data. In Section V, we conclude the paper and
discuss directions for future work.

II. BACKGROUND

Suppose we have a dataset X = {x1, . . . ,xN} ⊂ RD.
The first step in any spectral clustering algorithm is the
construction of a weighted similarity graph. In this graph,
vertices correspond to data points xi and edges give the



similarity between two points xi and xj . For example, we
might form the weighted similarity graph using ε-balls to
specify neighborhoods: for each data point xi, we connect it
to point xj if the Euclidean distance d(xi,xj) ≤ ε. Another
common approach for generating weighted similarity graphs
is to connect each data point to its K nearest neighbors.

After assigning an appropriate weight to each edge, typical-
ly the distance d(xi,xj), we get a weighted adjacency matrix
W = (wij) for the graph. Note that wij = 0 if an edge does
not exist. Spectral clustering [10] is done by calculating the
normalized Laplacian L = I − D−1/2WD−1/2, where D is
a diagonal matrix with Dii = ΣN

j=1wij . Next, we compute
the smallest k eigenvalues of the generalized eigenvalue prob-
lem Lu = λDu, where u1, . . . ,uk are the corresponding
eigenvectors. If we form a matrix U = (u1, . . . ,uk) =
(yT

1 , . . . ,y
T
N )T ∈ RN×k, then yi can be viewed as a represen-

tation of xi. Finally, we cluster {y1, . . . ,yN} into k clusters
using k-means.

A. Mahalanobis Distance

The modified neighborhood selection method uses the
Mahalanobis distance to select neighborhoods. To define the
Mahalanobis distance, we suppose that xi,xj ∈ RD and that
Σ ∈ RD×D is a symmetric positive semidefinite covariance
matrix. The Mahalanobis distance is defined as dM = ((xi −
xj)

T Σ−1(xi − xj))
− 1

2 . Under the Mahalanobis distance, the
space RD can be viewed as normalized by Σ. In Figure 1,
we show a unit sphere in the Mahalanobis distance using two
different covariance matrices.

Fig. 1. Unit balls under different Mahalanobis distances. On
the left we use Σ = I , and on the right we use a diagonal
matrix with entries (3, 1, 1) for Σ.

III. ALGORITHM

We propose an algorithm for selecting manifold respecting
neighborhoods, regardless of nearby manifolds or manifold in-
tersections. The algorithm is based on iteratively recomputing
the Mahalanobis distance for a given neighborhood center.
To describe the algorithm suppose we have a point xi and
we want to identify its K nearest neighbors. In the absence
of prior information, we assume an isotropic Mahalanobis
distance (Σ = I) to find the closest K neighbors. Using
these neighbors, we compute the covariance and re-compute
the Mahalanobis distance. We then select a new set of K
neighbors based on the new Mahalanobis distance and repeat.
In practice, we do not wait for convergence, but terminate
after a fixed number of iterations. After the neighborhood
selection process, we apply a spectral clustering algorithm. We
denote the resulting algorithm as Modified-SC. The modified
neighborhood selection method is demonstrated in Figure 2
and summarized below.

Algorithm 1 Identify neighborhood using Mahalanobis Dis-
tance
Input: Data set X with N elements, neighborhood size K.
Output: Neighborhood for each data point.

for i = 1 to N do
1. Let Σ = I .
2. Use distance (xj−xi)

T Σ−1(xj−xi) to find K nearest
neighbors of xi.

3. Calculate the covariance Cov of {x1, . . . ,xK}.
4. If Cov = Σ, go to step 5, else, set Σ = Cov, and

return to step 2.
5. Record the points {x1, · · · ,xK} as xi’s neighbor-

hood.
end for
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Fig. 2. Neighborhood selection. Here we consider a dataset
with two intersecting lines and a neighborhood center near
the intersection point. From the top left to the bottom right,
we show snapshots of Algorithm 1 as it identifies a suitable
neighborhood. The neighborhood center is shown enclosed
within a circle surrounding the neighborhood. Non-neighbors
are shown in grey. As the algorithm converges, the neighbor-
hood improves so that the intersecting line is ignored.

A. Examples

Next, we examine some artificial examples which cannot
be partitioned using traditional spectral clustering algorithms.
The first example is two intersecting lines. For this example,
we generated 400 points uniformly sampled from two lines. We
used K = 10 nearest neighbors and identified k = 2 clusters.
The results of a traditional spectral clustering algorithm [10]
compared with the same spectral clustering algorithm modified
using our neighborhood selection is shown in Figure 3.
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Fig. 3. Clustering for two intersecting lines. On the left we
show the result of a traditional spectral clustering algorithm,
and on the right the result of the same algorithm modified by
first applying Algorithm 1.

In our next example, we use two intersecting planes.
For this example, we generated 200 points sampled from a



Gaussian distribution from each plane. We again used K = 10
nearest neighbors and identified k = 2 clusters. Clustering by
our method yielded only two misclassified points. A compar-
ison with the traditional method is shown in Figure 4.
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Fig. 4. Clustering for two intersecting planes. On the left we
show the results of a traditional spectral clustering algorithm,
and on the right the result of the same algorithm modified by
our neighborhood selection scheme. There are two misclassi-
fied using our approach, shown in green.

The previous two examples show that for manifold in-
tersections, the performance of spectral clustering can be
improved using our iterative algorithm for learning the Maha-
lanobis distance. We note that when the data lies on a manifold
without error, the method will work for a large range of K.
However, if there is noise, the value of K should be large
enough to eliminate the noise. For example, in Figure 5, we
show that for two intersecting lines with noise, the data can
still be partitioned successfully if we choose K = 20.

Fig. 5. Clustering for two intersecting lines with noise. The
Modified-SC algorithm is able to cluster noisy data using larger
neighborhoods. Errors are shown in green.

B. Computational complexity

Spectral clustering involves finding the nearest neighbor-
hood points O(N2) and solving a generalized eigenvalue
problem O(N3). Our modification involves the neighborhood
calculation. Although we have to find the nearest neighbors
iteratively, we can record a larger number of neighbors in the
first step of the algorithm, and use only those neighbors from
that list for further calculations. Thus the modified algorithm
has roughly the same complexity as the traditional spectral
clustering algorithm.

IV. RESULTS

A. Motion segmentation by trajectories

The Hopkins 155 motion segmentation database (http:
//www.vision.jhu.edu/data/) [12] is a benchmark for testing
motion segmentation and subspace learning algorithms. There
are 155 data sets, including 13 articulated sequences which
relate to people’s motion, 38 traffic sequences, and 104
checkerboard sequences. The checkerboard sequences display
different combinations of movements of both checkerboard and
camera, such as rotation and translation. Some of the sample
images are shown in Figure 6.

Fig. 6. Sample images from Hopkins 155 motion segmentation
database [12].

Suppose there are F frames in one video sequence. A
specific feature can be characterized by its position (xi, yi)
in the i-th frame. The trajectory of this feature is defined
as (x1, y1, x2, y2, . . . , xF , yF ) ∈ R2F . Typically trajectories
belonging to a specific rigid movement lie in the same low
dimension manifold. Therefore, we can use multi-manifold
learning algorithms to separate them.

We applied our neighborhood connection method to the
standard spectral clustering algorithm (SC), spectral multi-
manifold clustering (SMMC) [14], and robust multi-manifold
structure learning (RMMSL) [4]. We name the modified algo-
rithms Modified-SC, Modified-SMMC and Modified-RMMSL.
We compare these modified algorithms with SC, SMMC,
RMMSL, generalized principal component analysis (GPCA)
[13], and spectral curvature clustering (SCC) [3] on the
Hopkins 155 motion segmentation database. The code for
GPCA [13], SCC [3], and SMMC [14] was downloaded
from corresponding authors’ homepages. The results of the
comparison are shown in Table I.

Note that some of these algorithms have already been
tested on this data set, and the results may be different from
those shown in Table I. This is probably due to differences
in parameter selection and data pre-processing used in each
algorithm. For example, Wang et al. [14] tested the SCC and
SMMC algorithms without data pre-processing [14], i.e. on
the 2F dimensional data directly, while Chen and Lerman [3]
pre-processed the data using PCA. Further Gong et al. [4],
performed their experiments by first tuning the parameters,
then choosing the best parameter for the trials, whereas we
do not tune the parameters. Hence, the result shown in Table
I can only be compared in the context of our trials. In other
words, we tested the methods using the same parameters and
pre-processing. We only varied the method of edge connection
(neighborhood selection).

The results in Table I compare a large number of algorithms
across many datasets. In most cases, our modification improves
the results of the standard method, and in certain cases
the improvement is significant. Due to the large number of
methods considered, however, there are some subtleties in our
analysis, which we now discuss.

First, the variety of algorithms requires a standard method
of pre-processing and parameter selection which will work for
all methods. For pre-processing, we first use PCA to project
the trajectories into 5 dimensional space. We chose D = 5
dimensions because the original trajectories lie on at most 3
dimensional multi-manifold spaces. Thus after projection the
trajectories are still on different low dimensional manifolds



1R2RCT A 2RT3RCT B 1R2TCR 1R2TCRT ARM people2 two cranes g23 cars5 g13 kanatani1 Average
GPCA 5.94% 35.67% 24.28% 25.65% 1.30% 0.21% 19.48% 1.17% 0% 10.08%

SC 3.80% 4.25% 5.58% 0% 9.09% 28.14% 0% 17.32% 0.74% 9.44%
Modified-SC 6.65% 1.27% 4.86% 0% 2.60% 27.51% 0% 10.23% 0% 8.68%

SMMC 12.17% 1.02% 8.63% 0% 37.66% 0.26% 3.03% 9.45% 1.93% 10.30%
Modified-SMMC 12.30% 1.02% 8.63% 0% 37.66% 0.26% 3.03% 9.71% 0.18% 9.67%

RMMSL 34.44% 40.42% 0% 0% 49.35% 0.21% 32.47% 2.62% 0% 12.36%
Modified-RMMSL 4.51% 38.64% 0% 0% 1.30% 0.21% 1.56% 6.03% 0% 10.15%

SCC 1.20% 1.59% 2.70% 1.01% 0.52% 27.97% 9.22% 0% 0% 3.38%

Tab. I. Performance comparison. Here we compare a host of spectral clustering algorithms using the Hopkins 155 motion
segmentation database [12]. Mis-classification rates are reported, and bold-face is used when our modification is as good or
better than the result of the standard algorithm. In some cases there are significant improvements.

in R5. Another reason we chose D = 5 is that GPCA is
designed to address the subspace intersection problem, and
a 3 dimension affine space can be viewed as a subset in 4
dimensional space. Thus D = 5 is the minimum dimension
for GPCA.

Some algorithms, such as SMMC, Modified-SMMC, R-
MMSL, Modified-RMMSL, and SCC need intrinsic dimension
information, which we always set as d = 3. For SC, Modified-
SC, SMMC, Modified-SMMC, RMMSL, Modified-RMMSL
the neighborhood size K is set to 2dlog(N)e, as suggested
when using SMMC [14]. For SMMC, the number of compo-
nents of MPPCA M is set to 9 and the adjustable parameter
o is set to 8.

When comparing SC and Modified-SC, the only difference
is the parameter for the number of iterations to use in the
Mahalanobis distance computation. For SC, we use a single
iteration, and for Modified-SC we use 10 iterations. For
the comparison of SMMC and Modified-SMMC, our results
depend heavily on the outcome of the MPPCA process. Thus
for comparison, we fix the MPPCA procedure. In other words,
we use the same result from MPPCA, then run the different
algorithms. For the RMMSL and Modified-RMMSL, we note
that the outliers have been previously removed in the Hopkins
155 dataset. Thus we can skip the outlier detection process in
RMMSL, so we set σc = 0.01, σn = 1, and Kth = 5 for the
self-tuning step. After estimating the weighted tangent space
for each data point, we apply the different edge connection
methods to continue the experiment.

The results in Table I are produced using a set of fixed
parameters. For real world data sets, this is not necessarily the
best way to choose parameters. In the cars g13 dataset, for
example, it seems that several algorithms have poor perfor-
mance. When we analyzed this data set in detail, we found
that the poor performance was related to the distribution of
the points. The cars g13 data consists of 36 points for car
one, and 307 points for the background. By visualizing the
data, we noticed that the background points are less localized
than the car points, as shown in Figure 7 (left). If we choose
K = 12 there are in fact three clusters, as shown in Figure 7
(right). Even though two of the three clusters are in the same
subspace, they are not connected, thus explaining the poor
performance of the algorithms. To address the problem we tried
other parameters. For K = 20 we obtained better performance
(13.11% and 0% for SC and Modified-SC respectively).

Although our modification generally improves the results
over the standard algorithm, we noticed that in some cases the
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Fig. 7. The cars5 g13 dataset. On the left we show the features
provided with the data. On the right we show how the data
clusters into three groups in its projection into R3.

results are worse. For example, in Table I, the Modified-SC
methods has a higher mis-classification rate than the original
SC algorithm for 1R2RCT A data set. After a detailed analy-
sis, we noticed that for certain data points, the iterative Maha-
lanobis distance learning may introduce incorrect connections.
This situation is shown in Figure 8. The data shown in Figure 8
has a complicated distribution, and this is probably the main
reason that the modified neighborhood selection method has
failed. To some extent, this problem can be mitigated by
allowing larger neighborhoods. For example with K = 20 the
mis-classification rate is 3.56% for the Modified-SC algorithm
and 4.04% for the SC algorithm. However, this is a minor
improvement, and we tend to prefer a fixed choice of parameter
for fair comparisons.

B. MNIST and COIL20 data set

MNIST [5] and COIL20 [8] are two other commonly
used benchmark datasets for object recognition and clustering
algorithms. MNIST is a dataset of handwritten digits, with each
digit represented by a 28×28 image matrix. The COIL20 data
set has 20 objects, and each object has been captured by 72
images taken as the object is rotated by 5◦ increments. Some
of the sample images are shown in Figure 9.

Fig. 9. The top two rows are example images taken from
COIL20. The other images are taken from MNIST.
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Fig. 8. Mis-connections caused by Mahalanobis learning. On the left, we visualize the features in R3, with points belonging to
different clusters distinguished by blue, green, and black. We want to find the neighbors of the red point which belongs to the
blue cluster. In the middle, we show its neighbors, which have four mis-connections, in red after one iteration. On the right, we
show in red the neighborhood learned by the iterative Mahalanobis algorithm. Notice it has introduced one more mis-connection.

For these data sets, we compared the performance of the
SC and Modified-SC algorithms since these two algorithms
need the smallest number of parameters. The performance
comparison in this experiment is different from the previous
one. For each algorithm, we used a range of parameters,
then selected the best result for each algorithm. Finally, we
compared the best performance of each algorithm.

For the COIL20 data set, we choose several objects for each
test. We notice that the results depend on the objects we have
chosen. This is because the similarity of different objects varies
considerably. As an example, object 1 and 2 appear similar
and are difficult to distinguish, while other objects appear very
different, which means that it is easy to separate them. Here we
show some similar examples and corresponding performance
of different algorithms. For each test, the parameters D and
K are chosen from 6 to 10 and from 10 to 30 respectively.

For MNIST, we first randomly choose 150 data points from
different digits. We project the data points to RD, where D
ranges from 10 to 20, and the number of nearest neighbors K
ranges from 10 to 30. After testing on all of these parameters,
we choose the best result for each algorithm. We run the test
10 times, and the average result is shown in Table II.

COIL20 (1, 2, 3) COIL20 (1, 2, 3, 4) MNIST (1, 3)
SC 14.81% 22.57% 21.27%

Modified-SC 6.02% 18.40% 18.13%

Tab. II. Performance comparison. We show the results on the
COIL20 and MNIST data sets. Numbers in brackets indicate
the object digit number used in the experiment.

V. CONCLUSION

We have proposed an algorithm for using local information
to learn an adaptive Mahalanobis distance, and thus provide
high quality neighborhoods for various algorithms. We have
applied a modified neighborhood selection method to spectral
clustering, seeking improvement when data points belonging
to different clusters are very near or intersect with each other.
However, this type of neighborhood selection could be used
in any situation where higher quality edge connections are
required.

We incorporated our proposed modification into some re-
cent spectral clustering algorithms [14], [4] and compared the
performance of the modification versus the original algorithms.
In most cases we obtained improvements with real-world
benchmark image datasets.

During our experiments, we noticed that in some cases the
modification produces worse performance. We have analyzed

this phenomenon, noting that a change in parameters can often
improve the situation. In the future, we hope to find a better
way to select the parameters. We also hope to find a conver-
gence proof for the correctness of the proposed algorithm.
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