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ABSTRACT
Image matching in large scale environments is challenging
due to the large number of features used in typical represen-
tations. In this paper we investigate methods for reducing
the number of SIFT (Scale invariant feature transform) fea-
tures in an image based localization application. We find
that reductions of up to 59% in the number of features can
result in improved performance of a naive matching algo-
rithm for highly redundant data sets. However, those im-
provements do not carry over to visual bag of words, where
a more moderate feature reduction (up to 16%) is often
needed to maintain performance similar to the non-reduced
set. Our reduced features have performed better than other
robust feature descriptors namely HoG, GIST and ORB on
all data sets with naive matching. The main contribution of
this paper is the compact feature representation of a large
scale environment for robust 2D image matching.

1. INTRODUCTION
Image based matching is an ongoing and an active research
problem in the computer vision community. It has been used
for several different applications, with the most prominent
being navigation or localization [2, 4, 14, 19]. Scaling up
image databases to a very large scale (billions of images) is of
great importance for image matching techniques to become
maximally useful.

The standard procedure in image matching systems is to
convert all trained images into a set of scale, rotation and
view-point invariant features and then search for query im-
age features in the database to find the closest match. The
number of extracted features tends to scale linearly with
the number of database images with a relatively high linear
coefficient (often more than 1000 features per image).

In this paper we investigate the feasibility of reducing the
number of features so that it scales linearly per scene inde-
pendent of the number of images per scene. Our approach
makes use of the observation that many images of the same
scene share common features, and we propose four methods
for reducing the total number of features.

1.1 Related Work
The problem of scene recognition has been addressed by sev-
eral authors in the past. In [8], the idea of reduced fea-
tures is used for precise matching in an indoor environment
having 296 images. The SIFT features are extracted af-
ter partitioning the environment into locations, followed by

query feature probabilistic integration thus yielding an esti-
mate of the most likely location. They kept only 10% of the
originally detected features and have reported good location
recognition rates. Although they report very good results,
it is not clear how well the technique will scale to very large
databases as features are kept based on their discrimination
ability.

In [6], Visual BoW based on homographies between SIFT
features along with a voting scheme is used for scene match-
ing in an indoor environment. The focus of the work is
good localization in office buildings where scene matching
becomes challenging due to high similarity among the im-
ages. No attempt was made to reduce the number of features
required for matching.

Recent advances in structure-from-motion research [18] have
made it possible to construct 3D models for environments
on a large scale thus making it possible to perform 2D to 3D
matching for scene localization. This idea was used in [4]
which matched query features with 3D points (F2P). The
focus of the work was precise matching of city scale images
in large urban environments. They proposed a compact way
to represent the 3D features and used a vocabulary tree for
robust matching. In contrast, 3D points are matched with
query features (P2F) in [10]. The off-line 3D model is com-
pressed via a suitable selection of 3D points on the basis of
visibility. The main contribution of this work is the efficient
and precise matching of 3D to 2D points.

Priority based searching for efficient 2D to 3D matching is
proposed in [16]. They have used different ways to reduce
the 3D points and reported superior results over [10]. Di-
rect 2D-3D matching techniques (F2P) are slower compared
to direct 3D-2D techniques (P2F). The main contribution
of this work is the considerable efficiency gain with the di-
rect matching technique. All the mentioned works use SIFT
features [11] for construction of 3D models.

Our work is inspired by [16, 10] who reduced the 3D points
from the point cloud by averaging corresponding descrip-
tors related to the 3D points. We propose and evaluate a
2D track based approach for feature reduction. The paper
is structured as follows. Section 2 discusses our proposed
methodology for feature reduction. Section 3 describes the
dataset and performance metrics for our experiments. The
experimental results are presented in Section 4 and the ar-
ticle is concluded in Section 5.



2. TRACK BASED FEATURE REDUCTION
In several feature matching schemes (e.g. visual bag-of-
words), each image is represented as a set of features. The
central idea of our approach is to represent each location
(e.g. the kitchen) as a bag of features, where each location
would typically have several images associated with it. The
reduction in the number of features for a bag comes from
identifying similar features in multiple images of the same
location and storing that feature only once. Tracks represent
the similar features that are matched across multiple images
of the same location. The essential idea is very simple, but
there are multiple ways in which tracks can be generated
and Section 2.1 describes four variants. A 96 dimenionsal
version of SIFT features is used in the current work [7],
however any robust descriptor similar to SIFT can be used.

Figure 1: An example of a track showing one similar feature
traced across three images of an indoor scene.

2.1 Track Generation
A greedy method is used in our work to identify feature
matches for each pair of images in a scene to generate the
tracks [17, 9]. Two features are said to match if the Eu-
clidean distance in SIFT feature space is less than 170. The
distance threshold of 170 has been determined empirically
for SIFT features in [7].

The initial tracks only contain matched features from two
images. However these tracks are expanded to include matched
features from other images in two ways:

1. Strict: if a newly found feature matches all existing
features of a track, then add the new feature to the
existing track.

2. Less Strict: if a newly found feature matches with
the original feature, then add the new feature to the
existing track.

Non-matching features of a scene are stored in singleton
tracks.

While identifying feature correspondences between images,
we record the proportion of features for each image matched
with the remaining images of the same scene. The process is
done for every image of the scene and information is stored
in an image correlation matrix of size n× n, where n refers
to the total number of images for a particular scene. This
matrix indicates the similarity between scene images on the
basis of overlapping features and is used for image grouping
as discussed in Section 2.3.

2.2 Reduced Feature Set
Each track is represented as the average of all features con-
tained within it. A scene is represented as a set of tracks.
We have evaluated four different scene description variants:

ST All strict tracks are included.

LT All less strict tracks are included.

STF Strict tracks excluding singletons are included.

LTF Less strict tracks excluding singletons are included.

The argument for removing singleton tracks is that since
they have not matched between training images of the same
scene, it is less likely they will match a query image. Elim-
inating singleton tracks also produces a large reduction in
the number of features needed to represent a scene.

2.3 Scene Representation
Scenes can be represented by one of the four proposed re-
duced feature sets. Every scene can have a single reduced
feature set and this makes sense for image matching in sim-
ple scenes where all images are quite similar. However in
complex scenes, some images within a scene are totally dif-
ferent e.g. images of two corners of a room. Therefore mul-
tiple sets per scene may lead to better classification perfor-
mance. However the number of features remains the same
regardless of the number of feature sets per scene.

We use the image correlation matrix to generate multiple
feature sets per scene. Our splitting method starts with the
first available scene image and finds corresponding similar
images on the basis of a similarity threshold (S Threshold).
The resulting initial group may be expanded, as some im-
ages in the initial group may have other similar images. An
incremental approach is used and the group is considered
final once no further expansion is possible. This is a sim-
ple image clustering method and we report on the results of
image clustering in the trained data set in Section 4.4. We
have used different thresholds in our experiments to generate
different number of sets per scene for performance analysis.

3. DATASETS AND METRICS
We have used four data sets in the course of the experiments
for our work.

1. David Nister (DN): The data set contains 4 images
each of 2500 objects [12]. We have used the first 500
objects from the database with 1500 images for train-
ing and 500 for testing (the first image of each object
is the test image).

2. Pasadena Buildings (PB): The data set contains 6
photos of the facades of 103 houses in the Pasadena
area and 22 buildings from the Caltech campus taken
at different times with varying viewpoints [1]. The
first image of every building is used for testing while
the remaining images are used for training.

3. Owheo (OW): The dataset contains 1534 indoor im-
ages of an office building [5]. The trained images com-
prise of corridors, central halls, labs etc and a total



of 25 scenes are identified. A HTC Wildfire S smart
phone is used to capture 750 test images while navigat-
ing inside the building. The test and trained images
are taken from different cameras.

4. Commerce (CM): The data set contains 864 indoor
images of an office building [5]. The trained images
comprise of corridors, central halls, stairs etc and a
total of 14 scenes are identified from the data set. 234
test images are captured from the building via a HTC
Wildfire S smart phone.

A sample image from each data set is shown in Figure 2.
The following definitions are used to define the performance
metrics for our system:

MT Total number of query images correctly matched.

QT Total number of query images passed to the system.

CS Total number of images of a scene grouped on the basis
of similarity threshold (S Threshold).

QS Total number of images of a scene.

WS Total number of images of a scene wrongly grouped.

The following evaluation metrics are used:

TP The true positive rate refers to the correct matching
performance of the system.

TP =
MT

QT
. (1)

SC The scene clustering rate refers to the grouping (in %)
of similar images for all scenes. Where n refers to
the total number of scenes. This metric is used in
conjunction with ES .

SC =

n∑
i=1

CS

QS
(2)

ES The scene clustering error rate refers to the grouping of
non-similar images for all scenes.

ES =

n∑
i=1

WS

CS
(3)

Figure 2: Sample images from David, Pasadena, Owheo and
Commerce data sets.

4. RESULTS
4.1 Feature Reduction Statistics
Some algorithms produce fewer features than SIFT and are
considered to be more robust. Therefore the following fea-
ture descriptors are included for comparison:

1. Histogram of gradients (HoG): These descriptors
characterize the image via the distribution of local in-
tensity gradients [3]. In our experiments, one HoG
feature is generated per image and each feature is a
vector of 81 values. The trained image giving the min-
imum Euclidean distance against the query is selected
as the best match.

2. GIST: These descriptors use a set of perceptual di-
mensions such as naturalness, openness, ruggedness
etc to represent the dominant spatial structure of a
scene [13]. In our experiments, one GIST feature with
a vector of 512 values is generated per image. The
trained image giving the minimum Euclidean distance
against the query is selected as the best match.

3. ORB: These are efficient binary descriptors based on
orientations and offer robust matching [15]. In ORB,
the number of features is fixed per image. We have
used ORB with 200 features and hamming distance
with a threshold of 50 is used to identify the query and
trained matches. The trained image with a maximum
number of matches is selected as the best match.

The feature reduction statistics of our track based approach
and the other feature types on the four standard datasets are
shown in Table 1. The table shows that feature reduction
is significantly higher for the indoor environment due to a
higher similarity between the images. A higher similarity
threshold (S Threshold) leads to fewer groupings of images
per scene and results in a large number of feature sets for
every scene. On the other hand, zero similarity threshold
means maximum grouping between the scene images and
therefore results in a single feature set per scene. Table 1 also
shows that HoG, GIST and ORB generate fewer features
compared to normal SIFT.

As can be seen from Table 1 the sets which exclude singleton
tracks are much more agressive at reducing the number of
features per location. It should also be noted that in image
collections with relatively few images per location (Nister
and Pasadena sets), there is a very large reduction when sin-
gletons are excluded - predominantly because there is very
little overlap between the images.

4.2 Naive Matching
In this section, we have evaluated the performance of the
reduced feature sets via naive matching [7]. In naive match-
ing, the features are extracted from the trained data and are
stored. In image classification, all nearest neighbors of the
query image features are found in the image collection. If
the nearest neighbor is within a distance threshold in fea-
ture space, then a feature correspondence is recorded. The
matched image is selected as that image with the most fea-
ture correspondences from the collection.



Table 1: Feature reduction via track based approach on all data sets. Legend: S THRESH, Similarity threshold.

Datasets Scenes S THRESH Feature sets Feature Type Total Features Feature Reduction

Owheo

- - 1534 HoG 1534 -
- - 1534 GIST 1534 -
- - 1534 ORB 306800 -
- - 1534 Normal SIFT 399238 -

25

0% 25 ST (SIFT)
335141 16.05%8% 65 ST-8 (SIFT)

0% 25 LT (SIFT)
239970 40%20% 292 LT-20 (SIFT)

0% 25 STF (SIFT) 198334 50.32%
0% 25 LTF (SIFT) 88736 77.77%

David Nister

- - 1500 HoG 1500 -
- - 1500 GIST 1500 -
- - 1500 ORB 300000 -
- - 1500 Normal SIFT 482519 -

500

0% 500 ST (SIFT) 422797 12.38%
0% 500 LT (SIFT) 418354 13.30%
0% 500 STF (SIFT) 84652 82.45%
0% 500 LTF (SIFT) 80209 83.37%

Pasadena

- - 500 HoG 500 -
- - 500 GIST 500 -
- - 500 ORB 100000 -
- - 500 Normal SIFT 248535 -

125

0% 125 ST (SIFT) 238344 4.1%
0% 125 LT (SIFT) 236945 4.66%
0% 125 STF (SIFT) 17338 93.02%
0% 125 LTF (SIFT) 15992 93.56%

Commerce

- - 864 HoG 864 -
- - 864 GIST 864 -
- - 864 ORB 172800 -
- - 864 Normal SIFT 315556 -

864

0% 125 ST (SIFT) 260916 17.31%
0% 864 LT (SIFT) 178290 43.49%
0% 864 STF (SIFT) 164974 58.67%
0% 864 LTF (SIFT) 84528 73.21%

Figure 3: True positive rate (TP ) for normal unreduced and compact features on the all data sets.



In naive matching, either single or multiple feature sets per
scene can be used as we normally look for 1-1 correspon-
dence between the query and the scene features. We have
therefore used a single reduced feature set per scene and the
true positive rate (TP ) for all features on the four datasets
via naive matching is shown in Figure 3. The results show
that the reduced feature sets perform well compared to other
unreduced features. Normal SIFT features give a stable per-
formance over the other feature descriptors.

The results show that ST and LT feature sets have per-
formed well across all datasets and in some cases can produce
significantly smaller feature sets (maximum of 44% reduc-
tion). STF and LTF reduced sets under-perform on David
Nister and Pasadena data sets due to a significant reduction
of features i.e. more than 80%. STF and LTF cannot repre-
sent the scenes effectively and this leads to a poor matching
performance. In our indoor data sets, each location has a
large number of images; about 50 on average. This results in
a feature reduction of up to 59% for STF which is sufficient
to represent every indoor scene effectively. However LTF
again under-performs due to a higher feature reduction (i.e.
more than 70%). This highlights that at best, the number
of features can be effectively reduced by about half. It is
likely that our scheme is only useful for highly redundant
image collections.

4.3 Visual BoW
We have analyzed the performance of reduced features via
naive matching first as it has a smaller error rate compared
to visual BoW. As discussed before, a single scene set (one
bag per scene) often leads to reduced performance in image
matching. Therefore we have used multiple sets per scene
for our visual BoW experiments.

The final set of experiments is conducted using visual BoW
with normalized term frequency scheme (ntf) in the same
way as is done in [6]. An inverted index is used to retrieve
100 image clusters most similar to the query image. The
retrieved image clusters are then ranked by BoW and the
top ranked image cluster is considered the best match for
the query image. The following terms are used in these
results:-

1. LT, ST, STF and LTF refer to the cases when every
scene is represented by a single feature set.

2. LT-8, LT-10, ST-20 etc. refer to the cases when
a specific similarity threshold (8%, 10%, 20%) is used
in CS and the scene is represented by multiple feature
sets.

3. SIFT refers to the case when normal unreduced fea-
tures are used.

The results are displayed in Figures 4a to 4d and show that
reduced features do not perform consistently as well as nor-
mal SIFT features across all data sets. However, for highly
redundant collections such as Owheo and Commerce, the
number of features can be reduced by 50% or more with the
STF method with only a small reduction in performance in
the case of Owheo, and slightly improved performance in the

case of Commerce. For less redundant collections however,
only a modest reduction in the number of features appears
feasible.

4.4 Scene Clustering (SC)
As discussed earlier, higher grouping of scene images (SC)
may result in a higher grouping error rate (ES). The higher
error ES may lead to poor performance in classification
tasks. In this section, we have analyzed the performance
of our image clustering algorithm. An earlier version of our
indoor Owheo data set is used for this analysis as it con-
tains more scenes, although the number of images per scene
is lower (15 on average). The error rate ES is identified
from the generated image groups for every scene against dif-
ferent similarity thresholds as shown in Table 2. The results
show the image clustering algorithm is not the cause of the
classification errors previously reported.

Table 2: Scene clustering and error rates for Owheo and
David Nister data sets

SC ES SC ES

OW (ST-8) 76% 4% DN (ST-8) 76% 0%
OW (ST-20) 42 % 1.2% DN (ST-20) 47% 0%
OW (ST-40) 17 % 0% DN (ST-40) 15% 0%

5. CONCLUSION
In this paper, we have investigated the effectiveness of re-
ducing the number of features in image localisation tasks.
We had hoped that a significant reduction in the number
of features could be obtained with only a small reduction
in performance. This would have allowed the visual BoW
method to be applied on compute and memory limited de-
vices such as mobile phones. Unsurprisingly, we found that
the size of the reduction depended heavily on the collection
used. For image collections with many redundant images,
the number of features can be reduced by more than 50%
with a small improvement in performance for naive match-
ing. Curiously, an improvement in naive matching does not
necessarily carry over to improvements in visual BoW, in-
dicating that the ranking function used is not optimal for
reduced features and alternative ranking functions should
be investigated.
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