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Abstract. We model the well-known Sum-and-Product problem in a
modal logic, and verify its solution in a model checker. The modal logic is
public announcement logic. This logic contains operators for knowledge,
but also for the informational consequences of public announcements.
The logic is interpreted on multi-agent Kripke models.
The information in the riddle can be represented in the traditional way by
number pairs, so that Sum knows their sum and Product their product,
but also as an interpreted system, so that Sum and Product at least
know their local state. We show that the different representations are
isomorphic.
The riddle is then implemented and its solution verified in the epistemic
model checker DEMO. This can be done, we think, surprisingly elegantly.
It involves reformulations to facilitate the computation.

1 Introduction

The following problem, or riddle, was first stated, in the Dutch language, in [1]
and subsequently solved in [2]. A translation of the original formulation is:

A says to S and P : I have chosen two integers x, y such that 1 < x < y
and x+ y ≤ 100. In a moment, I will inform S only of s = x+ y, and P
only of p = xy. These announcements remain private. You are required
to determine the pair (x, y).
He acts as said. The following conversation now takes place:
1. P says: “I do not know it.”
2. S says: “I knew you didn’t.”
3. P says: “I now know it.”
4. S says: “I now also know it.”

Determine the pair (x, y).

This problem is considered a riddle, or puzzle, because the agents’ announce-
ments appear to be uninformative, as they are about ignorance and knowledge
and not about (numerical) facts, whereas actually they are very informative: the
agents learn facts from the other’s announcements. For example, the numbers
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cannot be 14 and 16: if they were, their sum would be 30. This is also the sum of
7 and 23. If those were the numbers their product would have been 161 which,
as these are prime numbers, only is the product of 7 and 23. So Product (P )
would have known the numbers, and therefore Sum (S) – if the sum had been
30 – would have considered it possible that Product knew the numbers. But
Sum said that he knew that Product didn’t know the numbers. So the numbers
cannot be 14 and 16. Sum and Product learn enough, by eliminations of which
we gave an example, to be able to determine the pair of numbers: the unique
solution of the problem is the pair (4, 13).

Versions of the problem – different announcements, different ranges for the
numbers – elicited much discussion since its inception in [1]. This includes [3–5]
and a website www.mathematic.uni-bielefeld.de/~sillke/PUZZLES/logic-
sum product that contains many other references. More geared towards an epis-

temic logical audience are [6–11]. In [6] the problem is elegantly modelled in
modal logic for processing in the (first-order) logic theorem prover FOL. This
includes an – almost off-hand – introduction of what corresponds to the essential
concept of ‘common knowledge’: what Sum and Product commonly know is cru-
cial to a clear understanding of the problem. In [7] the problem is modelled in a
dynamic epistemic logic that is the precursor of the public announcement logic
presented here (namely without common knowledge). In [8] common knowledge
involved in the Sum-and-Product problem is investigated in detail; [9] suggests
a solution in temporal epistemic logic. As far as we know, we are the first to use
an automated model checker to tackle the Sum-and-Product problem.

The knowledge that agents have about other agents’ mental states and,
in particular, about the effect of communications, is vital for solving impor-
tant problems in multi-agent systems, both for cooperative and for competitive
groups. The Sum-and-Product puzzle presents a complex illustrative case of the
strength of specifications in dynamic epistemic logic and of the possibilities of
automated model checking, and both can also be used in real multi-agent system
applications.

In Section 2 we introduce public announcement logic. In Section 3 we model
the Sum-and-Product problem in public announcement logic. In Section 4 we
introduce the epistemic model checker DEMO. In Section 5 we implement the
Sum-and-Product specification of Section 3 in DEMO and verify its epistemic
features.

2 Public Announcement Logic

Public announcement logic is a dynamic epistemic logic and is an extension of
standard multi-agent epistemic logic. Intuitive explanations of the epistemic part
of the semantics can be found in [12, 10, 11]. We give a concise overview of, in
that order, the language, the structures on which the language is interpreted,
and the semantics.
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Given are a set of agents N and a set of atoms Q. The language of public
announcement logic is inductively defined as

ϕ ::= q | ¬ϕ | (ϕ ∧ ψ) | Knϕ | CGϕ | [ϕ]ψ

where q ∈ Q, n ∈ N , and G ⊆ N are arbitrary. For Knϕ, read ‘agent n knows
formula ϕ’. For CGϕ, read ‘group of agents G commonly know formula ϕ’. For
[ϕ]ψ, read ‘after public announcement of ϕ, formula ψ (is true)’.

Next, we introduce the structures. An epistemic model M = 〈W,∼, V 〉 con-
sists of a domain W of (factual) states (or ‘worlds’), accessibility ∼ : N →
P(W ×W ), and a valuation V : Q→ P(W ). For w ∈W , (M,w) is an epistemic
state (also known as a pointed Kripke model). For ∼ (n) we write ∼n, and for
V (q) we write Vq. So, access ∼ can be seen as a set of equivalence relations ∼n,
and V as a set of valuations Vq. Given two states w,w′ in the domain, w ∼n w′
means that w is indistinguishable from w′ for agent n on the basis of its infor-
mation. For example, at the beginning of the riddle, pairs (14, 16) and (7, 23) are
indistinguishable for Sum but not for Product. Therefore, assuming a domain
of number pairs, we have that (14, 16) ∼S (7, 23) but that (14, 16) 6∼P (7, 23).
The group accessibility relation ∼G is the transitive and reflexive closure of the
union of all access for the individuals in G: ∼G ≡ (

⋃
n∈G ∼n)∗. This is access to

interpret common knowledge for group G.
Finally, we give the semantics. Assume an epistemic model M = 〈W,∼, V 〉.

M,w |= q iff w ∈ Vq
M,w |= ¬ϕ iff M,w 6|= ϕ
M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ
M,w |= Knϕ iff for all v ∈W : w ∼n v implies M,v |= ϕ
M,w |= CGϕ iff for all v ∈W : w ∼G v implies M,v |= ϕ
M,w |= [ϕ]ψ iff M,w |= ϕ implies M |ϕ,w |= ψ

Epistemic model M |ϕ = 〈W ′,∼′, V ′〉 is defined as

W ′ = {w′ ∈W | M,w′ |= ϕ}
∼′n = ∼n ∩ (W ′ ×W ′)
V ′q = Vq ∩W ′

The dynamic modal operator [ϕ] is interpreted as an epistemic state transformer.
Announcements are assumed to be truthful, and this is commonly known by all
agents. Therefore, the model M |ϕ is the model M restricted to all the states
where ϕ is true, including access between states. The dual of [ϕ] is 〈ϕ〉: M,w |=
〈ϕ〉ψ iff M,w |= ϕ and M |ϕ,w |= ψ.

Formula ϕ is valid on model M , notation M |= ϕ, if and only if for all states
w in the domain of M : M,w |= ϕ. Formula ϕ is valid, notation |= ϕ, if and only
if for all models M : M |= ϕ. Logical consequence Ψ |= ϕ is defined as “for all
(M,w), if M,w |= ψ for all ψ ∈ Ψ , then M,w |= ϕ.” For {ψ} |= ϕ, write ψ |= ϕ.

A proof system for this logic is presented, and shown to be complete, in
[13], with precursors – namely for public announcement logic without common
knowledge – in [7, 14]. For a concise completeness proof, see [11].
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3 Sum and Product in Public Announcement Logic

We give a specification of the Sum-and-Product problem in public announcement
logic. First we need to determine the set of atomic propositions and the set
of agents. In the formulation of the problem, x, y are two integers such that
1 < x < y and x+y ≤ 100. Define I ≡ {(x, y) ∈ N2 | 1 < x < y and x+y ≤ 100}.
Consider the variable x. If its value is 3, we can represent this information as the
(truth of) the atomic proposition ‘x = 3’. Slightly more formally we can think
of ‘x = 3’ as a propositional letter x3. Thus we create a (finite) set of atoms
{xi | (i, j) ∈ I} ∪ {yj | (i, j) ∈ I}.

Concerning the agents, the role of the announcer A is to guarantee that the
background knowledge for solving the problem is commonly known among Sum
and Product. The announcer need not be introduced as an agent in the logical
modelling of the system. That leaves {S, P}. Agents S and P will also be referred
to as Sum and Product, respectively.

The proposition ‘Sum knows that the numbers are 4 and 13’ is represented
as KS(x4∧y13). The proposition ‘Sum knows the (pair of) numbers’ is described
as KS(x, y) ≡

∨
(i,j)∈I KS(xi ∧ yj). Similarly, ‘Product knows the numbers’ is

represented by KP (x, y) ≡
∨

(i,j)∈I KP (xi ∧ yj). This is sufficient to formalize
the announcements made towards a solution of the problem:

1. P says: “I do not know it”: ¬KP (x, y)
2. S says: “I knew you didn’t”: KS¬KP (x, y)
3. P says: “I now know it”: KP (x, y)
4. S says: “I now also know it”: KS(x, y)

We can interpret these statements on an epistemic model SP(x,y) ≡ 〈I,∼, V 〉
consisting of a domain of all pairs (x, y) ∈ I (as above), with accessibility rela-
tions ∼S and ∼P such that for Sum: (x, y) ∼S (x′, y′) iff x + y = x′ + y′, and
for Product: (x, y) ∼P (x′, y′) iff xy = x′y′; and with valuation V such that
Vxi = {(x, y) ∈ I | x = i} and Vyj = {(x, y) ∈ I | y = j}.

We can describe the solution of the problem as the truth of the statement

SP(x,y), (4, 13) |= 〈KS¬KP (x, y)〉〈KP (x, y)〉〈KS(x, y)〉>

or, more properly expressing that (4, 13) is the only solution, as the model va-
lidity

SP(x,y) |= [KS¬KP (x, y)][KP (x, y)][KS(x, y)](x4 ∧ y13)

Note that announcement 1 by Product is superfluous in the analysis. The ‘knew’
in announcement 2, by Sum, refers to the truth of that announcement in the
initial epistemic state, not in the epistemic state resulting from announcement
1, by Product.

Sum and Product as an interpreted system A relevant observation
is that a pair of numbers (x, y) with x < y corresponds to exactly one sum-
product pair (s, p). In one direction this is trivial, for the other direction: assume
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(x+ y, xy) = (x′ + y′, x′y′). Let without loss of generality x be the smaller of x
and x′, so that x′ = x + v. Then from xy = x′y′ = (x + v)(y − v) follows that
yv − xv − v2 = 0, so that v = 0 or v = y − x. The second merely reverses the
role of x and y; in our terms, it cannot be satisfied, because x was required to be
strictly smaller than y. This observation paves the way for a different modelling
of the problem than the traditional one with ‘(smaller number, larger number)’
pairs (x, y).

We now let atomic propositions represent the sum and product of the different
numbers, instead of representing these numbers. For example, s7 represents that
the sum of the two numbers is 7. We allow a slight abuse of the language: if
i + j = k then we also write si+j for sk. Similarly, we write pij for pl when
ij = l. Thus we create a set of atoms {sx+y | (x, y) ∈ I} ∪ {pxy | (x, y) ∈ I}.

The obvious way to interpret such atoms is on an epistemic model SP(s,p) ≡
〈W ′,∼′, V ′〉 with a domain W ′ consisting of all pairs (s, p) such that s = x+ y
and p = xy (as in the original formulation of the problem) for all (x, y) ∈ I,
i.e., with 1 < x < y and x + y ≤ 100; with accessibility relations ∼′S and ∼′P
such that for Sum: (s, p) ∼′S (s′, p′) iff s = s′, and for Product: (s, p) ∼′P (s′, p′)
iff p = p′; and with valuation such that V ′sx+y

= {(s, p) ∈ W ′ | s = x + y} and
V ′pxy = {(s, p) ∈W ′ | p = xy}.

We have now modelled the problem as an interpreted system where agents at
least know their local state. Interpreted systems were introduced in theoretical
computer science as an abstract architecture for distributed systems [12]. Sum’s
local state is the sum of the two numbers, Product’s local state is the product of
the two numbers. A global state for the problem is a pair of local states, one for
Sum and one for Product. The set of global states is a subset of the full cartesian
product of local state values: the dependencies between local states enable Sum
and Product to communicate their local state to each other without explicitly
referring to it.

‘Sum knows the (pair of) numbers’ can be represented by ‘Sum knows the
global state of the system’, i.e., as KS(s, p) ≡

∨
(x,y)∈I KS(sx+y ∧ pxy), and,

similarly, ‘Product knows the numbers’ by KP (s, p) ≡
∨

(x,y)∈I KP (sx+y ∧ pxy).
The formalization of the announcements made towards a solution of the problem
is then similar to above:

SP(s,p) |= [KS¬KP (s, p)][KP (s, p)][KS(s, p)](s4+13 ∧ p4·13)

An advantage of this representation is that we can apply known results for
interpreted systems, such that agents at least know their local state, and the
availability of characteristic formulas describing interpreted systems. That agent
S knows its local state, means that S knows the sum of the two numbers, what-
ever they are: sx+y → KSsx+y. From this follows that in the models for our
problem a requirement KS(sx+y ∧ pxy), that is equivalent to KSsx+y ∧KSpxy,
is equivalent to KSpxy. Similarly, pxy → KP pxy, and therefore, in the models,
KP (sx+y ∧ pxy) is equivalent to KP sx+y.
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Concerning the characteristic formula, we can apply results from [15].3 The
characteristic formula δ(SP(s,p)) is defined as

δ(SP(s,p)) ≡
∨

(x,y)∈I(sx+y ∧ pxy) ∧∧
(x,y)∈I(KSsx+y ↔ ¬KS¬(sx+y ∧ pxy)) ∧∧
(x,y)∈I(KP pxy ↔ ¬KP¬(sx+y ∧ pxy))

The first conjunct of δ(SP(s,p)) sums up the valuations of the different states in
the domain. The second conjunct says (entails) that S knows its local state if and
only if it considers possible any global state with that local state. For example
KSs17 ↔ ¬KS¬(s17∧p52); another conjunct is KSs17 ↔ ¬KS¬(s17∧p60). From
this follows that KSs17 implies ¬KS¬p52∧¬KS¬p60∧ . . . : if the sum of the two
numbers is 17, S considers it possible that their product is 52, or 60, etc.

The traditional modelling of Sum and Product relates to the interpreted sys-
tem modelling in a precise technical sense. Expand the language to one for all
atoms for numbers x, y and for all atoms for sums and products s, p of those
numbers. Extend the models SP(x,y) and SP(s,p) to SP+

(x,y) and SP+
(s,p), re-

spectively, by adding valuations for all sum and product atoms in the former,
and for all smaller and larger number atoms in the latter. For example, to define
SP+

(x,y) we have to add valuations for all atoms s and p such that (x, y) ∈ V +
sx+y

iff s = x + y and (x, y) ∈ V +
pxy iff p = xy. We now have that SP+

(x,y) and
SP+

(s,p) are isomorphic. (From this then follows that the models are also bisim-
ilar [16] – a slightly weaker notion of ‘sameness of models’ that still guarantees
that the theories describing the models are logically equivalent.) Without going
into great detail, it suffices to define the isomorhphism as R : I → W ′ such
that R : (x, y) 7→ (x + y, xy), to observe that this relation is a bijection, that
(x, y) ∼S (x′, y′) iff R(x, y) ∼S R(x′, y′) iff (x + y, xy) ∼S (x′ + y′, x′y′), and
similarly for Product, and that the valuation of all facts remains the same for
any states (x, y) and (x + y, xy). The characteristic formula for the interpreted
system SP+

(s,p) in the expanded logical language is the previous one, δ(SP(s,p)),
in conjunction with ∧

(i,j)∈I

((xi ∧ yj)↔ (si+j ∧ pij))

This propositional equivalence relates a number pair to its unique corresponding
sum and product pair.

3 A characteristic formula of a pointed model (M,w) is a formula δ(M,w) such that
M,w |= ψ iff δ(M,w) |= ψ, in other words, any ψ true in (M,w) is entailed by
δ(M,w). A similar notion equates model validity with entailment by way of M |= ψ
iff δ(M) |= ψ. These descriptions exist for finite epistemic models. We also have that
δ(M,w)↔ (δ(w) ∧ CNδ(M)), where δ(w) is the description of state w, for example
summing up its valuation, or some other formula only true in w.
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4 The Epistemic Model Checker DEMO

Recently, epistemic model checkers have been developed to verify properties of
interpreted systems, knowledge-based protocols, and various other multi-agent
systems. The model checkers MCK [17] and MCMAS [18] use the interpreted
system architecture; MCK does this in a setting of linear and branching time
temporal logic. The exploration of the search space in both MCK and MCMAS
is based on ordered binary decision diagrams.

A different model checker, not based on a temporal epistemic architecture,
is DEMO. It is developed by Jan van Eijck [19]. DEMO is short for Dynamic
Epistemic MOdelling. It allows modelling epistemic updates, graphical display of
Kripke structures involved, and formula evaluation in epistemic states. DEMO
is written in the functional programming language Haskell.

The model checker DEMO implements the dynamic epistemic logic of [20]. In
this ‘action model logic’ the global state of a multi-agent system is represented
by an epistemic model as in Section 2. But an epistemic action can be more
general than a public announcement, and is represented by an action model.
Just like an epistemic model, an action model is also based on a multi-agent
Kripke frame, but instead of carrying a valuation it has a precondition function
that assigns a precondition to each point in the action model. A point in the
action model domain stands for an atomic action. The epistemic state change
in the system is via an operation called the update product. This is a restricted
modal product. In this submission we restrict our attention to action models
for public announcements. Such action models have a singleton domain, and the
precondition of that point is the announced formula. We refrain from details
and proceed with (a relevant part of – recursive clauses describing the effect of
updates have been omitted) the recursive definition of formulas in DEMO.

Form = Top | Prop Prop | Neg Form | Conj [Form] | Disj [Form]
| K Agent Form | CK [Agent] Form

Formula Top stands for >, Prop Prop for atomic propositional letters (the first
occurrence of Prop means that the datatype is ‘propositional atom’, whereas the
second occurrence of Prop is the placeholder for an actual proposition letter,
such as P 3), Neg for negation, Conj [Form] stands for the conjunction of a list
of formulas of type Form, similarly for Disj, K Agent stands for the individual
knowledge operator for agent Agent, and CK [Agent] for the common knowledge
operator for the group of agents listed in [Agent].

The pointed and singleton action model for a public announcement is created
by a function public with a precondition (the announced formula) as argument.
The update operation is specified as

upd :: EpistM -> PoAM -> EpistM

Here, EpistM is an epistemic state and PoAM is a pointed action model, and
the update generates a new epistemic state. If the input epistemic state EpistM
corresponds to some (M,w), then in case of the truthful announcement of ϕ,
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module SNP

where

import DEMO

pairs = [(x,y)|x<-[2..100], y<-[2..100], x<y, x+y<=100]

numpairs = llength(pairs)

llength [] =0

llength (x:xs) = 1+ llength xs

ipairs = zip [0..numpairs-1] pairs

msnp :: EpistM

msnp = (Pmod [0..numpairs-1] val acc [0..numpairs-1])

where

val = [(w,[P x, Q y]) | (w,(x,y))<- ipairs]

acc = [(a,w,v)| (w,(x1,y1))<-ipairs, (v,(x2,y2))<-ipairs, x1+y1==x2+y2 ]++

[(b,w,v)| (w,(x1,y1))<-ipairs, (v,(x2,y2))<-ipairs, x1*y1==x2*y2 ]

fmrs1e = K a (Conj [Disj[Neg (Conj [Prop (P x),Prop (Q y)]),

Neg (K b (Conj [Prop (P x),Prop (Q y)]))]| (x,y)<-pairs])

amrs1e = public (fmrs1e)

fmrp2e = Conj [(Disj[Neg (Conj [Prop (P x),Prop (Q y)]),

K b (Conj [Prop (P x),Prop (Q y)]) ] )|(x,y)<-pairs]

amrp2e = public (fmrp2e)

fmrs3e = Conj [(Disj[Neg (Conj [Prop (P x),Prop (Q y)]),

K a (Conj [Prop (P x),Prop (Q y)]) ] )|(x,y)<-pairs]

amrs3e = public (fmrs3e)

solution = showM (upds msnp [amrs1e, amrp2e, amrs3e])

Fig. 1. The DEMO program SNP.hs. Comment lines have been removed.

the resulting EpistM has the form (M |ϕ,w). We can also update with a list of
pointed action models:

upds :: EpistM -> [PoAM] -> EpistM

An example is the sequence of three announcements in the Sum-and-Product
problem.

5 Sum and Product in DEMO

We implement the Sum and Product riddle in DEMO and show how the imple-
mentation finds the unique solution (4, 13). Figure 1 contains the implementa-
tion.

A list is a standard data structure in Haskell, unlike a set. The set I ≡
{(x, y) ∈ N2 | 1 < x < y and x+ y ≤ 100} is realized in DEMO as the list
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pairs = [(x,y)| x<-[2..100], y<-[2..100], x<y, x+y<=100]

Thus, { and } are replaced by [ and ], ∈ is replaced by <-, and instead of I we
name it pairs. A pair such as (4, 18) is not a proper name for a domain element.
In DEMO, natural numbers are such proper names. Therefore, we associate each
element in pairs with a natural number and make a new list.

ipairs = zip [0..numpairs-1] pairs

Here, numpairs is the number of elements in pairs, and the function zip pairs
the i-th element in [0..numpairs-1] with the i-th element in pairs, and makes
that the i-th element of ipairs. For example, the first element in ipairs is
(0,(2,3)).

The initial model of the Sum-and-Product riddle is represented as

msnp :: EpistM

msnp = (Pmod [0..numpairs-1] val acc [0..numpairs-1])

where

val = [(w,[P x, Q y]) | (w,(x,y))<- ipairs]

acc = [(a,w,v)| (w,(x1,y1))<-ipairs, (v,(x2,y2))<-ipairs, x1+y1==x2+y2 ]++

[(b,w,v)| (w,(x1,y1))<-ipairs, (v,(x2,y2))<-ipairs, x1*y1==x2*y2 ]

where msnp is a multi-pointed epistemic model, that consists of a domain
[0..numpairs-1], a valuation function val, an accessibility relation function
acc, and [0..numpairs-1] points. As the points of the model are the entire do-
main, we may think of this initial epistemic state as the (not-pointed) epistemic
model underlying it.

The valuation function val maps each state in the domain to the subset of
atoms that are true in that state. This is different from Section 2, where the
valuation V was defined as a function mapping each atom to the set of states
where it is true. The correspondence q ∈ val(w) iff w ∈ V (q) is elementary. An
element (w,[P x, Q y]) in val means that in state w, atoms P x and Q y are
true. For example, given that (0,(2,3)) is in ipairs, P 2 and Q 3 are true in
state 0, where P 2 stands for ‘the smaller number is 2’ and Q 3 stands for ‘the
larger number is 3’. These same facts were described in the previous section by
x2 and y3, respectively, as that gave the closest match with the original problem
formulation. In DEMO, names of atoms must start with capital P,Q,R, but the
correspondence between names will be obvious.

The function acc specifies the accessibility relations. Agent a represents Sum
and agent b represents Product. For (w,(x1,y1)) and (v,(x2,y2)) in ipairs,
if their sum is the same: x1+y1==x2+y2, then they cannot be distinguished by
Sum: (a,w,v) in acc; and if their product is the same: x1*y1==x2*y2, then
they cannot be distinguished by Product: (b,w,v) in acc. Function ++ is an
operation merging two lists.

Sum and Product’s announcements are modelled as singleton action models,
generated by the announced formula (precondition) ϕ and the operation public.
Consider KS¬

∨
(i,j)∈I KP (xi ∧ yj), expressing that Sum says: “I knew you

didn’t.” This is equivalent to KS

∧
(i,j)∈I ¬KP (xi∧yj). A conjunct ¬KP (xi∧yj)
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in that expression, for ‘Product does not know that the pair is (i, j)’, is equiva-
lent to (xi∧yj)→ ¬KP (xi∧yj).4 The latter is computationally cheaper to check
in the model, than the former: in all states but (i, j) of the model, the latter
requires a check on two booleans only, whereas the former requires a check in
each of those states of Product’s ignorance, that relates to his equivalence class
for that state, and that typically consists of several states.

This explains that the check on
∧

(i,j)∈I ¬KP (xi ∧ yj) can be replaced by
one on

∧
(i,j)∈I((xi ∧ yj) → ¬KP (xi ∧ yj)). Using a model validity, the check

on
∨

(i,j)∈I KP (xi ∧ yj) (Product knows the numbers) can also be replaced,
namely by a check

∧
(i,j)∈I((xi ∧ yj) → KP (xi ∧ yj)).5 Using these observa-

tions, and writing an implication ϕ → ψ as ¬ϕ ∨ ψ, the three problem an-
nouncements 2, 3, and 4 listed on page 4 are checked in DEMO in by the
formulas fmrs1e, fmrp2e, and fmrs3e, respectively, as listed in Figure 1. The
corresponding singleton action models are obtained by applying the function
public, namely as amrs1e = public (fmrs1e), amrp2e = public (fmrp2e),
and amrs3e = public (fmrs3e). This is also shown in the figure.

Finally, we show a relevant part of DEMO interaction with this implemen-
tation. The complete (three-page) output of this interaction can be found on
www.cs.otago.ac.nz/staffpriv/hans/sumpro/.

The riddle is solved by updating the initial model msnp with the action models
corresponding to the three successive announcements:

*SNP> showM (upds msnp [amrs1e, amrp2e, amrs3e])
==> [0]
[0]
(0,[p4,q13])
(a,[[0]])
(b,[[0]])

This function showM displays a pointed epistemic model as:

==> [<points>]
[<domain>]
[<valuation>]
[<accessibility relations represented as equivalence classes>]

The list [p4,q13] represents the facts P 4 and Q 13, i.e., the solution pair
(4, 13). Sum and Product have full knowledge (their access is the indentity) on
this singleton domain consisting of state 0. That this state is named 0 is not a
coincidence: after each update, states are renumbered starting from 0.

For another example, (upds msnp [amrs1e,amrp2e]) represents the model
that results from Product’s announcement “Now I know it.” Part of the showM
results for that model are
4 We use the S5-validity ¬Kϕ↔ (ϕ→ ¬Kϕ), that can be shown as follows: ¬Kϕ iff
¬>∨¬Kϕ iff (ϕ∨¬ϕ)→ ¬Kϕ iff (ϕ→ ¬Kϕ)∧(¬ϕ→ ¬Kϕ) iff (ϕ→ ¬Kϕ)∧(Kϕ→
ϕ) iff (in S5!) (ϕ→ ¬Kϕ).

5 We now use that ϕ∨ψ – where ∨ is exclusive disjunction – entails that ( Kϕ ∨Kψ
iff (ϕ→ Kϕ) ∧ (ψ → Kψ) ).
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*SNP> showM (upds msnp [amrs1e,amrp2e])

==> [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,

(...)

(0,[p2,q9])(1,[p2,q25])(2,[p2,q27])(3,[p3,q8])(4,[p3,q32])

(5,[p3,q38])(6,[p4,q7])(7,[p4,q13])(8,[p4,q19])(9,[p4,q23])

(...)

(a,[[0,3,6],[1,9,14,23,27,32,37,44,50],[2,10,17,24,28,38,45,46,51],[4

,11,18,29,33,39,47,55,60,65],[5,12,25,35,41,48,52,56,57,62,67,70,73],

[7],[8,22,36],[13,20,26,42,53,58,63,68,71,74,76,79,81],[15,19,30,34,4

0,61,66],[16,21,31,43,49,54,59,64,69,72,75,77,78,80,82,83,84,85]])

(b,[[0],[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],

(...)

After two announcements 86 pairs (x, y) remain possible. All remaining states
are renumbered, from 0 to 85, of which part is shown. Product’s (b) access
consists of singleton sets only, of which part is shown. That should be obvious,
as he just announced that he knew the number pair. Sum’s (b) equivalence
class [0,3,6] is that for sum 11: note that (0,[p2,q9]), (3,[p3,q8]), and
(6,[p4,q7]) occur in the shown part of the valuation. Sum’s access has one
singleton equivalence class, namely [7]. That corresponds to the state for pair
(4, 13): see (7,[p4,q13]) in the valuation. Therefore, Sum can now truthfully
announce to know the pair of numbers, after which the singleton final epistemic
state (that was already displayed) results.

6 Conclusions

We have modelled the Sum-and-Product problem in public announcement logic
and verified its properties in the epistemic model checker DEMO. The problem
can be represented in the traditional way by number pairs, so that Sum knows
their sum and Product their product, but also as an interpreted system with
(sum,product) pairs. Subject to the union of languages, the representations are
bisimilar, and even isomorphic. We also described the announcements made to-
wards a solution of the problem as unsuccessful updates – formulas that become
false because they are announced.

A final word on model checking such problems: originally, an analysis in-
volving elementary number theory and combinatorics was necessary to solve the
problem. Indeed, that was the whole fun of the problem. Solving it in a model
checker instead, wherein one can, in a way, simply state the problem in its orig-
inal epistemic formulation, hides all that combinatorial structure and makes it
appear almost trivial. Far from trying to show that the problem is therefore
actually trivial or uninteresting, this rather shows how powerful model check-
ing tools may be, when knowledge specifications are clear and simple but their
structural ramifications complex.
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