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1 Introduction16

In this paper, we compare three different measures for computing Mahalanobis-17

type distances between random variables consisting of several categorical dimen-18

sions or mixed categorical and numeric dimensions - regularsimplex, tensor prod-19

uct space, and symbolic covariance. In each case, distancesare computed via an20

interpretation of the categorical data in some real vector space. For carrying out21

practical computations, the dimension of this space is important, and the lower the22

dimension, the easier the computations will be. The regularsimplex method is well23

known and involves replacing a singlek level categorical variable with a(k − 1)-24

dimensional numerical variable in such a way that each levelof the categorical25

variable is mapped to a vertex of a regular simplex, and is thereby at the same26

distance from every other level of that variable. For a categorical variable with 327

levels, this results in an equilateral triangle inR2. The dimension of the embed-28

ding space is thus the sum of the number of levels of all the variables, minus the29

number of variables. The tensor product space method is commonly used in the lo-30

cation model for dealing with mixed variables (Kurzanowski, 1993) although here31

we develop a new derivation which gives rise to a Mahalanobis-type distance in the32

product space. The dimension of the embedding space is the product of the number33

of levels of all the variables. The final method seems to be completely new and34

calculates an analogue of the covariance between any two categorical variables,35

which is used to create a Mahalanobis-type distance. In thiscase, strictly speak-36

ing, there is no embedding space, but all computations take place in a dimension37

equal to the number of variables. For comparison purposes, we also compare the re-38

sults in a classification experiment with the HeterogeneousValue Difference Metric39

(HVDM) (Wilson and Martinez, 1997) and with Naive Bayes.40
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Why do we need to develop Mahalanobis-type distances for categorical and mixed41

variables? The chief reason is that most research on calculating distances of this sort42

is either heuristic (Wilson and Martinez, 1997; Gower, 1971; Cost and Salzberg,43

1993; Huang, 1998), assumes the variables are independent (Kurzanowski, 1993;44

Bar-Hen and Daudin, 1995; Cuadras et al., 1997; Goodall, 1966; Li and Biswas,45

2002), or makes use of the special case of ordinal data (Podani, 1999) by assuming46

an underlying distribution and a discretisation function.The Value Difference Met-47

ric (VDM) is one of the most popular categorical distances and was introduced by48

Stanfill and Waltz (1986) and is particular to classificationproblems. The metric is49

based on sample probabilities:50

vdm(xa, ya) =

(

∑

c

P (c|xa)
2

)0.5
∑

c

|P (c|xa) − P (c|ya)|2 (1)

wherevdm is the value difference metric on attributea, P (c|xa) is the probability51

of classc given that attributea has the valuexa. The first term is a weighting term52

given by Stanfill and Waltz (1986) to appropriately weight the importance of each53

attribute. The weighting term does not appear in the description given by Wilson54

and Martinez (1997). The total VDM is then the sum ofvdm over all attributesa.55

The most influential study on mixed distances is that of Wilson and Martinez56

(1997). They introduce several new metrics based on the VDM:Heterogeneous57

Value Difference Metric (HVDM), Interpolated VDM (IVDM) and Windowed VDM58

(WDVM). The HVDM is very similar to the similarity metric of Gower (1971) and59

is used for comparison with other metrics in our study. The IVDM is an extension of60

the VDM that takes into account continuous attributes by discretising them to cal-61

culate sample probabilities to use in Equation 1. However, the actual probabilities62

used are interpolated between neighbouring bins, depending on where in the bin63
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the continuous value actually falls. The WVDM is a more sophisticated version of64

IVDM where the probabilities are calculated at each point which occurs in the train-65

ing set using a sliding window similar to a Parzen window Parzen (1962). The sim-66

plified VDM (without the initial weighting term) and relatedmeasures have been67

used in several influential works including Cost and Salzberg (1993) and Domingos68

(1996).69

The limitations of these techniques is that they are constrained to be used in a classi-70

fication context and almost all assume that attributes are independent of each other.71

Thus, two highly correlated attributes will contribute twice as much to the evidence72

as they should. We attempt to avoid these problems in the techniques presented73

here. Also, we are not just interested in distances between populations as in Kur-74

czynski (1970), but also distances between individuals anddistances between an75

individual and a population. The former is useful for clustering algorithms, and the76

latter for classification algorithms. The applications forsuch distances are predomi-77

nantly in classification, clustering and dimensionality reduction. We give examples78

of classification and dimensionality reduction in the results.79

2 Methods80

2.1 Regular Simplex Method81

The regular simplex method is the simplest of all the methods. The basic idea is82

to assume that any two distinct levels of a categorical variable are separated by the83

same distance. To achieve this, each level of ann-level variable is associated with84

a distinct vertex of a regular simplex in(n − 1) dimensional space. For simplicity,85

the distance between levels is assumed to be 1. For example, given a categori-86
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cal variableX ∈ {A, B, C}, A could be mapped to(0, 0), B to (1, 0) andC to87

(1/2,
√

3/2). The choice of simplex is arbitrary, and has no effect on the subse-88

quent analysis. One possible choice is to continue the development of the sequence89

above. Take the existing set of vertices, and append their centroid. By the symme-90

try of the regular simplex, this point is at the same distancefrom all the preceding91

vertices. Now add one more coordinate, taking the value0 on the original set of92

points, and set its value on the new point to be such that the distance from any, and93

hence all, other elements of the set is1.94

Each level of a variable is then replaced by the corresponding vertex in the sim-

plex. For a problem withc categorical dimensions, where thekth variable hasnk

levels, an observation of thec-dimensional variables is replaced with a variable

with
∑c

k=1(nk − 1) numeric dimensions. A distance function can then be defined

based on the covariance matrix of the replaced data points:

drs(x1, x2) = (x′
1 − x′

2)
T Σ−1

rs (x′
1 − x′

2) (2)

wherex′
1 is the regular simplex representation of the input vectorx1. Let SL =95

∑c
k=1 nk, the sum of the levels.Σrs is of size((SL − c) × (SL − c)) and can be96

naively 1 calculated in timeO(NsS
2
L) whereNs is the number of samples in the97

data set.Σ−1
rs can be calculated in timeO(S3

L) 2 . Therefore the space complexity98

of this method isO(S2
L) and the time complexity isO(NsS

2
L + S3

L).99

1 by naive, we mean without using optimizations such as sparsematrices and sparse matrix

multiplication
2 actually in timeO(S2.376

L ) using a better bound for matrix multiplication
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2.2 Tensor Product Space Method100

The tensor product space method is most similar in spirit to the original Maha-101

lanobis distance derivation. The underlying idea of the Mahalanobis distance is102

that we wish to calculate the Euclidean distance between twon-dimensional points,103

p1, p2 where each dimension is independent of the others. Unfortunately,p1 andp2104

cannot be measured directly, but observationsq1 andq2, which are linear transfor-105

mations of the original values, can be. That is, for some matrix A:106

q1 = Ap1

We want to calculate the distance betweenp1 andp2 so:107

d(p1, p2) = (p1 − p2)
T (p1 − p2) (3)

= (A−1q1 − A−1q2)
T (A−1q1 − A−1q2) (4)

= (q1 − q2)
T A−1T

A−1(q1 − q2) (5)

The matrixA−1T
A−1 is just the inverse covariance matrix of the population ofp’s,108

and we’re left with the classic Mahalanobis distance.109

Now consider a random variableX which is defined over a space ofc categor-110

ical variables where thekth variable hasnk levels. For two categorical variables111

to be independent, the product of the marginal distributions must equal the actual112

distribution. That is:113
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P (Xi = a, Xj = b) = P (Xi = a)P (Xj = b).

The joint distributionP (Xi, Xj) and the subsequent marginal distributionsP (Xi)114

can be estimated from the sample population. The joint distribution may not be115

independent, and to mimic the construction above we need to find a transforma-116

tion from the dependent joint distribution to an independent joint distribution. The117

independent joint is estimated simply as the product of the marginals.118

We are left with the problem of estimating a linear transformation between tensor119

product spaces. The initial probability tensor space is a dependent observable space,120

TD:121

TD ∼= X1 ⊗ X2 ⊗ X3 . . .

whereTD
i = P (X1 = a, X2 = b, X3 = c, . . . ). For example, with a two-dimensional122

random variable where the first dimension has 2 levels and thesecond has 3, we123

would get a tensor space of 6 dimensions. We want a linear transformation from124

TD to T I whereT I is the independent tensor spaceT I
i = P (X1 = a)P (X2 =125

b)P (X3 = c) . . . . The problem is ill-posed so there are many possible solutions.126

We have chosen the solution which produces a transformationas close as possible127

to the identity. Since both tensor product spaces are probability spaces, the trans-128

formation matrix,M , must be a column stochastic matrix, which can be defined129

as:130
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Mii =























1 if si < ti,

ti
si

otherwise

Mij =























ti−Miisi

sj
if 1 − Mjj ≥ ti−xiisi

sj
,

1 −∑j
k=1 Mkj otherwise

Wheresi andti are the joint probabilities of the dependent and independent tensor131

product spaces respectively.132

The matrix,M , is a transformation from a dependent space to an independent one,

and as such is analogous toA−1 in equation 5. By analogy, we can call the ma-

trix Σ−1
tp = MT M the inverse covariance matrix of the categorical variables. A

Mahalanobis-like distance function can then be defined:

dtp(x1, x2) = (x′
1 − x′

2)
T Σ−1

tp (x′
1 − x′

2), (6)

wherex′
1 is the tensor product space representation ofx1. Let PL =

∏c
k=1 nk,133

the product of the levels. MatrixM is of sizePL × PL , therefore the naive size134

complexity of this method isO(P 2
L) and the naive time complexity isO(P 3

L).135

2.3 Symbolic Covariance136

Consider the formula for covariance of two field-valued (generally real-valued)137

variablesX andY :138

σ2(X, Y ) = E((X − X̄)(Y − Ȳ )),
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where bothE and an overbar indicate expectation. Now consider two categorical139

random variables A and B with valuesA1 throughAn andB1 throughBm respec-140

tively. For1 ≤ i ≤ n and1 ≤ s ≤ m let:141

pis
defn
= P(A = Ai, B = Bs)

ai
defn
= P(A = Ai)

bs
defn
= P(B = Bs).

ConsiderA1 throughAn andB1 throughBm as symbolic variables and define:142

Ā
defn
= a1A1 + a2A2 + · · ·+ anAn

B̄
defn
= b1B1 + b2B2 + · · · + bmBm.

WhereĀ andB̄ are also symbolic expressions. Then we have:143

Aj − Ā =
n
∑

i=1

ai(Aj − Ai)

As Aj andAi are categories and not values, the termAj − Ai doesn’t really make144

sense, so we replace it with a more generic term,δ which we call the distinction145

between two categorical values:146

Aj − Ā
defn
=

n
∑

i=1

aiδ(Aj , Ai). (7)

We defineδ to have the following properties:147
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δ(Ai, Ai)
defn
= 0 (8)

δ(Ai, Aj)
defn
= −δ(Aj , Ai) (9)

The definition in 9 is required so the expressionX − X̄ can be positive or neg-148

ative as is the case with numeric attributes. Without this definition, the symbolic149

covariance could never be 0 - even if the variables are uncorrelated. Also, with-150

out this definition, the symbolic covariance would not be invariant to a reordering151

of categories (see Property 2 below). We note that a side effect of this definition152

is that the symbolic covariance could be either positive or negative as in the case153

of numeric covariance. However, the positivity or negativity is somewhat arbitrary154

due to the ordering of the categories - if negative covariances are not needed, the155

absolute value of the symbolic covariance can be taken.156

The underlying motivation is that we view the expressionX − X̄ as representing157

the “difference” in the sense of “being different from” an observation of the random158

variableX and its mean, rather than the same “difference” in the sense of “a value159

computed by the rules of arithmetic”. While, for real valuedvariables, it makes160

perfect sense to collapse these two meanings, this collapseis not at all self-evident,161

nor necessarily desirable for categorical ones.162

We now propose the symbolic covariance:163
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σ2
s(A, B)

defn
= E((A − Ā)(B − B̄)) (10)

=
n
∑

i=1

m
∑

s=1

pis

n
∑

j=1

m
∑

t=1

ajbtδ(Ai, Aj)δ(Bs, Bt) (11)

=
∑

i<j

∑

s<t

(pisajbt − pjsaibt − pitajbs + pjtaibs)δ(Ai, Aj)δ(Bs, Bt).

(12)

This remains a symbolic expression. We can realise an actualvalue forσ2
s by choos-164

ing appropriate values ofδ(Ai, Aj). In the absence of other information, choosing165

δ(Ai, Aj) = 1 for i < j and−1 for i > j is a reasonable assumption. For ordinal166

variables, we might choose a distinction based on the ordering.167

Okada (2000) apparently (he did not provide details in his paper) almost discovered168

σ2
s but it seems he failed to realise the necessity of settingδ(Ai, Aj) = −δ(Aj , Ai).169

Aside from the pragmatic possibility of using this symboliccovariance as an ingre-170

dient in a Mahalanobis-type distance, it has a number of attractive properties.171

Property 1 (Independence) If A and B are independent, thenpij = aibj and it172

follows immediately thatσ2
s(A, B) = 0.173

Property 2 (Renaming) The quantityσ2
s(A, B) is invariant under a renaming of174

the categories.175

This claim is easily verified by direct computation in the case whereAi andAi+1176

are exchanged. The sign changes inδ expressions are exactly balanced by the re-177

ordering of the terms in their multipliers.178

Property 3 (σ2
s(A, A)) If A is a categorical variable withn levels, then the quan-179

tity σ2
s (A, A) is maximised when each level is equally likely.180
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We also note that the symbolic covariance has some similarities to theχ2 statistic.181

While χ2 may be used as a proxy for covariance, its purpose is very different. It182

essentially asks what is the probability that two (or more) variables are independent,183

and this is not the same as asking to what extent two variablesare independent.184

The symbolic covariance is technically only defined betweentwo categorical vari-185

ables, however since we can use equation 7 to transform a categorical variable to186

a (mean-shifted) real number, we can use the standard definition of covariance for187

calculating the covariance between a categorical variableand a numeric one. We188

show the results of a mean-shift in the examples below. We note what looks like a189

paradox in calculatingAi − Ā, in particular:190

(Ai − Ā) − (Aj − Ā) 6= δ(Ai, Aj)

In effect, the functionAi − Ā as defined in equation 7 is more like a projection191

operator than a one-dimensional difference operator.192

A Mahalanobis-like distance function can be defined using the symbolic covariance

matrix:

dsc(x1, x2) = (∆(x1 − x2))
T Σ−1

sc ∆(x1 − x2) (13)

where∆(x1 − x2) implies applyingδ to each dimension in the vector.Σsc is of193

sizec × c and since calculating the covariance between two variablestakesninj ,194

calculating the covariance matrix takesO(S2
L). Therefore the size complexity of195

the method isO(c2) and the time complexity isO(S2
L + c3).196
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2.3.1 Some Simple Examples197

Let us consider some simple examples to show the utility of the method. Table 1198

shows four samples from a population each with four binary attributes or variables.199

Looking at the variables we would expect thatA andB are perfectly correlated (ei-200

ther positively or negatively),A andC are uncorrelated, andA andD are partially201

correlated.202

Sample A Ai − Ā B Bi − B̄ C Ci − C̄ D Di − D̄ σ2
s

1 A1 0.5 B2 -0.5 C1 0.5 D1 0.25 σs(A,A) = 1.0

2 A2 -0.5 B1 0.5 C2 -0.5 D2 -0.75 σs(A,B) = −1.0

3 A1 0.5 B2 -0.5 C2 -0.5 D1 0.25 σs(A,C) = 0

4 A2 -0.5 B1 0.5 C1 0.5 D1 0.25 σs(A,D) = 0.5

Table 1

Some example categorical variables

To calculate the symbolic covariance for variableA, we can first shift to the mean:203
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A1 − Ā = A1 − (a1A1 + a2A2)

= A1 − (0.5A1 + 0.5A2)

= 0.5A1 − 0.5A1 + 0.5A1 − 0.5A2

= 0.5δ(A1, A1) + 0.5δ(A1, A2)

= 0.5

A2 − Ā = A2 − (0.5A1 + 0.5A2)

= 0.5A2 − 0.5A1 + 0.5A2 − 0.5A2)

= 0.5δ(A2, A1) + 0.5δ(A2, A2)

= −0.5

The results of similar calculations are shown in every othercolumn of Table 1.204

Calculating the symbolic covariance is then straightforward:205

σs(A, B) = E((A − Ā)(B − B̄))

= (0.5)(−0.5) + (−0.5)(0.5) + (0.5)(−0.5) + (−0.5)(0.5)

= −1.0

The results of similar calculations are shown in the last column of Table 1. Note that206

the results are exactly what we would intuitively expect. Any classification method207

that uses the notion of a distance function can then be used.208
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2.4 Heterogeneous Value Distance Metric (HVDM)209

Although only applicable to classification problems the HVDM (Wilson and Mar-210

tinez, 1997) has been influential in the literature and is included here as a compari-211

son with the other methods. The HVDM is given by:212

HV DM(x, y) =

√

√

√

√

m
∑

a=1

d2(xa, ya)

wherem is the number of attributes, and:213

d(xa, ya) =







































1 if xa or ya is unknown,

normalized vdm(xa, ya) if a is categorical,

normalizeddiff(xa, ya) if a is numeric.

As given by Wilson and Martinez (1997),normalized vdm is:214

normalized vdm(xa, ya) =

√

√

√

√

C
∑

c=1

|P (c|xa) − P (c|ya)|2

andnormalized diff is:215

normalized diff(xa, ya) =
|xa − ya|

4σa

,

whereσa is the standard deviation of numeric attributea.216
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3 Results217

We compare the regular simplex and symbolic covariance methods on two example218

applications - classification and principal components. Wedo not include the tensor219

product space in the results as the technique is impracticalfor most problems - the220

dimensionality is huge for most practical problems with theresult that the data set221

cannot be represented in machine RAM in most cases.222

3.1 Classification Results223

In our first experiment, we compare the performance of the twomethods on exam-224

ple datasets with only categorical variables or with mixed categorical and numeric225

variables. We use the Naive Bayes classifier as the default comparison method, and226

the nearest neighbour classifier using HVDM as a widely used method from the227

literature. Since Naive Bayes has strong assumptions regarding the independence228

of the variables, we would expect that removing the correlation between the vari-229

ables would result in improvements in many cases. We have used the discriminant230

analysis family of methods to test our distance calculations since these methods231

naturally make use of Mahalanobis like distances. The classification methods we232

use are:233

NB: Naive Bayes used on the raw variables. If numeric variables are involved,234

then a normal distribution is used to model them.235

LDASC: Linear Discriminant Analysis using symbolic covariance.236

LDARS: Linear Discriminant Analysis using a regular simplex.237

QDASC: Quadratic Discriminant Analysis using symbolic covariance.238

QDARS: Quadratic Discriminant Analysis using a regular simplex.239
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LDASC: Regularised Discriminant Analysis using symbolic covariance.240

RDARS: Regularised Discriminant Analysis using a regular simplex.241

HVDMNN: Nearest Neighbour algorithm using the HVDM.242

Note that for the RDA methods, the regularised parameters are not estimated using243

cross-validation as suggested by Friedman (1989). The parameterγ is arbitrarily244

set to0.1 and the parameterλ is estimated as:245

λ = 1.0 − si/s,

wheresi is the sum of the singular values in the class covariance matrix Σi ands is246

the sum of the singular values in the pooled covariance matrix Σ. LDA, QDA and247

RDA all use covariance matrices to form decision boundaries, so we simply use248

the appropriate covariance matrix within each of these methods. See McLachlan249

(2004) for a full description of LDA, QDA and RDA.250

The results for each method on a subset (each problem has at least some categorical251

variables) of the UCI machine learning database (D.J. Newman and Merz, 1998)252

are shown in Table 2. It is not our intention to develop the best classifier for these253

problems although we note that many of the results are equal to the best in the254

literature (e.g. mushrooms), but rather to show that these methods can be useful255

and are therefore worth considering when dealing with categorical data. It is worth256

noting that sometimes QDA fails miserably when an accurate estimate of the class257

specific covariance matrix cannot be obtained (for example,when only one or two258

samples of that class exist in the data - this happens for audiology and autos).259

Naive Bayes performs quite well in most cases, even when the assumptions of260

independence are violated. On balance, the regular simplexmethod outperforms261
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the method of symbolic covariance performing best in 8 problems compared with262

4 for symbolic covariance. The symbolic covariance method can be likened to an263

a priori (sub-optimal) projection, whereas the regular simplex method can result in264

a more optimal data-driven projection. The symbolic covariance method performs265

comparably to Naive Bayes and HVDM using nearest neighbour.266

NB LDASC LDARS QDASC QDARS RDASC RDARS HVDMNN

hayesRoth 78 ± 6.1 48 ± 13 75 ± 7.9 48 ± 17 43 ± 9.7 52 ± 14 84 ± 9.2 68 ± 9.5

lungCancer 43 ± 22 63± 19 53 ± 32 53 ± 28 40 ± 34 53 ± 17 43 ± 27 43 ± 22

promoter 92± 9.2 69 ± 16 87 ± 6.7 67 ± 17 56 ± 8.4 89 ± 8.8 82 ± 17 87 ± 9.5

monks1 75 ± 9.6 67 ± 10 73 ± 6.6 85 ± 9.5 82 ± 7.3 78 ± 16 83 ± 9.6 80 ± 16

monks2 59 ± 11 51 ± 16 46 ± 6.7 70 ± 9.2 34 ± 11 72 ± 7.9 65 ± 15 51 ± 18

monks3 98± 4 84 ± 11 92 ± 6.1 82 ± 6.6 92 ± 9.2 89 ± 6.9 93 ± 6.6 86 ± 10

tictactoe 71 ± 3.6 71 ± 4.7 99± 1.4 77 ± 4.6 89 ± 2.6 75 ± 3.9 77 ± 6.4 77 ± 5

votes 93 ± 4.1 86 ± 5.4 96± 3.1 95 ± 2.2 93 ± 4.2 93 ± 4.5 92 ± 3.3 93 ± 3.4

mushroom 94 ± 0.6 97 ± 0.7 100 ± 0 100 ± 0 99 ± 0.5 99 ± 0.3 98 ± 0.3 100 ± 0
†

audiology 73 ± 11 70 ± 10 81± 10 0 ± 0 0 ± 0 50 ± 16 56 ± 15 42 ± 37

anneal 46 ± 6.3 92 ± 3 87 ± 3.8 15 ± 6.7 28 ± 6.2 90 ± 2.7 18 ± 5.2 97± 1.8

credit 78 ± 5.2 60 ± 3.9 76 ± 3.7 56 ± 6.7 49 ± 4.9 55 ± 6.6 45 ± 3.1 82± 5.3

heart 81 ± 9.9 83 ± 7.4 84± 6.6 80 ± 6.6 77 ± 9.2 82 ± 7.2 70 ± 8.1 79 ± 9.7

allbp 96± 1.2 89 ± 2.3 94 ± 1.7 89 ± 1.2 0.2 ± 0.3 90 ± 2 95 ± 0.8 96± 1.1

allhypo 95± 0.9 87 ± 2.1 95± 1.1 0.04 ± 0.1 0.4 ± 0.8 89 ± 1.3 89 ± 2.6 93 ± 1.9

adult 55± 0.7 33 ± 3.1 38 ± 0.7 13 ± 0.8 19 ± 1.1 35 ± 7.2 38 ± 2.4 NA‡

autos 72 ± 5.8 6.5 ± 3.4 78± 12 0 ± 0 32 ± 11 40 ± 19 32 ± 12 33 ± 17

postop 67± 15 48 ± 15 41 ± 15 1.1 ± 3.5 1.1 ± 3.5 36 ± 15 34 ± 16 51 ± 21

Table 2
Classification results on various problems from the UCI Machine Learning database. Mean
and standard deviations are shown for randomised 10-fold cross-validation. The best mean
value in each row is bolded. Above the line are problems with only categorical variables,
below the line are problems with mixed variables.† Only 3 rounds of cross-validation were
used due to large run times.‡ No results available due to large run times.
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3.2 Principal Components267

For our principal components example, we use as an example multiple choice exam268

results from our first year programming course. We have used 3data sets - one with269

24 questions, and two with 20 questions. All answers are in the range “A” to “D” or270

“A” to “E”. The three data sets have 151, 157 and 200 sample points respectively.271

Because of the size of the resultant tensor product space, that method could not be272

applied to this problem. We also have the exam mark for each student and what273

we hope to find is that the principal component of the data is highly correlated274

with the mark - this should be a validation of the method. The results are shown275

in Figures 1 and 2. We can see from both figures that the principal component is276

highly correlated for both methods, thus verifying the usefulness of the techniques.277

However, the regular simplex method is more highly correlated and seems to be the278

preferable method of the two - although it comes at a cost of higher dimensionality279

of the problem (having 4-5 times more dimensions than the symbolic covariance280

method).281

4 Conclusion282

We have investigated the problem of distance calculations for categorical and mixed283

variables, and have introduced two new Mahalanobis type distances for these types284

of variables - the symbolic covariance method and the tensorproduct space method.285

The tensor product space method is theoretically pleasing but completely impracti-286

cal for most problems. The symbolic covariance method is also theoretically pleas-287

ing, sharing many properties with the standard numeric covariance and thus leading288

to a natural Mahalanobis distance. It is also efficient in both time and space, can289
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be applied in many problem settings (classification, clustering and dimensionality290

reduction) which is not true of all methods (e.g. HVDM), and has the potential to291

be applied in other statistical contexts (e.g. measures of variability, statistical tests292

etc). Although the regular simplex method outperformed thesymbolic covariance293

method in terms of accuracy, the performance improvement was only moderate at294

the cost of significantly higher dimensionality. On balance, we believe the sym-295

bolic covariance to be a useful addition to the literature onheterogeneous distance296

functions.297
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