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Abstract

In this paper, we compare three different measures for céimgpahalanobis-type dis-
tances between random variables consisting of severajaatal dimensions or mixed
categorical and numeric dimensions - regular simplex,adepsoduct space, and symbolic
covariance. The tensor product space and symbolic cowaridistances are nhew contribu-
tions. We test the methods on two application domains - ifleestson and principal com-
ponents analysis. We find that the tensor product spacendestia impractical with most
problems. Over all, the regular simplex method is the mostessful in both domains, but
the symbolic covariance method has several advantageslingltime and space efficiency,

applicability to different contexts, and theoretical messs.
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1 Introduction

In this paper, we compare three different measures for campdiahalanobis-
type distances between random variables consisting ofalesategorical dimen-
sions or mixed categorical and numeric dimensions - regilaplex, tensor prod-
uct space, and symbolic covariance. In each case, distaneemputed via an
interpretation of the categorical data in some real vegb@cs. For carrying out
practical computations, the dimension of this space is maoo, and the lower the
dimension, the easier the computations will be. The regitaplex method is well
known and involves replacing a singtdevel categorical variable with g — 1)-
dimensional numerical variable in such a way that each lef¢he categorical
variable is mapped to a vertex of a regular simplex, and isetheat the same
distance from every other level of that variable. For a catiegl variable with 3
levels, this results in an equilateral triangle . The dimension of the embed-
ding space is thus the sum of the number of levels of all thealbbes, minus the
number of variables. The tensor product space method is @tyased in the lo-
cation model for dealing with mixed variables (Kurzanow4ld93) although here
we develop a new derivation which gives rise to a Mahalanbjpe distance in the
product space. The dimension of the embedding space isdeqrof the number
of levels of all the variables. The final method seems to beptetaly new and
calculates an analogue of the covariance between any tvegaatal variables,
which is used to create a Mahalanobis-type distance. Incésg, strictly speak-
ing, there is no embedding space, but all computations tieepn a dimension
equal to the number of variables. For comparison purposes/so compare the re-
sults in a classification experiment with the Heterogen&falise Difference Metric

(HVDM) (Wilson and Martinez, 1997) and with Naive Bayes.
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Why do we need to develop Mahalanobis-type distances fegoatcal and mixed
variables? The chief reason is that most research on ctluyfistances of this sort
is either heuristic (Wilson and Martinez, 1997; Gower, 19Cbst and Salzberg,
1993; Huang, 1998), assumes the variables are indepertemiafowski, 1993;

Bar-Hen and Daudin, 1995; Cuadras et al., 1997; Goodallg;1B6and Biswas,

2002), or makes use of the special case of ordinal data (P,dd#9) by assuming
an underlying distribution and a discretisation functi®he Value Difference Met-
ric (VDM) is one of the most popular categorical distanced aas introduced by
Stanfill and Waltz (1986) and is particular to classificagwablems. The metric is

based on sample probabilities:

vt ) = (S Plda?) S IPCle) = PP @

wherewvdm is the value difference metric on attribuie P(c|z,) is the probability
of classc given that attribute: has the value,. The first term is a weighting term
given by Stanfill and Waltz (1986) to appropriately weighs tmportance of each
attribute. The weighting term does not appear in the desonmiven by Wilson

and Martinez (1997). The total VDM is then the sumvdin over all attributes:.

The most influential study on mixed distances is that of Wilsmd Martinez
(1997). They introduce several new metrics based on the VHBterogeneous
Value Difference Metric (HVDM), Interpolated VDM (IVDM) ahWindowed VDM
(WDVM). The HVDM is very similar to the similarity metric of @ver (1971) and
is used for comparison with other metrics in our study. ThBWis an extension of
the VDM that takes into account continuous attributes bgréissing them to cal-
culate sample probabilities to use in Equation 1. Howeweractual probabilities

used are interpolated between neighbouring bins, depgratinvhere in the bin
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the continuous value actually falls. The WVDM is a more sepbated version of
VDM where the probabilities are calculated at each pointtlvloccurs in the train-
ing set using a sliding window similar to a Parzen window Bar@1962). The sim-
plified VDM (without the initial weighting term) and relatedeasures have been
used in several influential works including Cost and Salgl§£893) and Domingos

(1996).

The limitations of these techniques is that they are comsgtdsto be used in a classi-
fication context and almost all assume that attributes alepgandent of each other.
Thus, two highly correlated attributes will contribute b&ias much to the evidence
as they should. We attempt to avoid these problems in thenigebs presented
here. Also, we are not just interested in distances betwepnlgations as in Kur-
czynski (1970), but also distances between individualsdisthnces between an
individual and a population. The former is useful for clustg algorithms, and the
latter for classification algorithms. The applications$ach distances are predomi-
nantly in classification, clustering and dimensionalitguetion. We give examples

of classification and dimensionality reduction in the résul

2 Methods

2.1 Regular Simplex Method

The regular simplex method is the simplest of all the methdtie basic idea is

to assume that any two distinct levels of a categorical béegiare separated by the
same distance. To achieve this, each level of.devel variable is associated with
a distinct vertex of a regular simplex (m — 1) dimensional space. For simplicity,

the distance between levels is assumed to be 1. For examyés, g categori-
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cal variableX € {A, B,C}, A could be mapped t¢0,0), B to (1,0) andC to
(1/2,4/3/2). The choice of simplex is arbitrary, and has no effect on these-
guent analysis. One possible choice is to continue the dpnednt of the sequence
above. Take the existing set of vertices, and append theiraid. By the symme-
try of the regular simplex, this point is at the same distanoe all the preceding
vertices. Now add one more coordinate, taking the valoa the original set of
points, and set its value on the new point to be such that 8tardie from any, and

hence all, other elements of the setis

Each level of a variable is then replaced by the correspandertex in the sim-
plex. For a problem with: categorical dimensions, where the variable hasy,
levels, an observation of thedimensional variables is replaced with a variable
with >°%_;(nx — 1) numeric dimensions. A distance function can then be defined

based on the covariance matrix of the replaced data points:

dys(w1,72) = (55,1 - wé)Tz;sl (xll - x/2) (2)

wherez] is the regular simplex representation of the input veatorLet S;, =

> i1 nk, the sum of the levels., is of size((S;, — ¢) x (S, — ¢)) and can be
naively ! calculated in timeD(V,S%) where NV, is the number of samples in the
data setX! can be calculated in tim@(S?) 2. Therefore the space complexity

of this method igD(5%) and the time complexity i®(N,S? + S3).

I py naive, we mean without using optimizations such as spaatdgces and sparse matrix

multiplication
2 actually in timeO(S5%-37%) using a better bound for matrix multiplication
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2.2 Tensor Product Space Method

The tensor product space method is most similar in spirihtodriginal Maha-
lanobis distance derivation. The underlying idea of the Mahobis distance is
that we wish to calculate the Euclidean distance betweemtdionensional points,
p1, p2 Where each dimension is independent of the others. Unfatélyp, andp,
cannot be measured directly, but observatignandgs, which are linear transfor-

mations of the original values, can be. That is, for some imatr

@ = Apr

We want to calculate the distance betweemndp, so:

d(phpQ) = (pl - Pz)T(Pl —P2) 3
= (A —ATp) (AT g — A g) (4)
= (q1 — Q2)TA_1TA_1(Q1 - 2) (5)

The matrixA=1" A~ is just the inverse covariance matrix of the populatiop’sf

and we're left with the classic Mahalanobis distance.

Now consider a random variabl& which is defined over a space ofcategor-
ical variables where thé'" variable hasy, levels. For two categorical variables
to be independent, the product of the marginal distribiionust equal the actual

distribution. That is:
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The joint distribution” (X;, X;) and the subsequent marginal distributidh(sX;)

can be estimated from the sample population. The jointibigion may not be
independent, and to mimic the construction above we neeadoafitransforma-
tion from the dependent joint distribution to an independeimt distribution. The

independent joint is estimated simply as the product of thegmals.

We are left with the problem of estimating a linear transfation between tensor
product spaces. The initial probability tensor space igeeddent observable space,

Tb:

TP 2 X, 0 X, X5...

whereT? = P(X; = a, Xy = b, X3 = ¢, ... ). For example, with a two-dimensional
random variable where the first dimension has 2 levels andé¢hend has 3, we
would get a tensor space of 6 dimensions. We want a lineasfoemation from

TP to TT where T’ is the independent tensor spafé = P(X; = a)P(X, =
b)P(X3 = ¢).... The problem is ill-posed so there are many possible salstio
We have chosen the solution which produces a transformasiaiose as possible
to the identity. Since both tensor product spaces are piiityatpaces, the trans-
formation matrix,M, must be a column stochastic matrix, which can be defined

as:
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1 if s < ty,
Mii
i— otherwise
tifﬂ'fiisi If 1 - ij Z ti*ﬁ.iisi'
8 Sj
1 -4 My, otherwise

Wheres; andt; are the joint probabilities of the dependent and indepen@&sor

product spaces respectively.

The matrix,M, is a transformation from a dependent space to an independen
and as such is analogous #o! in equation 5. By analogy, we can call the ma-
trix ;' = MTM the inverse covariance matrix of the categorical variabfes

Mahalanobis-like distance function can then be defined:
dip (1, 2) = (2 — o) %, (2] — 25), (6)

where x| is the tensor product space representationofLet P, = [I;_; ng,
the product of the levels. MatriX/ is of size P, x P;, , therefore the naive size

complexity of this method i©)(P?) and the naive time complexity 3(P}).

2.3 Symbolic Covariance

Consider the formula for covariance of two field-valued (getly real-valued)

variablesX andY:

02(X> Y) = E((X - X)(Y - Y))>



139 Where bothE and an overbar indicate expectation. Now consider two caiteg)
1o random variables A and B with valuef throughA,, and B; throughB,, respec-

1w tively. Forl <7 <nandl <s < mlet:

pis € P(A=A;, B=B,)
a; dgfn P(A = Az)

b, " P(B = B,).

12 ConsiderA; throughA, andB; throughB,, as symbolic variables and define:

A AL+ agAy + -+ an A,

B ¥ B, +0yBy+ -+ b,,B,,

1z WhereA and B are also symbolic expressions. Then we have:

1

n
1=

us As A; and A; are categories and not values, the tetm— A; doesn't really make

us Sense, so we replace it with a more generic tefrwhich we call the distinction

s between two categorical values:

Ay — A ST 4,0(45, A, 7)
=1

17 We define) to have the following properties:
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(A, A;) o (8)

5( Ay, Ay) N —5(Ay, Ay) 9)

The definition in 9 is required so the expressi&in— X can be positive or neg-
ative as is the case with numeric attributes. Without thisnden, the symbolic
covariance could never be 0O - even if the variables are ualaded. Also, with-
out this definition, the symbolic covariance would not beaimant to a reordering
of categories (see Property 2 below). We note that a sidetedfethis definition
is that the symbolic covariance could be either positiveegative as in the case
of numeric covariance. However, the positivity or negdgivs somewhat arbitrary
due to the ordering of the categories - if negative covaearare not needed, the

absolute value of the symbolic covariance can be taken.

The underlying motivation is that we view the expression- X as representing
the “difference” in the sense of “being different from” ansapvation of the random
variableX and its mean, rather than the same “difference” in the sehsevalue

computed by the rules of arithmetic”. While, for real valueatiables, it makes
perfect sense to collapse these two meanings, this coliapse at all self-evident,

nor necessarily desirable for categorical ones.

We now propose the symbolic covariance:

10
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o%(A, B) €" E((A - A)(B - B)) (10)

=ZZ ZZ 10(Ai, A;)0(Bs, By) (11)
Z Z Pis@by — Djsaiby — pirasbs + pjaibs)6(A;, A;)6(Bs, By).
i<j s<t
(12)

This remains a symbolic expression. We can realise an acia foro? by choos-
ing appropriate values @f(4;, A;). In the absence of other information, choosing
d(A;, A;) = 1fori < jand—1fori > j is a reasonable assumption. For ordinal

variables, we might choose a distinction based on the argeri

Okada (2000) apparently (he did not provide details in heppalmost discovered

o2 but it seems he failed to realise the necessity of sefiting, A;) = —3(A;, A;).

Aside from the pragmatic possibility of using this symbaavariance as an ingre-

dient in a Mahalanobis-type distance, it has a number ddétite properties.

Property 1 (Independence) If A and B are independent, thep; = a;b; and it

follows immediately that?(A, B) = 0.

Property 2 (Renaming) The quantitys?(A, B) is invariant under a renaming of

the categories.

This claim is easily verified by direct computation in theeaghereA; and A,
are exchanged. The sign changes iexpressions are exactly balanced by the re-

ordering of the terms in their multipliers.

Property 3 (c2(A, A)) If Ais a categorical variable witm levels, then the quan-

tity o2(A, A) is maximised when each level is equally likely.

11
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We also note that the symbolic covariance has some sinisitib they? statistic.
While x2 may be used as a proxy for covariance, its purpose is vergrdift. It
essentially asks what is the probability that two (or moeg)ables are independent,

and this is not the same as asking to what extent two variaipeesmdependent.

The symbolic covariance is technically only defined betw®encategorical vari-
ables, however since we can use equation 7 to transform gacatal variable to
a (mean-shifted) real number, we can use the standard dwfioit covariance for
calculating the covariance between a categorical variabtea numeric one. We
show the results of a mean-shift in the examples below. We wbiat looks like a

paradox in calculatingl, — A, in particular:

(Ai = A) = (A; — A) # 5(A;, A))

In effect, the function4d; — A as defined in equation 7 is more like a projection

operator than a one-dimensional difference operator.

A Mahalanobis-like distance function can be defined usiegimbolic covariance

matrix:
dsc(l'l,xg) = (A(l’l — .I'Q))TE;ClA(.fEl — .Z'Q) (13)

where A(z; — x9) implies applyingd to each dimension in the vectdt,. is of
sizec x ¢ and since calculating the covariance between two varighlesn,n;,
calculating the covariance matrix tak€s.5%). Therefore the size complexity of

the method i€ (c?) and the time complexity i© (5% + ¢?).

12
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2.3.1 Some Simple Examples

Let us consider some simple examples to show the utility efrtiethod. Table 1

shows four samples from a population each with four binatnjtaites or variables.

Looking at the variables we would expect tleand B are perfectly correlated (ei-

ther positively or negatively)d andC' are uncorrelated, and and D are partially

correlated.
Sample A A, -A B B,-B C C;—C D D;—D o2
1 Ay 0.5 By -0.5 4 0.5 Dy 0.25 os(A,A) =1.0
2 Ao 05 B 0.5 Cy -05 Dy -075 o04(A,B)=-10
3 A, 05 By -05 (¢, -05 D; 025 os(A,C) =0
4 Ao 05 B 0.5 4 0.5 Dy 0.25 os(A, D) =0.5
Table 1

Some example categorical variables

203 10 calculate the symbolic covariance for varialdlewe can first shift to the mean:

13




Ay — A=A — (a1 A; + axAy)
= A; — (0.54; +0.5A,)
=0.5A; —0.54; +0.54; — 0.54,
= 0.50( Ay, A1) + 0.55( Ay, Ag)
=05

Ay — A=Ay — (054, +0.5A,)
=0.54, — 0.54; +0.54, — 0.545)
= 0.56(Ag, A1) + 0.50( Ay, Ay)

=—-0.5

204 The results of similar calculations are shown in every ott@umn of Table 1.

20s Calculating the symbolic covariance is then straightforva

0s(A,B) = E((A— A)(B - B))
— (0.5)(—=0.5) + (—=0.5)(0.5) + (0.5)(—0.5) + (—0.5)(0.5)

=-1.0

206 The results of similar calculations are shown in the lasticoi of Table 1. Note that
207 the results are exactly what we would intuitively expectyA&fassification method

208 that uses the notion of a distance function can then be used.

14



200 2.4 Heterogeneous Value Distance Metric (HVDM)

210 Although only applicable to classification problems the HIWilson and Mar-
211 tinez, 1997) has been influential in the literature and ituithed here as a compari-

212 Son with the other methods. The HVDM is given by:

HVDM (z,y) = | > d*(Ta, Ya)

213 Wherem is the number of attributes, and:

1 if z, ory, is unknown,

d(Ta)Ya) = normalized_vdm(z,,y,) if ais categorical,

normalizeddiff(x,, y,) if a is numeric.

212 As given by Wilson and Martinez (1997%)ormalized_vdm is:

normalized_vdm(zq, ya) = $ > |P(c|za) — Plc]ya)|?

215 andnormalized_dif f is:

normalized_dif f(xq,y,) = ‘%4;%‘,
Oa

216 Whereo, is the standard deviation of numeric attribute

15
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3 Reaults

We compare the regular simplex and symbolic covariance oakstbn two example
applications - classification and principal componentsdé@/eot include the tensor
product space in the results as the technique is impradticahost problems - the
dimensionality is huge for most practical problems with tesult that the data set

cannot be represented in machine RAM in most cases.

3.1 Classification Results

In our first experiment, we compare the performance of therhethods on exam-
ple datasets with only categorical variables or with mixateégorical and numeric
variables. We use the Naive Bayes classifier as the defamppanson method, and
the nearest neighbour classifier using HVDM as a widely usethad from the
literature. Since Naive Bayes has strong assumptionsdegpathe independence
of the variables, we would expect that removing the con@fabetween the vari-
ables would result in improvements in many cases. We hawethgediscriminant
analysis family of methods to test our distance calculatisimce these methods
naturally make use of Mahalanobis like distances. The iflesson methods we

use are:

NB: Naive Bayes used on the raw variables. If numeric vaeslare involved,
then a normal distribution is used to model them.

LDASC: Linear Discriminant Analysis using symbolic coarce.

LDARS: Linear Discriminant Analysis using a regular simple

QDASC: Quadratic Discriminant Analysis using symbolic anance.

QDARS: Quadratic Discriminant Analysis using a regular siex.

16
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LDASC: Regularised Discriminant Analysis using symboliwariance.
RDARS: Regularised Discriminant Analysis using a reguiasex.
HVDMNN: Nearest Neighbour algorithm using the HVDM.

Note that for the RDA methods, the regularised parametersatrestimated using
cross-validation as suggested by Friedman (1989). Thermeay is arbitrarily

set to0.1 and the parameteris estimated as:

A=1.0-s/s,

wheres; is the sum of the singular values in the class covariancexngtrands is
the sum of the singular values in the pooled covariance matriDA, QDA and
RDA all use covariance matrices to form decision boundaseswe simply use
the appropriate covariance matrix within each of these ougthSee McLachlan

(2004) for a full description of LDA, QDA and RDA.

The results for each method on a subset (each problem hasastane categorical
variables) of the UCI machine learning database (D.J. Newama Merz, 1998)
are shown in Table 2. It is not our intention to develop thet bissifier for these
problems although we note that many of the results are equidet best in the
literature (e.g. mushrooms), but rather to show that thesthoas can be useful
and are therefore worth considering when dealing with caiegl data. It is worth
noting that sometimes QDA fails miserably when an accurstienate of the class
specific covariance matrix cannot be obtained (for exanwghen only one or two
samples of that class exist in the data - this happens forokgyi and autos).
Naive Bayes performs quite well in most cases, even when seenaptions of

independence are violated. On balance, the regular simmpétkod outperforms

17
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266

the method of symbolic covariance performing best in 8 protd compared with
4 for symbolic covariance. The symbolic covariance methaxd loe likened to an
a priori (sub-optimal) projection, whereas the regular@e® method can result in
a more optimal data-driven projection. The symbolic camace method performs

comparably to Naive Bayes and HVDM using nearest neighbour.

NB LDASC LDARS QDASC QDARS RDASC RDARS HVDMNN
hayesRoth 78 +6.1 48+13 75+79 48417 43+£97 H2+£14 844+92 68£95
lungCancer 43+22 63+19 53+£32 53428 40+£34 H3£17 4327 43+£22
promoter 92+9.2 69+16 87+£6.7 6717 56 £84 89£88 82+£17 87£9.5
monksl 75+9.6 67+10 73+6.6 85+9.5 82+73 T78+16 83+96 80+16
monks2 59+11 51+16 46+£6.7 70+9.2 34+11 724+£79 65+15 51418
monks3 98 +4 84+11 92+£6.1 82+6.6 924+9.2 89+69 93£6.6 86+10
tictactoe 71+3.6 71+47 99+14 77+£46 89+26 7HE£39 Tr+64 T7TLE5H
votes 93+41 86+£54 96+£3.1 95+2.2 93+42 93+£45 92+33 93+£34
mushroom 94+0.6 97+0.7 100+0 100+0 99+0.5 99+0.3 98403 100407
audiology 73+11 70+10 81+10 O0+£0 0+0 5016 5615  42+£37
anneal 46+6.3 92+3 87+38 15+6.7 28+6.2 90+£27 18452 97+1.8
credit 78 +5.2 60+39 T76+£3.7 56=+6.7 49+49 H55+66 45£31 82£53
heart 81+9.9 83+74 84+6.6 80+£6.6 7Tr+£92 82472 T70£81 79+9.7
allbop 96 +1.2 89+23 94+1.7 89+1.2 02+03 90+£2 9%5+08 96+1.1
allhypo 954+09 87+21 95+11 004+0.1 04+£08 89+13 89+26 93+1.9
adult 55+0.7 33+£31 38+0.7 13+0.8 19411 35472 38+24 NA?
autos 72+58 65+34 78+£12 0&£0 32+11 40+£19 32+12 3317
postop 67+15 48+£15 41+15 1.1+35 11435 36+15 34+£16 H1+21

Table 2

Classification results on various problems from the UCI Maelh.earning database. Mean
and standard deviations are shown for randomised 10-folskevalidation. The best mean
value in each row is bolded. Above the line are problems witly gategorical variables,
below the line are problems with mixed variablé©nly 3 rounds of cross-validation were
used due to large run timelsNo results available due to large run times.

18
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3.2 Principal Components

For our principal components example, we use as an examptgplaghoice exam
results from our first year programming course. We have ustai&sets - one with
24 questions, and two with 20 questions. All answers areamdahge “A’ to “D” or
“A’ to “E”. The three data sets have 151, 157 and 200 samplatpaespectively.
Because of the size of the resultant tensor product spaaenigthod could not be
applied to this problem. We also have the exam mark for eaatest and what
we hope to find is that the principal component of the data gllgi correlated
with the mark - this should be a validation of the method. Témutts are shown
in Figures 1 and 2. We can see from both figures that the pahcipmponent is
highly correlated for both methods, thus verifying the uéséss of the techniques.
However, the regular simplex method is more highly coredaand seems to be the
preferable method of the two - although it comes at a costgifdn dimensionality
of the problem (having 4-5 times more dimensions than theb®fim covariance

method).

4 Conclusion

We have investigated the problem of distance calculationsdtegorical and mixed
variables, and have introduced two new Mahalanobis tyganligs for these types
of variables - the symbolic covariance method and the temraatuct space method.
The tensor product space method is theoretically pleasihgdmpletely impracti-
cal for most problems. The symbolic covariance method i3 thlsoretically pleas-
ing, sharing many properties with the standard numericigamee and thus leading

to a natural Mahalanobis distance. It is also efficient iidohe and space, can

19
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200 be applied in many problem settings (classification, cliseand dimensionality
201 reduction) which is not true of all methods (e.g. HVDM), araktihe potential to
202 be applied in other statistical contexts (e.g. measuresudahility, statistical tests
203 etc). Although the regular simplex method outperformedsymmbolic covariance
20 Method in terms of accuracy, the performance improvemestamyy moderate at
205 the cost of significantly higher dimensionality. On balanee believe the sym-
206 bolic covariance to be a useful addition to the literaturdneterogeneous distance

207 functions.
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