ram Library LIB FULL MEMOFNS (175

Program name. LIB FULL MEMOFNS
Source. David Marsh, DMIP; Date of issue. September 1970
M{PREGNABLE.

yDescviption, This is a very much extended and revised version of the
memo-function facilities proposed by Michie (1967, 1968) and initially
implemented by Popplestone (1967). Marsh (1970a) describes the

: ‘ present implementation.

(a) Purpose. To improve function evaluation time by the automatic
storage of previously computed results.

(b) Operation of a memo-function. Basically, arguments and results
of a function are stored in a special rote of a specified size. A linear
search of this rote is carried out each time the function is evaluated

i and, if the arguments are on the rote, the result is taken directly, other-
b wise the function is evaluated, and the rote updated. Full memo-

[functions differ from the other library versions in the following

k ways:

(1) They handle functions of more than one argument and result.
(2) The structure of the rote entries is under the control of the user.

| For example, arguments which map onto the same results may be
grouped together in any desired fashion as in, perhaps, a set description.
(3) The function results may be standardized before being inserted on

‘ the rote or being left as the function result.

3 (4) In LIB TREE MEMOFNS (Marsh 1970b) a tree-structured rote is

1 used. In this implementation this facility is not available.

The following features are, however, still available in this full version:
(1) Completely new entries are inserted at the head of the rote.

(2) Entries which are used in lookup are promoted one place.

(3) When the rote exceeds a specified size, entries are deleted from
the bottom of the rote.

(4) With recursive functions only top level arguments and results are ‘
inserted on the rote, though the rote is searched on every call. l

(c) Economies, Extensive timing tests have not been carried out. For ‘
the log gamma function we found that the overheads of the current H
implementation precluded any pay-off in terms of increased speed ‘
(Marsh 1970a). However, along with Michie (Michie 1971), we have
shown them to be a valuable tool in automatic problem solving.

(d) Tewrminology and data standards., (1) The function being

memoized will be called the main function.

(2) We shall use X to indicate an argument or arguments and Y to

indicate a result, and XY to indicate an argument-result pair.

(3) A rote entry is always a POP~-2 pair, whose front contains the

arguments and whose back contains the result. Initially these are set

to UNDEF so that an empty rote entry is [UNDEF . UNDEF .

‘\ (4) An argument X may be presented to the component functions of !

‘ the memo apparatus in various ways: (a) when the main function takes ;
one argument, X will be either an atom, or a list within a list, if the
single argument is itself a list. (b) when the main function takes more o
than one argument, X will be a list of those arguments, whose head is .
the first argument. |
(5) The structure of the result is governed by the standardization |
function—YSTAND (q.v.).

((6) If the result of the main function is UNDEF no entry will be made

’ in the rote under any circumstances.

176) ' _. Part 4: Progvam Libvary

THow .to use the prog*rdm. The program should be compiled by
executing:

COMPILE(LIBRARY(|LIB FULL MEMOFNS]));

(a) Creation of a memo-function. The function NEWMEMO is provided
for this:

NEWMEMO ¢ F, N, NARG, SEREQUIV, UPEQUIV, ROTEUPDATE,
YSTAND=>memo-function

(1) Arguments
F The main function, to be memoized.
N An integer, specifying the maximum size of the rote.
- NARG An integer, specifying the number of arguments that the main
function takes.
SEREQUIV SEREQUIV € X, ROTE-ENTRY => TRUTHVALUE
This is the equivalence function used in the initial search of the rote.

The result of this function will be TRUE if the main function result for
this argument X is to be taken from the rote. The function could be
of several forms:
e.g. (a) if the arguments are numerical,
LAMBDA X ROTE; X=FRONT(ROTE) END

(b) if the rote contains an argument set,
LAMBDA X ROTE; MEMBER(X, FRONT(ROTE)) END

(c) LAMBDA X ROTE;
BOOLOR(INRANGE(X RANGEPAIR(FRONT(ROTE)))
MEMBER(X, EXCEPTIONS(FRONT(ROTE))))
END
where the front of each rote-entry has two components,
RANGEPAIR and EXCEPTIONS. RANGEPAIR is used by a function
INRANGE, perhaps LAMBDA X PAIR,;
BOOLAND(X>FRONT(PAIR), X<BACK(PAIR))
END
and EXCEPTIONS gives a list of exception conditions.
UPEQUIV either (a) FALSE or (b) UPEQUIV ¢ XY, ROTE-ENTRY =>
TRUTHVALUE;

(a) If UPEQUIV is FALSE there will be no search of the rote when it
is updated and a new entry will be made at the top of the rote by
ROTEUPDATE (g.v.).

(b) This function looks fora match between any features of a new entry
after the main function has been evaluated, and previous entries in the
rote. If it returns TRUE then ROTEUPDATE will extend the rote-entry,
for example, at its simplest it will test for equality between results:

LAMBDA XY ROTE; BACK(XY) = BACK(ROTE) END

ROTEUPDATE ROTEUPDATE € XY, ROTE-ENTRY => NEW-ROTE-
ENTRY; This will be entered under two circumstances:

(a) There has been no search of the rote (UPEQUIV=FALSE) or the
search (using UPEQUIV) has failed and a new rote entry is to be made.
In these cases the ROTE-ENTRY parameter will be UNDEF, and most
typically the function will be:

LAMBDA XY ROTE; XY END

(b) There has been a search of the rote and UPEQUIV has given the
result TRUE. The arguments will be the same as those given to
UPEQUIV and the result must be a new entry for the rote. For example,

A b e+ et Thn oA D A O A e e

vam Libyary

d by

O is provided

DATE,

te.
at the main

LUE
f the rote.

m result for
could be

)

'E)),

function

PAIR))

ENTRY =>
L UE;

ote when it
te by

f a new entry
tries in the
e rote-entry,
n results:

tW-ROTE -
‘cumstances:

SE) or the
to be made.
F', and most

given the
ren to
For example,

'

LIB FULL MEMOFNS (177

LAMBDA XY ROTE;

FRONT (XY):: FRONT(ROTE) —> FRONT(ROTE);
ROTE

END

YSTAND This function converts the main function results into a
canonical element. It takes as many arguments as the main function
leaves results. It must leave only one result. This result is the Y
component of the XY pair found as parameters of the UPEQUIV and
ROTEUPDATE functions. It must be structured in the same way as the
arguments of the main function are structured for presentation to the
component functions of the memo apparatus. That is, if there isa
single result it will be an atom, unless that single result is a list, in
which case it will be a list whose head is that result; or if there is more
than one result it will be a list whose elements are those results.

For example, if the main function leaves two results, both real numbers,
and the canonical representation of these results is two integers, the
function YSTAND may be:

LAMBDA R1 R2;
[% INTOF(R1), INTOF(R2) %]
END

Note that the results from the main function will always be in the
standardized form whether or not the result has been found on the rote.
It is left to the memo apparatus to ensure that the results on exit are
presented as separate items, in this example two numbers.

(2) Result

The result of NEWMEMO is a memo-function with a rote of size N.
This result must be assigned back to the variable which contained the
original function.

(b) Subsidiary functions

ISMEMO(F); Produces the result TRUE if the function F is a memo-
function, otherwise FALSE.

UNMEMO(F); Produces the original function from a memo-function F.
n.b. UNMEMO is destructive and once applied to a memo-function,

that memo-function should not be used again.

DICTOF(F); Produces the rote of the memo-function ¥. The rote is
implemented as a strip. This may be printed using the standard function
DATALIST, or with PRDICTOF.

PRDICTOF(F); Prints the rote of the memo-function F. Each XY pair
is output on a new line.

ROTELENGTH(F); Produces an integer corresponding to the number
of entries in the rote of the memo-function F.

NEWINITMEMO(F, N); Memoizes function F with a rote of size N. F
must be a unary function taking an integer argument.

(¢) Functions used in the implemeniation. The rote is implemented
as a POP-2 strip with the argument-result pairs as POP-2 pairs.
When a memo-function is created, all the storage required by the rote
is claimed. Care must therefore be taken not to specify a rote size
greater than that actually required.

ASSOCVAL(X, ROTE, SEREQUIV, N); Finds the item associated with
the item X under the equivalence SEREQUIV in the rote ROTE of size

N.

ASSOCUD(Y, X, ROTE, N, UPEQUIV, ROTEUPDATE); Uses
ROTEUPDATE to associate the items X and Y (arguments and results)
on the rote ROTE of size N, the nature of the association being deter-
mined by UPEQUIV. '

178) Dart 4: Program Library

NEWASSOCFN(N, SEREQUIV, UPEQUIV, ROTEUPDATE); Produces a
rote of size N whose selector function is ASSOCVAL and whose updater
function is ASSOCUD.

CONSARG(NARG); Forms a list of the arguments of the memo-
function taking each argument off the stack. If the function is unary,
taking a simple item as argument, then this item is the result of
CONSARG.

DESTARG(ARG); Places the arguments of the memo-function contained
in ARG on the stack.

DOMEMO(F, A, YSTAND, NARG); The general purpose memo-function
which NEWMEMO converts to a particular memo-function,

(d) Storage vequivements. The memo apparatus occupies approxi-
mately 2.8 blocks of core store. Once the program is compiled the
only overheads for each function memoized will be the rote.

‘JErvors
A memo-function should be redefined if a run-time error occurs.

YExample of the use of the progrvam. Consider the function
LOGGAMMA e REAL =>REAL

In POP-2 we can define this, approximately, as

FUNCTION LOGGAMMA X;
IF X < 2 THEN
LOG(1. 5749—0. 5749*X)
ELSE ‘
- LOG(X—1) + LOGGAMMA (X-1) -
CLOSE
END;

Now suppose that the result of LOGGAMMA is required to only 2
significant figures. Then YSTAND is SIG2 where SIG2, which we shall
assume has already been defined, performs the desired truncation. Many
arguments will now map onto the same result. These arguments could
be grouped together explicitly on the rote. Since LOGGAMMA is mono-
tonic we can represent them more economically by a pair of numbers
corresponding to the least and greatest values which have been found to
give the same standardized result. Initially, however, only one argument
will be associated with a given result and that argument will be stored
as a single number,

SEREQUIV tests whether a particular argument is already represented
on the rote:

FUNCTION SEREQUIV X ROTEXY;
VARS ROTEX; :
FRONT(ROTEXY) —> ROTEX;
IF ISNUMBER(ROTEX) THEN
X = ROTEX
ELSE
BOOLAND(X>= FRONT(ROTEX), X=< BACK(ROTEX))
CLOSE
END;

UPEQUIYV is defined as:

FUNCTION UPEQUIV XY ROTEXY;
BACK(XY)=BACK(ROTEXY)
END;

If UPEQUIV produces TRUE as result then, when ROTEUPDATE is

am Library

’roduces a
ose updater

Mmo-
S unary,
1t of

on contained

no-function

Approxi-
iled the

curs.

nly 2

1 we shall
cation. Many
ents could
A is mono-

' numbers
en found to
ne argument
be stored

epresented

ATE is

LIB FULL MEMOFNS (179

called, it will extend the appropriate lower or upper bound to accom-
modate the new argument, otherwise it will add the new argument and
result to the rote. It is defined as:

FUNCTION ROTEUPDATE XY ROTEXY;
VARS X ROTEX;
IF ROTEXY= UNDEF THEN XY EXIT;
FRONT (XY)>X; FRONT(ROTEXY)—>ROTEX;
IF ISNUMBER(ROTEX) THEN
IF X>ROTEX THEN
ROTEX::X
ELSE
X::ROTEX
CLOSE—>FRONT(ROTEXY)
ELSEIF X<FRONT(ROTEX) THEN
X—>FRONT(ROTEX)
ELSE
X—>BACK(ROTEX)
CLOSE;
ROTEXY
END;

We can now memoize LOGGAMMA, with a rote size of, say, 4:
NEWMEMO(LOGGAMMA, 4, 1, SEREQUIV, UPEQUIV, ROTEUPDATE,
SIG2) —> LOGGAMMA;

Memoization does not affect the way LOGGAMMA is called. Thus,
LOGGAMMA(10.1) =>
**13.0,

The call will, however, have resulted in an entry in the rote:
PRDICTOF(LOGGAMMA);
[10.1 . 13.0]

If we now call
LOGGAMMA(IO 5) =>
** 13.0,

an argument range will be constructed:
PRDICTOF(LOGGAMMA);
[[10.1 . 10.5] . 13.0]

Further calls will augment the rote:

LOGGAMMA(8. 1), LOGGAMMA(11. 6), LOGGAMMA(11.7),
LOGGAMMA(16) =

** '8.7,16.0,16.0,28.0,

PRDICTOF(LOGGAMMA);
[16 . 28.0]
[11.6 . 1i.7] . 16.0]
8.1 . 8.7]

[[10.1 . 10.5] . 13.0]

If we now call
LOGGAMMA(10. 3) =>
** 13.0,

the result will be obtained by look-up and the appropriate rote-entry
will be promoted:

PRDICTOF(LOGGAMMA);

f16 . 28.0]

[[11.6 . 11.7] . 16.0]

[[t0o.1 . 10.5] . 13.0]

[8.1 . 8.7]

180) Part 4: Program Library

If we now evaluate
LOGGAMMA(20) =>
**40.0,

the bottom entry of the rote will be lost.
PRDICTOF(LOGGAMMA);

[20 . 40.0]

[16 . 28.0]

[[11.6 . 11.7] . 16.0]

[[10.1 . 10.5] . 13.0]

9Global variables used. ASSOCVAL ASSOCUD
"NEWASSOCFN CONSARG DESTARG DOMEMO ISMEMO UNMEMO
DICTOF PRDICT PRDICTOF ROTELENGTH NEWINTMEMO

REFERENCES

Marsh, D. (1968) LIB MEMOFNS. Multi-POP Progvam Libvary
Documentation. Edinburgh: Department of Machine Intelligence and
Perception (reproduced in this volume).

Marsh, D. (1970a) Memo functions, the Graph Traverser and a simple
control situation. ‘Machine Intelligence 5,pp.281-300 (eds. B.
Meltzer & D. Michie). Edinburgh: Edinburgh University Press.

Marsh, D. (1970b) LIB TREE MEMOFNS. Multi-POP Program Library
Documentation. Edinburgh: Department of Machine Intelligence
and Perception, University of Edinburgh.

Michie, D. (1967) Memo functions: a language facility with 'rote-
learning' properties. Research Memovandum MIP-R-29 Edinburgh:
Department of Machine Intelligence and Perception, University of
Edinburgh.

Michie, D. (1968) Memo functions and machine learning. Nature,Z218,
19-22,

Michie, D. (1971) Mechanization of plan-formation. Proceedings NATO
Advanced Study Institute on Artificial Intelligence and Heuvistic
Programming. Edinburgh: Edinburgh University Press (In press).

Popplestone, R. J. (1967) Memo functions and the POP-2 language.
Reseavch Memovandum MIP-R-30 Edinburgh: Department of
Machine Intelligence and Perception, University of Edinburgh.

CFULL M

FUNCTIC
VARS P .
SUBSCR(
L1t SUE
IF,
IF

EX.
P+1->P
IF PON
IF (P=l
GOTO L
END

FUNCTII
IF EQU
VARS P
SUBSCR:
IF NOT
L1s SuU

FUNCT]
VARS
INITCH
1->N1;
Ly: If
ASSOCH
ASSOCL
v

END

FUNCT]
VARS |
L1 It

GOTO
END

FUNCT
IF AR
L1 1

A

GOTO
END

ram Library

MEMO

rary
elligence and

| a simple
2ds. B.

y Press.
am Librarvy
elligence

rote-
9 Edinburgh:
iversity of

fuve, 218,

ings NATO
Heuvistic

s (In press).
guage.

ent of
burgh.

!

LIB FULL MEMOFNS (181

[FULL MEMOFNS]

FUNCTION ASSOCVAL X ROTE SEREQUIV N:
VARS P PO U;
SUBSCR(N+1,ROTE)=->P3 P=>P0;
L1: SUBSCR(P,ROTE)->U;
IF 3ACK(U)=UNDEF THEN UNDEF EXIT;
IF SEREQUIV(X,U) THEN BACK(U);
IF NOT(P=P0) THEN P-1->P0;
If P0=0 THEN N=>P0 CLOSE;
SUBSCR(PO,ROTE),U, =>SUBSCR(PO,ROTE); =>SUBSCR(P,ROTE)
CLOSE; ’
EXIT:
Pe1->P; "
IF P>N THEN 1->P CLOSE:
IF (P=P0) THEN UNDEF EXIT;
GOTO L1
END

FUNCTION ASSOCUD Y X ROTE N UPEQUIV ROTEUPDATE:
IF EQUAL(Y,UNDEF) OR EQUAL(Y,L%UNDEFX%]) THEN EXIT;
VARS P U PO XY} X::iY=>XY;
SUBSCR(N+1,ROTE)~=>P; P->P0;
IF NOT(UPEQUIV) THEN GOTO L2 CLOSE:
L1: SUBSCR(P,ROTE)~->U;
IF (BACK(U)=UNDEF) THEN GOTO L2 CLOSE;
IF UPEQUIV(XY,U) THEN ROTEUPDATE(XY,U)=>SUBSCR(P,ROTE) EXIT;
P+1->P;
IF P>N THEN 1->P CLOSE;
IF NOT(P=P0) THEN GOTO L1 CLOSE;
L2t IF Po=1 THEN N->P0 ELSE P0-1->P0 CLOSE;
ROTEUPDATE(XY,UNDEF)=->SUBSCR(P0,ROTE);
P0=>SUBSCR(N+1,ROTE)
END :

FUNCTION NEWASSOCFN N SEREQUIV UPEQUIV ROTEUPDATE:

VARS U V Nij
INIT(N+1)=>U; 1->SUBSCR(N+1,U);
1->N1;

L1: IF N1=<N THEN UNDEF::UNDEF=->SUBSCR(N1,U); N1+1i=->N1i; GOTO L1 CLOSE;
ASSOCVAL(X U,SEREQUIV,N %)=>V;}

ASSOCUD(% U,N,UPEQUIV,ROTEUPDATE X)->UPDATER(V);

v

END

FUNCTION CONSARG NARG;
VARS L3 =>L; IF L.ATOM.NOT THEN L::NIL->L; CLOSE;
L1: IF NARG=1 THEN L EXIT:
tsL=>L; NARG-1->NARG;
GOTO L1
END

FUNCTION DESTARG ARG;

IF ARG.ATOM THEN ARG EXIT;

L1t IF ARG.NULL THEN IF NOT(ARG=NIL) THEN ARG CLOSE; EXIT;
ARG.DEST~>ARG:

GOTO L1

END

182) Part 4. Program Library

FUNCTION DOMEMO F A YSTAND NARG:
VARS ARG RES; NARG.CONSARG=>ARG:;
A(ARG)=->RES;
If F,.FNPROPS.TL.HD THEN
IF RES=UNDEF THEN
FALSE~>F ,FNPROPS.TL.HD;
YSTAND(F(DESTARG(ARG)))=>RES;
RES=->A(ARG);
TRUE~>F .FNPROPS.TL.HD
CLOSE;
DESTARG(RES)
ELSE .
IF RES=UNDEF THEN
DESTARG(YSTAND(F(DESTARG(ARG))));
ELSE
DESTARG(RES);
CLOSE:;
CLOSE
END

CE:%TION NEWMEMO F N NARG SEREQUIV UPEQUIV ROTEUPDATE YSTAND;
U vs

IF F.ENPROPS.ATOM THEN F.FNPROPS::NIL->F.FNPROPS CLOSE;
1:3TL(FNPROPS(F))=>TL(FNPROPS(F));
NEWASSOCFN(N,SEREQUIV,UPEQUIV,ROTEUPDATE)=>U;

DOMEMO(X F,U,YSTAND,NARG %)=>V;

UPDATER(U)=>UPDATER(V);

CMEMOX-=>FNPROPS(V);

v
END

FUNCTION ISMEMO F;
F.FNPROPS=>F;
L1t IF F.ATOM
- THEN F="MEMO"
ELSE F.HD->F; GOTO L1
CLOSE
END

FUNCTION UNMEMO F3

VARS MF;

IF F.ISMEMO THEN FROZVAL(1,F)=>MF;

:: MF ,FNPROPS.TL.NULL.NOT THEN TL(TL(FNPROPS(MF)))=>TL(FNPROPS(MF)) CLOSE;
ELSE

UNDEF

CLOSE

END

FUNCTION DICTOF F;
IF F.1SMEMO THEN FROZVAL(1,FROZVAL(2,F)) ELSE UNDEF CLOSE;
END

FUNCTION PRDICT F PRFUN;

VARS P P1 N STRIP;

F.DICTOF=>STRIP;

1.NL; IF STRIP=UNDEF THEN UNDEF.PR EXIT;
FROZVAL (3,FROZVAL(2,F))=>N;
SUBSCR(N+1,STRIP)=>P; 1->P1;

L1: IF BACK(SUBSCR(P,STRIP)Y=UNDEF THEN EXIT;
PRFUN(SUBSCR(P,STRIP)); 2.NL; P+1~>P; Ple+1=>P1;
IF P1>N THEN EXIT;

IF °>N THEN 1->P CLOSE:

GOTO L1

END

MO ==~ 0 WM N<—=T

= <

vam Library

DPS(MF)) CLOSE;

LIB FULL MEMOFNS

(183

VARS PRDICTOF;
PRDICT(XPR%)~>PRDICTOF;

FUNCTION ROTELENGTH F;

IF F.ISMEMO.NOT THEN 0 EXIT;
VARS. N P P1 STRIP;
F.0ICTOF=>STRIP;

IF STRIP=UNDEF THEN 0 EXIT:
FROZVAL(3,FROZVAL(2,F))=->N;
SUBSCR(N+1,STRIP)->P; 0->P1;
L1: IF BACK(SUBSCR(P,STRIP))=UNDEF THEN P1 EXIT;
P+1->P3 P1+1->P1;

IF P1>N THEN N EXIT;

IF P>N THEN 1->P CLOSE;

GOTO L1

END

VARS NEWINTMEMO;

NEWMEMO(% 1,LAMBDA X ROTE; X=FRONT(ROTE); END,O,
LAMBDA XY ROTE:; XY END,LAMBDA Y; Y ENDX)

=>NEWINTMEMO;

COMMENT

NEWMEMO(F,N,NARG, SEREQUIV,UPEQUIV,ROTEUPDATE, YSTAND)=->F
NEWINTMEMO(F,N)=->F

SEREQUIV(X,ROTE)=>0/1

UPEQUIV(X::Y,ROTE)=> 0/1

ROTEUPDATE(X::Y,ROTE) =>ROTE

184) Part 4: Program Libvary

Program name: LIB GRAPH TRAVERSER

Source. D.Marsh, DMIP; Date of issue. June 1969

TDescription. The Graph Traverser is a heuristic problem solving
algorithm developed by Doran and Michie (1966). This package
provides the basic facilities required to apply the Graph Traverser
to a problem. Familiarity with the general ethos of the Graph
Traverser is assumed.

The main function provided (GROWTREE) grows a search tree. Nodes
on this tree are POP-2 records, called JOBS. These jobs are held on
a list, JOBLIST, which is ordered, the "better’' jobs being at the head,

Because the Graph Traverser can be used in a great variety of situa-
tions it is not possible to specify in advance how a search tree might be
handled. On the one hand, one might be solving a problem such as the
Eight-puzzle where the achievement of a goal state and the printing out
of a path leading to this state are the important factors. On the other
hand, one might be using the Graph Traverser as a planning or control
routine where there is no specific goal, and the importance lies in the
pruning of the partial search tree and the selection and application of
a specific operator. So, while facilities, such as finding a path or
pruning a search tree, are provided, it is left to the user to adopt them
in a manner suited to his objectives.

THow to use the program. The program should be compiled by typing:
COMPILE(LIBRARY([LIB GRAPH TRAVERSER)));

A. Data structures

(1) A node on the Graph is termed a JOB and is held as a POP-2

record of 5 components.

(a) STATE The representation of the problem state.

(b)) USAGE The number (an integer> =1) of the operator next to
be applied to this state. .

(c) PARENT The parent node, either another JOB, or UNDET if the
JOB is at the root of the tree.

(d) VALUE The value of a state, as worked olit by the evaluation
function.

(e) OPUSED The number of the operator which was applied to the
parent to reach this state.

(2) The tree is an ordered collection of jobs held on a list, the current

best job is at the head of this list.

B. The growtvee function and its parameters
GROWTREE ¢ JOBLIST, PREDICT, EVAL, ISLIMIT, ISDEVELOPED,
BETTERTHAN
=> JOBLIST,
This function grows a search tree to the specification of the parameters
described. These parameters must be defined by the user. They are
as follows:

(1) JOBLIST This is a list of jobs. It may be:

(a) A new tree with just one job, the root of the tree. A function
NEWTREE is provided to construct this.

(b) A tree left over from a previous search.

(2) PREDICT
PREDICT ¢ POSITION, OPNO => POSITION;
(n.b. POSITION and OPNO are synonyms for STATE and USAGE.

gram Library

m solving
kage
'raverser
aph

tree. Nodes
are held on
t the head.

ty of situa-
tree might be
such as the

2 printing out
n the other

g or control

> lies in the
plication of
oath or

> adopt them

ed by typing:

POP-2

r next to
DEF if the
valuation
ied to the

, the current

’ELOPED,

e parameters
. They are

nction

USAGE.,

r

LIB GRAPH TRAVERSER (185

These latter names are not used here because they are already defined
as selector functions on the job records.)

PREDICT is the function for applying an operator to a state. The
representation of this state is determined by the user. The operator
number is an integer in the range from 1 to a limit appropriate to
ISDEVELOPED (q.v.). This limit may be variable to allow for a
varying number of operators. The function could be of the form:
(a) FUNCTION PREDICT POSITION OPNO;
IF OPNO = 1 THEN
APPLY (POSITION, FIRSTOP) Where FIRSTOP,
ELSEIF OPNO = 2 THEN SECONDOP and THIRDOP
APPLY (POSITION, SECONDOP) are functions.
ELSE
APPLY (POSITION, THIRDOP)
CLOSE
END;
The operators could be held in a list so:
(b) FUNCTION PREDICT POSITION OPNO;
APPLY (POSITION, GET (OPNO, OPERATORLIST))
END;
where GET(N, L) finds the Nth item of a list L.

(3) EVAL
EVAL ¢ JOB => NUMBER;
This is the desirability function, which controls the direction of growth

of the Graph Traverser. Remember that a JOB has a component STATE.

The result of this function is assigned to the VALUE component of a
JOB.

(4) ISLIMIT

ISLIMIT € JOBLIST => TRUE or FALSE;

This function decides when a search shall terminate. This may be:

(a) because the goal state has been found, that is, (ISGOAL(EH
(JOBLIST)) = TRUE) or

(b) because the tree has reached a maximum size, that is,
(LENGTH(JOBLIST) >= TREEMAX)

where ISGOAL and TREEMAX must be specified by the user.

This function is entered as soon as the search function is entered and
then every time a new job is added to the tree.

(5) ISDEVELOPED

ISDEVELOPED ¢ JOB => TRUE or FALSE;
This function returns TRUE if it is not applicable to apply any
operators before the limit of the maximum possible has been reached.
e.g. IF STATE(JOB) = UNDEF OR STATE(JOB) = "FAIL"

OR JOB.ISREPEAT THEN TRUE ELSE FALSE CLOSE;

(6) BETTERTHAN

BETTERTHAN ¢ JOB1, JOB2 => TRUE or FALSE;

This function spec1f1es the ordering of the JOBLIST or, more precisely,
which job should be developed first. It produces TRUE if the first JOB
s "better" than the second.

| e.g. VALUE(JOB1)< VALUE(JOB2) if the goal state has small values.

.C. Other functions available to the user

(1) PRUNE

PRUNE ¢ JOBLIST => JOB, JOBLIST;

This function retraces from the current best job (HD(JOBLIST)) to the
root of the tree; leaves the root JOB as a result, marks the descendent

186) ‘ " Part 4: Program Library

of the root (on the retraced path) as a new root and then removes from
the JOBLIST any JOB which does not descend from this new root.
for example, take a tree

If we show just the state component of a JOB, the JOBLIST correspond-
ing to this tree mightbe [D A B E F C G, so:
PRUNE(DABEFCG]) =

** A, [D BE],

(2) FINDPATH
FINDPATH ¢ JOB => PATHLIST;
This will take any JOB and produce a list of jobs on the path from the
root of the tree to that JOB. So, from the previous example,
FINDPATH(D) =>

** [A B D]

To print out the states from the root to the current best, one would write:

APPLIST(FINDPATH(HD(JOBLIST)), PRIOBSTATE);
where PRJOBSTATE is declared by the user.

(3) NEWTREE

NEWTREE ¢ POSITION => JOBLIST;

This takes a position (state representation) and produces a joblist,
containing one JOB, the root of a tree.

(4) RETRACE

RETRACE ¢ JOB, PRFUN => (); where PRFUN ¢ JOB => ();

This is similar to FINDPATH except that a pathlist is not created. The
jobs on the path from the root of the tree to a specified JOB are
supplied in turn to the function PRFUN; it could be used for just counting
the number of jobs in a path.

(5) ISREPEAT

ISREPEAT € JOB, EQUIVSTATE => TRUE or FALSE, where
EQUIVSTATE ¢ POSITION, POSITION => TRUE or FALSE.

This has the result TRUE if there are any states equivalent to the state
of the given JOB on the path between that JOB and the root of the tree.

(6) ISROOT
ISROOT € JOB => TRUE or FALSE;
Result is TRUE if the job is a root (that is, PARENT(JOB) = UNDEF)

(7) CURTAIL

CURTAIL ¢ JOBLIST, SIZE => JOBLIST;

, This limits the length of the list to a specified size by removing items
from the tail end of a list. It is useful in some circumstances when it
may not be appropriate to prune the joblist, for example, where the

current best is still the root of the tree, and has not been fully developed.

In such circumstances we can prune by removing the least promising
(worst) nodes from the tree.

(8) INSERT

INSERT ¢ ITEM, LIST => LIST;

This inserts an item into an ordered list, ordered under the global (to
INSERT) function BETTERTHAN.,

gvam Library LIB GRAPH TRAVERSER (187

emoves from gExample of use of progvam. Let us take the example from Burstall
ew root. (1968). The tree is defined in terms of a function of two integers
f(n) =n2—2n + 3
gn)=2n2—5n+4
The problem is to find some value of n with some goal property p by
repeatedly applying either f or g (operators) to a starting value ng.
For example,

ng=20
p?n) = 30<n< 40
Part of the corresponding search tree is shown in the tree below.

' correspond-

ath from the
e,

ne would write:

a joblist,

> ();
created. The
)B are ‘ The evaluation function r(n) = | n — 35|

T just counting To search this by partial development (that is, applying one operator
at a time) we would do:

: COMPILE(LIBRARY([LIB GRAPH TRAVERSERY)));

re
nt to the state : FUNCTION PREDICT N OPNO; i
t of the tree. : 1. NL; PR(N); 5. 8P; (Monitoring |

H IFOPNO =1 progress)

THEN PR("F"); (N*N—2*N+3) 1

: ELSE PR("G"); (2*N*N—5*N-+4)

= UNDEF) : CLOSE. PRINT;

: END; ‘
noving items : FUNCTION EVAL JOB; ‘
1ces when it : VARS N;
vhere the : STATE(JOB)—35—>N; (I n=351) ‘
fully developed. : IF N< 0 THEN —N ELSE N CLOSE |
t promising ¢ END; d

¢ FUNCTION ISLIMIT JOBLIST;

: VARS N; ‘
| : STATE(HD(JOBLIST)) —> N; (30< (best job) =< iy
e global (to . BOOLAND(N>30, N=<40); 40) 1

: END;

188) Part 4: Program Library

FUNCTION ISDEVELOPED JOB;
: USAGE (JOB)>2
: END; .

! FUNCTION BETTERTHAN JOBA JOBB;
: VALUE(JOBA)< VALUE(JOBB)
: END;

VARS TREE PATH;
GROWTREE(NEWTREE(O) PREDICT, EVAL, ISLIMIT
ISDEVELOPED, BETTERTHAN) —> TREE

3
6
27
678
1327
46
4006
7
38 :
FINDPATH(HD(TREE)) —> PATH;
MAPLIST(PATH, STATE) =>
* [0 37 38]
However, we may want to proceed (as in Burstall's example) by
applying all the operators at once to a particular state, that is, complete
development. This is done by not applying any operators to a state
until its parent is fully developed. We redefine ISDEVELOPED:
: FUNCTION ISDEVELOPED JOB,;
: BOOLOR(USAGE(JOB)>2,
IF JOB. ISROOT. NOT
THEN USAGE(PARENT(JOB)) =< 2
ELSE FALSE
CLOSE);

33

>
HQQQAQRHHEHA

IR DONND WO

: END;

So now:

: GROWTREE(NEWTREE(0), PREDICT, EVAL, ISLIMIT, ISDEVELOPED,
! BETTERTHAN)—> TREE;

0 F 3
0 G 4
4 F 1
4 G 16
16 F 227
16 G 436
11 F 102
11 G 191
3 F 6
3 G 1
7T F 38

FINDPATH(HD(TREE)) —> PATH;
MAPLIST(PATH, STATE) =>

* [0 37 38],

OPUSED(HD(TL(PATH))) => Find operator used in
R | going from root to first

MAPLIST(TREE, STATE) => job in this path.

++ (3816 1176 4 3 0 102 191 227 436],

crvam Library

e) by

t is, complete
) a state
PED:

DEVELOPED,

used in
t to first
.

PRUNE(TREE) —> TREE; .STATE =>

** 0 The state of the 'old' root
: MAPLIST(TREE, STATE) => of the tree.
** [38 1786 3],

MAPLIST(FINDPATH(HD(TREE)), The tree is now pruned,
: STATE) => and the path correspond-
** [3738] ‘ ingly shorter.

Global variables used. PARENT USAGE STATE VALUE OPUSED
DESTJOB CONSJOB GROWTREE INSERT ISROOT DEVELOP. PRUNE
FINDPATH NEWTREE ISREPEAT RETRACE CURTAIL

fStoved use. The basic program uses approximately 2 blocks. Any
more will depend on the state representation and the size of the partial
search tree. A rough guide is to add 6 words for each node on the
tree.

REFERENCES

Burstall, R. M. (1968) Writing search algorithms in functional form,
Machine Intelligence 3, pp. 373-85 (ed. Michie, D.). Edinburgh:
Edinburgh University Press. .

Doran, J. E.& Michie D.(1966) Experiments with the Graph Traverser
program. Proc.R.Soc. A, 294, 235-59.

LIB GRAPH TRAVERSER (189

190) Payt 4: Program Library
CGRAPH TRAVERSE]

VARS INSERT ISROOT DEVELOP;

VARS PARENT USAGE STATE VALUE OPUSED DESTJOB CONSJ08;

RECORDFNS(*JOB",L0 0 0 0 0]1)=~>OPUSED-D>VALUE=>PARENT=>USAGE~>STATE
->DESTJ0B=->CONSJOB;

FUNCTION GROWTREE JOBLIST PREDICT EVAL ISLIMIT ISDEVELOPED BETTERTHAN;
VARS JOB JOBPOINT;
LO: IF JOBLIST.ISLIMIT THEN JOBLIST EXIT
JOBLIST->JOBPOINT;
Li: IF JOBPOINT.NULL THEN JOBLIST EXIT
IF HD(JOBPOINT).ISDEVELOPED
THEN JOBPOINT.TL=>JOBPOINT3 GOTO L1
CLOSE: .
DEVELOP (HD(JOBPOINT))~>J08;
INSERT(JOB,JORLIST)=>JOBLIST;
GOTO Lo
END

FUNCTION INSERT X L;
VARS HL; L->HL;
IF L.NULL THEN X::NIL EXIT
L1: IF L.TL.NULL
THEN IF BETTERTHAN(X,L.HD)
THEN HD(L), X => HD(L) => X: CLOSE;
X:t:TL(L)=>TL(LYS HL EXIT
IF BETTERTHAN(X,L.HD)
THEN HD(L)::TL(L) => TL(L);
X=> HD(L); HL EXIT
TL(L)=>L3
GOTO L1
END

FUNCTION ISROOT J0B;
PARENT (JOB) =UNDEF ;
END

FUNCTION DEVELOP JOB:
VARS NEW; PREDICT(STATE(J08),USAGE(JDB))~>NENW;
CONSJOB(NEW,1,J08,0,USAGE(JOB))=>NENW;
EVAL(NEW)->VALUE(NEW);
USAGE(JOB) +1->USAGE(J0B)}
NEW3

END

FUNCTION PRUNE JLIST;
FUNCTION DELETE. L PRED;
VARS HL; L->HL;
L1: IF L.NULL THEN HL EXIT
IF L.TL.NULL THEN HL EXIT .
If PRED(L.TL.HD) THEN L.TL.TL=->L.TL;
ELSE L.TL->L; CLOSE:
GOTo L1
END3

am_Library

STATE

BETTERTHAN;

LIB GRAPH TRAVERSER

(191

VARS JOB; JLIST.HD=>JOB;
L1: IF ISROOT(PARENT(JOB))
THEN PARENT(JOB);
wOLD"~> PARENT(PARENT(J0B)):
UNDEF=->PARENT(JOB)
ELSE PARENT(JOB)->J0B3;
GOTO L1
CLOSE;
DELETE(JLIST,
LAMBDA 008B;
VARS UP DOWN OLD:;
“BASE"->DOKWN;
L1: PARENT(JOB)=>UP;
DOWN=>PARENT(J0B);
IF UP = "UNDEF" THEN FALSE=->OLD; GOTO L2 CLOSE;
IF UP = "“OLD" THEN TRUE ->0LD: GOTO L2 CLOSE;
JOB~->DOWN;
UP->J08B;
GOTO L1
L2: PARENT(JOB)->DOWN;
IF OLD THEN “OLD" ELSE UP CLOSE =-> PARENT(JOB);
IF DOWN = "BASE" THEN OLD EXIT;
JOB->UP;
DOWN=>J0B;
GOTO L2
END):
END

FUNCTION FINDPATH JOB;
VARS PATH; NIL->PATH;
Li: JOB::PATH->PATH;
IF JOB.ISROOT THEN PATH EXIT
PARENT (JOB)=>J0B;
GOTO L1
END

FUNCTION NEWTREE S3
VARS JOB; CONSJOB(S.1,UNDEF,0,UNDEF)=->J0B;
EVAL(JOB)->VALUE(JOB);
JOB::NIL;

END;

FUNCTION ISREPEAT JOB EQUIV:
VARS JOBSTATE: STATE(J0B)=>JOBSTATE;
Li: IF JOB.ISROOT THEN FALSE EXIT
PARENT (JOB)=>JOB;
IF EQUIV(JOBSTATE,STATE(J08)) THEN TRUE EXIT
GOTO L1
END

FUNCTION RETRACE JOB PRFUN;
IF JOB,ISROOT THEN PRFUN(JOB); .
ELSE RETRACE(PARENT(JOB),PRFUN); PRFUN(JOB); CLOSE:

END

FUNCTION CURTAIL L MAX;
VARS HL: L->HL;
L1: IF L.NULL THEN HL EXIT
IF MAX=0 THEN NIL->L.TL3 HL EXIT
MAX=1->MAX; L.TL=->L: GOTO L1
END

2.NL;PR(’LIB GRAPH TRAVERSER READY‘);3.NL:

192)) Part 4: Program Library

Pyrogvam name. 'LIB INDEX
Source. R.H.Owen,DMIP; Date of issue. February 1969

fDescription. The program inputs a sequence of words or phrases
with associated page or section numbers and orders them alphabeti-
cally, collecting together the associated numbers of phrases which
occur more than once. The resulting index may be output to any device
in a form either suitable for re-input, or for direct use.

THow to use the program. The program should be compiled by typing:
COMPILE(LIBRARY([LIB INDEX)));

This will also cause the library file LIB ALLSORT, which is used by
the program, to be input.

The following functions will now be available

(1) NEWINDEX();
This function must be called to initialize the program's workspace
before a new index is input. :

(2) READINDEX({charrep));

This function is used to read in the index from an input device whose
character repeater is (charrep). The input must have the following
format: '

(word or phrase);{non-empty sequence of numbers);

and must be terminated by an asterisk, for example,

ALEXANDER THE GREAT; 41 42;

BUCEPHALUS; 42;

AGAMEMNON; 43;

BUCEPHALUS: 43;

MENELAUS; 43 44;

*

As above, more than one number may be associated with a phrase if
desired, and a phrase can occur more than once. When the index is
ordered, the associated numbers of similar phrases will be grouped
together. '

(3) MAKEINDEX ({charrep)); -
This outputs the index in alphabetical form. to the output device whose
character repeater is (charrep), in the form: ‘

A

AGEMEMNON 43
ALEXANDER THE GREAT 41 42
B

BUCEPHALUS 42 43
M

MENELAUS 43 44

(4) STOREINDEX({charrep));
This function outputs the index to a device, whose character repeater
is (charrep), in a form suitable for reinput directly by READINDEX.

TMethod used. The index is stored as a list of records in an array.
The phrase is represented as a character strip in one component of
the record, and the sequence of numbers as a list in the other compo-
nent of the record.

LIB ALLSORT is used for the ordering process.

TGlobal variables used. READSTRING LISTOSTR READNOS ORDER-
STRING EQSTRING NAMEINDEX NOINDEX DESTINDEX LETTER
-CONSINDEX AORDER ABORDER COMPRESS NORDER SORTLETTER
IOUTPUT STOUTPUT FORMAT and the globals in LIB ALLSORT.

vam Library

69

phrases
lphabeti-~

S which

o any device

d by typing:

s used by

rkspace

ice whose
ollowing

hrase if
ndex is
grouped

ice whose

repeater
INDEX.,

array.
nent of
' compo-

ORDER-
'TER
LETTER
ORT.

i

LIB INDEX

(193

YExamples. (a) to read in an index.

:NEWINDEX();
:READINDEX(CHARIN);

+HILBERT, DAVID; 1 2 3;
:KLEENE, STEPHEN; 2;
:LESNIEWSKIT,; 2;
:LORENZEN, PAUL; 3;
:FRIEDBERG; 3;
:KLEENE, STEPHEN; 3;
:MUCNIK; 4;

:HILBERT, DAVID; 4 5;
ok

‘MAKEINDEX(CHAROUT);
F

FRIEDBERG 3
H

HILBERT, DAVID

K

KLEENE, STEPHEN 2 3
L

LESNIEWSKI 2
LORENZEN, PAUL 3
M

MUCNIK 4

12345

(Initialize workspace)
(Read index from console)

(Type in index)

(Terminate with asterisk)
(Output index to console)

(The ordered index)

(b) to store an index on, for example, paper tape.
:STOREINDEX(POPMESS(|[PTOUT INDEX)));

to read the index from paper tape

:NEWINDEX();

:READINDEX(POPMESS([PTIN INDEX)));

fStore used. The program occupies approximately 4 blocks of store.

194) Part 4: Program Library
CINDEX) ‘

VARS GOBBLE READSTRING LISTOSTR READNOS NDINDEX NAMEINDEX
DESTINDEX CONSINDEX AORDER READINDEX ORDERSTRING ABORDER
NORDER COMPRESS: SORTLETTER EQSTRING STOREINDEX STOUTPUT
‘NEWINDEX MAKEINDEX IOUTPUT FORMAT CUOUT2 CUOUT CUCHARIN

-

VARS CHARCOUNT MARGIN; 0->CHARCOUNT;30->MARGIN;

FUNCTION READSTRING ; VARS A B C ; NIL->A31->C;
L: CUCHARIN()=>B;
[F B=26 THEN IF NOT(CUCHARIN=CHARIN) THEN GOBBLE(CUCHARINJ CLOSE:;
SETPOP() EXIT; _
IF B=11 THEN IF C=0 THEN 16::A->A CLOSE3 LISTOSTR(A) EXIT:;
IF NOT(B=16) THEN B::A=>A;0->C;
ELSEIF C=0 THEN B::A=>A;C+1->C;
ELSE C+1->C; CLOSE:
GOTO ¢
END;

FUNCTION LISTOSTR A; VARS 8 C ;
LENGTH(A)->B; INITC(B)->C;
APPLIST(A,LAMBDA X;X->SUBSCRC(B,C);B-1=>B;END);
o}

END;

FUNCTION READNOS;VARS A B READITEM;
NIL=>B;CUCHARIN.INCHARITEM=>READITEM;
L: +READITEM=>A;
IF- A=v;» THEN B EXIT;
IF A.ISNUMBER THEN A::B=->B; GOTO L CLOSE;
PLEASE TYPE PAGE NUMBERS*=>; .READNOS}
END:

RECORDFNS("INDEX",C0 01)=>NOINDEX->NAMEINDEX->DESTINDEX=>CONSINDEX;

FUNCTION AORDER LETTER ;VARS V W;
[
READSTRING()=>V;SUBSCRC(1,V)=>H;
IF W<33 OR W>58 THEN
‘PLEASE TYPE A SEQUENCE OF CHARACTERS BEGINNING WITH A LETTER'=>;
1.NL; GOTO L; CLOSE;
CONSINDEX(V,READNOS())::LETTER(N)~D>LETTER(N);
END;

FUNCTION READINDEX INCR; INCR=>CUCHARIN;
LL: AORDER(LETTER); GOTO LL:
END:

FUNCTION ORDERSTRING A B; VARS AL BL I C IA IB ;
DATALENGTH(A)~->AL; DATALENGTH(B)->BL31->1}
If AL<BL THEN AL ELSE BL CLOSE->C:
L: IF 1>C THEN AL<BL EXITS
SUBSCRC(1,A)->1A; SUBSCRC(I,B)=>1B;
IF 1A>IB THEN TRUE
ELSEIF IA<IB THEN FALSE
ELSE I+1->I; GOTO L; CLOSE;

END:
COMPILE(CLIB ALLSORT].LIBRARY);

FUNCTION ABORDER LETTER; VARS 1;:;33->I;
L: IF I>58 THEN EXIT;
ALLSORT(LETTER(1),LAMBDA X Y;ORDERSTRING(X.NAMEINDEX,Y.NAMEINDEX);
END)=>LETTER(1):1+1->I; GOTO L;

END;

FUNCTION NORDER NLIST;
ALLSORT(NLIST,NONOP <)
END;

ogram Library LIB INDEX (195

FUNCTION FORMAT X;
APPLIST(X.DATALIST,CUCHAROUT);
END;

RDER

PUT FUNCTION COMPRESS LETTER 1 => NEWLETI;

HARIN 3 VARS B C ;NIL=->B;NIL->C;

APPLIST(LETTER(I),LAMBDA X;IF B.NULL THEN [X X X1->B8;
ELSEIF EQSTRING(B.HD.NAMEINDEX,X .NAMEINDEX)
THEN CONSINDEX(X.NAMEINDEX,
B.HD.NOINDEX<>X.NOINDEX)::NIL->B;

. ELSE B<> C->C;[% X¥1 ->B; CLOSE;

RIN) CLOSE: END);

B<>C->NEWLETI;

173 END;

FUNCTION SORTLETTER LETTER ; VARS [;33->1;
L: IF 1>58 THEN EXIT:;
COMPRESS(LETTER, I)=>LETTER(I);
I+1=->1;
GOTO L3
END;

FUNCTION EQSTRING A B;EQUAL(DATALIST(A),DATALIST(B));
END;

FUNCTION STOREINDEX OUTCR ;VARS I ;
QUTCR=>CUCHAROUT;33=->1;

LL:IF I>58 THEN PR(“#")31.NL3O0UTCR(TERMIN); EXIT:
APPLIST(LETTER(I1),STOUTPUT);1+1=->1;

BOTO LL;

END: '

FUNCTION STOUTPUT X

X+« NAMEINDEX.FORMAT;PR("3")
CONSINDEX; . APPLIST(X.NOINDEX,PR);PR(";");1.NL;
" END3

FUNCTION.CUOUT2 C:
IF C=17 THEN 0->CHARCOUNT;CUQUT(C);
ELSEIF C=63 THEN
A LETTER'=>; IF CHARCOUNT> MARGIN THEN 2.SP
ELSE SP(MARGIN-CHARCOUNT) CLOSE;
ELSE CUOUT(C);CHARCOUNT+1->CHARCOUNT; CLOSE;
END:3

FUNCTION NEWINDEX ;
* NEWARRAY([33 581,LAMBDA X; NIL;END)->LETTER;
END;

FUNCTION MAKEINDEX OUTCR; VARS I LET:
CUOUT2~>CUCHAROUT ; OUTCR=>CUOUT;
ABORDER(LETTER) ; SORTLETTER(LETTER):33=>1;

LL:IF 1>58 THEN 3.NL;OUTCR(TERMIN); EXIT3
LETTER(I)-DLET;
IF LET.NULL.NOT THEN 3.NL;3;CUCHARQUT(I);1.NL3CLOSE;
APPLIST(LET,IOUTPUT); I+1->1}% GOTO LL;

END;

FUNCTION IOQUTPUT X;
1.NL;X.NAMEINDEX.FORMAT; CUCHAROUT(63) 35
APPLIST(X.NOINDEX.NORDER,LAMBDA Y;Y.PR;1.SP;END);

END;
FUNCTION GOBBLE XT ;
NAMEINDEX) ; LL:XT()=>B;IF B=TERMIN THEN EXIT3;GOTO LL:
END3
2.NL;

‘L1B INDEX 1S READY FOR USE‘'.PR;
2WNL3

196) Part 4: Pyogram Libvary

Progvam name. LIB INVTRIG

Source. S.Arrell, Esk Valley College; Date of issue. February
1969,

fDescrviption. This package contains three inverse trigonometric
functions ARCSIN, ARCTAN, and ARCCOS.

YHow to use the program. The program should be compiled by typing:
COMPILE(LIBRARY([LIB INVTRIG)));

TMethod used. Evaluation is by a truncated Chebyshev polynomial
expansion, and is accurate to within 4 significant figures,

TGlobal variables. The program uses 2 functions:
ABS(X); the modulus of X
REALSIGN(X); the standard function SIGN

7Store used. Approximately a 1/, block of store is used on the 4100.

L

cIw
VARS
FUNC
END;
FUN(
END:

FUN(

ENDi

FUNC

END:
FUN(

END:

ram Library

‘ebruary

metric

d by typing:

ynomial

the 4100.

LIB INVTRIG (197

CINVTRIG)
VARS ABS ARCTAN ARCSIN ARCCOS REALSIGN ;

FUNCTION ABS X3
IF X<0 THEN -X ELSE X CLOSE;
ENDS

FUNCTION REALSIGN X;
(X>0)=-¢X<0)
END;

FUNCTION ARCTAN X3
VARS A X#X=>A}
IF ABS(X)>1.0 THEN (1.570793-ARCTAN(1/ABS(X)))=REALSIGN(X)
ELSE X#(((((=0.,0134222#A+0.0573305)#A-0,12111)#A+0.195589)*A
-0.332989)#A+0.9999955); CLOSE;

END;

FUNCTION ARCSIN X;
VARS A;;X#X=>A;
IF ABS(X)>0.7071 THEN (1.5707963-ARCSIN(SQRT(1-A)*REALSIGN(X)))
ELSE X#1.4142136#(((((0,.06813252A-0,0171236)%A+0,0430539)4#A
+0.0515667)#A+0.117918)#A+0,7071063);CLOSE:;

END; ! ‘

FUNCTION ARCCOS X;
IF ABS(X)>0.7071 THEN ARCSIN(SORT(1=X#X)*REALSIGN(X)) ELSE
1.571~ARCSIN(X); CLOSE;

END;

198) ‘ Part 4: Progvyam Library

Program name. LIB KALAH
Source., R.D.Dunn,DMIP; Date of issue. December 1968,

fDescviption. KALAH is an old Arabic game which is normally played
using holes dug out of the sand, and pebbles. This program plays a
game with the user, requesting moves, automatically replying, and
displaying the board state between each move.

fHow to use progvam. Program should be compiled by typing:
COMPILE (LIBRARY([LIB KALAH])):

The program will ask several questions of the user, and will, on request,

explain the game fully. Please terminate all replles with carriage-

return/line-feed.

A variable, DEPTH, may be used to control the degree of difficulty of
the game played by the computer. DEPTH has the initial value 2, and
this produces a reasonable game for the beginner, the machine taking
less than 30 seconds to make a move. If the value of DEPTH (which
must be integral) is increased, the move-time increases by a large
factor.

TMethod used. The program makes its moves by a mini-maxing look-
ahead procedure to a depth of DEPTH half-moves ahead, applying the
alpha-beta heuristic to reduce the size of the search-tree. No storage
of board positions is made. The evaluation function, in effect, does a
half move as well, and the value of the position is calculated from a
multiple of the difference between the number of stones in the two
Kalahs, together with a multiple of the expected differences after all
possible mcves have been made.

¥Stove vequived. The program occupies approximately 5 blocks of
store.

REFERENCES

Samuel, A. L. (1959) Some studies in machine learning using the game
of checkers. IBM.J.Res.Dev., 3, 211-29.

Samuel, A. L. (1960) Programming computers to play games. Advances
in Computers, Vol.1,pp. 165-92, (ed. Alt, F. L.) New York and London
Academic Press.

Russell, R. (1964) Kalah—the game and the program. Stanford Avtificial
Im‘ellzgence Project Memo No, 22. Stanford University,

ogram Library

1968,

rmally played
m plays a
ying, and

yping:

will, on request,
carriage-

difficulty of
value 2, and
ichine taking
TH (which
by a large

-maxing look-
applying the
2, No storage
fect, does a
ted from a

n the two

es after all

) blocks of

ing the game

nes. Advances
York and London

nford Artificial
ty.

LIB KALAH (199

CKALAHID

VARS RESIGN WIN RF MESS ENDGAME HALF P1 P2 VAL XXX N Q@ § T DEPTH ALPHA BETA
MYSCORE YOURSCORE STONES DRAWS IWINS YWINS FREESTORE FREECHAIN
GAMEOVER BOARD CHARS DUMP TOSUBSCR;

3 -> DEPTH; -100000 -> ALPHA; 100000 -> BETA; UPDATER(SUBSCR) => TOSUBSCR:
NIL => FREESTORE; NIL => FREECHAIN;

FUNCTION INPR X;
IF X < 10 THEN SP(1): CLOSE;
PR(X);

END;

FUNCTION NICEPR X;
IF x=32 OR X=23 THEN EXIT
CHARS(X)

END;

FUNCTION BPR;
VARS K3
NL(1); SP(4); 13->K:
8
INPR(BOARD(K)); K=1=>K;
IF K > 7 THEN GOTO ZB CLOSE:
NL{1); INPR(BOARD(14)); SP(21); PR(BOARD(7)); NL(1);
1->K3 SP(4);
2C:
INPRCBOARD(K)); K+1i=>K;
IF K ¢ 7 THEN GOTO zZC CLOSE: NL(1);
END;

FUNCTION. MOVE; => N;
14, 7, IF N>7 THEN =>S =->T ELSE ->T ->S CLOSE:
BOARD(N)=~> @; 0=>BOARD(N); N+1->N;
LOoDP:)
IFFN = S THEN GOTO SNOOP CLOSE;
LOOPY
BOARD(N)+1 => BOARD(N); 0<-1->0;
IF @ THEN
SNoOP:
Nei=> N; IF N = 15 THEN 1 => N; GOTO LOOP1 CLOSE;
GOTO LOOP;
CLDSE;
IF N=T THEN TRUE EXIT;
IF. BOARD(N) = 1 AND N<T AND N>=T-6 AND BOARD(14-N) THEN
BOARD(T)+BOARD(14-N)+1 => BOARD (T); 0 ~> BOARD(14-N);
0 => BOARD(N);
CLOSE;
FALSE
END;

FUNCTION NEWBOARD: VARS X3
INIT(14)->X;
TOSUBSCR(%X%) ;
§UBSCR(%XX)->X: =>UPDATER(X) 3

END;

200) Payt 4: Program Library

FUNCTION EXPLORE SIDE ALPHA BETA;
VARS BMOVE P DUMP;
I[F ATOM(FREESTORE) THEN
NIL::FREECHAIN~->FREECHAIN;
+NEWBOARD->DUMP;
ELSE
FREESTORE.FRONT=->DUMP; FREESTORE.BACK:
FREECHAIN=->FREESTORE.BACK; FREESTORE <> FREECHAIN; <=>FREESTORE;

CLOSE;
SIDE+6~->P; 1~>ENDGAME;
LOOP:
IF BOARD(P) THEN
14->N;
SET:

BOARD(N)=>DUMP(N); N-1=>N; IF N THEN GOTO SET CLOSE;
0 -> ENDGAME;
IF MOVE(P) THEN EXPLORE(SIDE,ALPHA,BETA)=>XXX;
ELSEIF DEPTH THEN
DEPTH=-1->DEPTH; .
EXPLORE(IF SIDE THEN 0 ELSE 7 CLOSE,ALPHA,BETA)=>XXX;
DEPTH+1=->DEPTH;
ELSE
BOARD(14)->P1; BOARD(7)~>P2;
IF P1>=HALF OR P2>=HALF THEN .GAMEOVER->XXX; 2000#(MYSCORE-YOURSCORE);
ELSE P1~P2 CLOSE
CLOSE -> VAL;
BOARD, DUMP->BOARD ->DUMP;
TEST:
IFf SIDE THEN
[F VAL<KBETA THEN
IF VAL>ALPHA THEN VAL->ALPHA; P->BMOVE CLOSE
ELSE BETA, BMOVE; GOTO SAVESPACE CLOSE
ELSE
IF VAL>ALPHA THEN
IF VAL<BETA THEN VAL->BETA; CLOSE
ELSE ALPHA, BMOVE; GOTO SAVESPACE CLOSE
CLOSE
CLOSE;
P-1 => P; 1F P>SIDE THEN GOTO LOOP CLOSE;
IF ENDGAME THEN
0->ENDGAME;
.GAMEOVER->XXX; 2000#(MYSCORE-YOURSCORE)=>VAL;: GOTO TEST
CLOSE;
If SIDE THEN ALPHA ELSE BETA CLOSE, BMOVE;
SAVESPACE:
DUMP->FREECHAIN.FRONT; FREECHAIN.BACK; FREESTORE->FREECHAIN,BACK;
FREECHAIN->FREESTORE; =>FREECHAIN;
END;

FUNCTION READNEXT;
APPLY (INCHARITEM(CHARIN));
END;

FUNCTION MOVIN X3
VARS DUMP;
NL(2); PR(X);
IN:
- READNEXT()=>X3
IF X = “HELP" THEN
+NEWNBOARD->DUMP;
14~->N;
SET:
IF N¢8 THEN BOARD(N+7) ELSE BOARD(N-7) CLOSE =~> DUMP(N);
N-1->N; IF N THEN GOTO SET CLOSE;
DUMP, BOARD->DUMP->BOARD;
EXPLORE(7,ALPHA,BETA) =-> X3 ERASE; NL(1):;
PRC’TRY MOVE‘'): PR(X~7);
DuMP -> BOARD; GOTO IN
ELSEIF X="RESIGN" THEN 1->RESIGN; FALSE EXIT;
IF NOTC(ISINTEGER(X)) OR X<1 OR X>6 OR BOARD(X)=0 THEN
PR(’ILLEGAL MOVE = TRY AGAIN‘); GOTO IN;
CLOSE;
MOVE(X); BPR();
_ END;

ryam Library LIBKALAH (201

FUNCTION GAMEOVER;
6->N; 0=>MYSCORE; 0->YOURSCORE;
LO:
MYSCORE + BOARD(N+7) =-> MYSCORE;
YOURSCORE + BOARD(N) -> YOURSCORE;
N-1=>N; IF N THEN GOTO LO CLOSE;

 TORE 3 IF MYSCORE=0 OR YOURSCORE=0 OR BOARD(14)>=HALF
'OR BOARD(7)>=HALF OR RESIGN THEN'
TRUE;
ELSE
FALSE
CLOSE;
MYSGORE+BOARD(14)->MYSCORE; YOURSCORE+BOARD(7)->YOURSCORE;
END;

FUNCTION PLAY:

0 -> WIN: 0 -> RESIGN; .BPR;

PR
DO YOU WANT TO START);

IF .READNEXT="N&" THEN ‘MY FIRST MOVE:‘ -> MESS; GOTO MYMOVE CLOSE;
- YOURSCORE) 3 LOOP !
“YOUR MOVE® -> MESS; !
LOOP1: i

IF GAMEOVER() THEN GOTO STOPPE CLOSE;
IF MOVIN(MESS) THEN ‘YOU MOVE AGAIN' -> MESS; GOTO LOOP1 CLOSE:
‘MY MOVE:® -> MESS; ‘
MYMOVE : !
IF GAMEOVER() THEN GOTO STOPPE CLOSE;
NL(2); PR(MESS); EXPLORE(7,ALPHA,BETA) =>RF; =>XXX;
IF XXX>999 AND NOT(WIN) THEN

PR(‘ [AM GOING TO WIN, MOVE:‘); 1->WIN;
ELSEIF XXX< -999 THEN
PR(’ 1 RESIGN.,

sYOU WIN®‘); YWINS+1->YWINS;
GOTO GAMESTOT;
CLOSE;
PR(RF=7)3 NL(2): !
IF BPR(MOVE(RF)) THEN
'ME AGAIN:* => MESS; GOTO MYMOVE
. ELSE '
-BACK: GOTO LOOP ‘
CLOSE;

STOPPE:
IF RESTGN THEN
[F ERASE(EXPLORE(7,ALPHA,BETA))<999 THEN
PR(’

1 THOUGHT T COULD STILL LOOSE» NEVERTHELESS =-‘);
ELSE I
PR¢’ i

VERY WISE“);
CLOSE;
PRC’

#] WIN®#Y); IWINS+1->IWINS; l
GOTOD GAMESTOT; '

CLOSE; '

PR’

GAME FINISHED. MY SCORE I1S‘); PR(MYSCORE);
PR(‘, YOUR SCORE 1S*); PR(YOURSCORE): PR(’,

vy t“d
NL(2): it -
PR(IF MYSCORE=YOURSCORE THEN i

‘#WE DRAW='; DRAWS+1->DRAWS;
ELSEIF MYSCORE>YOURSCORE THEN
‘21 WIN#'; IWINS+1=->IWINS;
ELSE ‘#YOU WIN#'; YWINS+1=>YWINS; I
CLOSE)
GAMESTOT:
PR(”

202) Part 4: Program Library

GAMES TO ME =-‘); PR(IWINS); PR(’. GAMES TO YOU =‘);
PRCYWINS); PR(’. DRAWS =-‘); PR(DRAWS); PRC(’,

)3

END;

FUNCTION CONTINUE B;

VARS N P T CUCHAROUT:;
CUCHAROUT->CHARS; NICEPR=->CUCHAROUT;
0->DRAWS; 0-D>IWINS; O0=>YWINS; 0-~>T;
.NEW3NARD=>ROARD; 1->N;

SET:
NEXT(R)=-DR=>P3 P+T-3T; P=>BOARD(N);
N+1=>N; IF N<15 THFN GOTO SET CLOSE:;
INTOF(T/2)->HALF; PLAY():

END;

VARS OPERATION 1 KALAH;

FUNCTION KALAH;

VARS START X CUGHAROUT:
0->DRAWS; 0=>IWINS; 0=-D>YWINS;
CUCHARQUT~>CHARS; NICEPR=>CUCHAROUT:
PR(’

PLEASE TERMINATE ALL REPLIES WITH RETURN/L INE-FEED,

DO YOU KNOW HOW TO PLAY THE GAMF‘);
IF READNEXT()="NO" THEN

DR('
ME
6 5 4 3 2 1
K K
1 2 3 4 5 6
You
‘)3 PR

THE ABOVE IS A DRAWING OF THE KALAH BOARD, EACH PLAYER HAS
A ROW OF SIX "PITS" IN FRONT OF HIM, NUMBERED AS SHOWN, AND A
KALAH PIT TO HIS RIGHT, [INITIALLY ALL THE PITS HAVE AN EQUAL‘); PR(’
NUMBER OF STONES IN THEM EXCEPT THE KALAHS, WHICH ARE EMPTY.
A MOVE CONSISTS SIMPLY OF TAKING STONES FROM ONE OF YNUR OWN
PITS, AND DISTRIBUTING THEM ANTI-CLOCKWISE ONF RY ONE INTO THE
OTHER 21TS, INCLUDING YOUR OWN KALAH, BUT NOT YNUR OPPONENTS,'): PR(’
THE TWO RULES ARE:-
1) IF YOUR 'LAST STONE LANDS IN YOUR KALAH, YOU TAKE
ANOTHER MOVE, *); PR(‘
?) IF YOUR LAST STONE LANDS IN AN EMPTY PIT ON YOUR OWN
SIDE, THAT STONE, TOGETHER WITH ALL THE STONFS IN THE
PIT OPPOSITE, ARE PUT IN YOUR KALAH,‘): PR(’

THE ORJECT OF THE GAME IS TO COLLECT AS MANY STONES IN YOUR
KALAA AS PQSSIBLE, THE GAME REING OVER WHEN EITHER. PLAYER HAS
NO STONES LEFT TO MOVE, OR WHEN ONE PLAYER HAS MORE THAN HALF‘'); PR(’
THE TOTAL NUMBER OF STONES IN HIS KALAH, THE TOTAL SCORE IS
~ THE NUMRER OF STONES IN YOUR KALAH PLUS THE SUM OF THF STONES LEFT
IN THE PITS ON YOUR SIDE.*); PR(*

A MOVE IS MADE BY TYPING THE NUMBER OF THE PIT FROM WHICH YOU
WISH TD PLAY (SEF BOARD AROVE). YOU MAY ASK THE COMPUTER TO
SUGGEST YOUR BEST MOVE BY TYPING HELP,

IF YOU WISH TO RESIGN TYPF RESIGN,

ram Library

AS
‘)3 PRC’
OWN

)3 PRC

THE

UR

*); PR

LEFT

You

LIB KALAH

(203

SIX STONES PER PIT IS CONSIDERED THE BEST GAME, THRFE PER PIT
GIVING A GOOD BEGINNERS GAMF.
AR]
CLOSE;
Lo
PR(’ :
HOW MANY STONFS PER PIT WOULD YOU LIKE');
LREADNEXT=>STONES; STONES#6->HALF;
IF NOT(ISINTEGER(STONES)) THEN PR(‘COME NOW®*):; GOTO L0 CLOSE;
JNEW3DARD~>ROARD;
14->N3
SET:
STONES=>BOARD(N); N=1=->N; IF N THEN GOTO SET CLOSE;
0->80ARN(7); 0-D>ROARD(14);
PLAY ()
PR(‘HWOULD YOU LIKF ANOTHER GAME‘);
IF JRFADNEXT="YES" THEN GOTO LO ELSE PR(’
BACK TD POP-2 THEN,

*); CLOSE
END3
PR(’

TO ENTER PROGRAM TYPE KALAH;

vV);

204) Part 4: Program Libvary

Program name. LIB MATRIX
Source. R.J.Popplestone, DMIP; Date of issue. December 1968,

fDescription. This program provides several operations on functions
treated as matrices. These are matrix addition, subtraction, multiplica-
tion, and scalar multiplication, a function which calculates the deter-
minant of a square matrix, and functions for creating, inputting, and
outputting matrices.

fHow to use program. The program should be compiled by typing:
COMPILE (LIBRARY ([LIB MATRIX]));

The following functions will then be available:
NEWMATRIX(X, Y, F); Creates a matrix with dimensions 1-X and
1-Y from the function F.

MATPR(A); Prints the matrix A on the current output
device.
READMAT(); Forms a matrix from information typed in.

This should be in the form: number of rows,
number of columns, semi-colon,the values

" of the elements of the matrix typed in row
by row, and terminated by a semi-colon.

A ++B; Adds the matrices A and B.

A—B; Subtracts the matrix B from the matrix A,

A** B, Multiply the matrix A by the matrix B,
Note. ++ and —— are operations of pre-
cedence 5,and ** is an operation of pre-
cedence 4.

SUBMAT (ILO, IHI, JLO, JHI, A); Produces the submatrix of A which
consists of the partition between rows ILO
and IHI, and the columns JLO and JHI.

HMULT(A, B); Horizontal concatenation of A and B.

VMULT (A, B); Vertical concatenation of A and B,

SMULT(X, A); Scalar multiplication of A by the number X.

DET (A); Produces the determinant of the square
matrix A,

IMethod used, NEWMATRIX creates a new function from the one
supplied, setting its FNPROPS to contain the dimensions of the matrix.
This is in the format, [X ROWS COLS], where X is the name of the
function (which can be overwritten, or used by SPEC), ROWS is the
number of rows, and COLS the number of columns in the matrix.

JEvrovs. If the arguments given to any of the functions are of the
wrong type, an error message is printed, and SETPOP is entered.

For example, if A is a non-square matrix:
DET(A); »

** 'DET ERROR. NON SQUARE MATRIX',
SETPOP:

7Global vaviables used. FUNTOMAT MATPR ROWNO COLNO
DLISTOF ++——** SIGMA SUBMAT HMULT VMULT QUAD DELROW -
COL DET READMAT COPYMAT SMULT NEWMATRIX.

¥Stove used. The program occupies some 3. 5 blocks of store.

- YEx

con

oL DN ﬁ
e JY S Y NG iy

WwWwH N E
(e BT - S Y- -

B> 2

o O

=

RrpopE 200 AR
[« S

gg nhMr

E == W

W WK N

* ok

SE

Dk

%

gram Libvary

mber 1968.

on functions
on, multiplica-
the deter-
itting, and

by typing:

ons 1-X and
rent output

ion typed in.
nber of rows,
, the values
ped in row
ni-colon.

e matrix A,
atrix B.

1S of pre-
on of pre-

of A which
n rows ILO
nd JHI,

nd B.

| B.

e number X,
e square

| the one

f the matrix,
e of the

/S is the
1atrix.

re of the
ntered.

)LNO
AD DELROW -

tore.

LIB MATRIX

(205

‘ ﬂExdmples of use

COMPILE (LIBRARY ([LIB MATRIX]));

READMAT(();

=
c
=

T(0.49,A) — C;
A ++C — B;

2.98 5.96 7.45 4,47
1.49 1.49 13.41 5.96
4,47 5,96 1,49 10,43
4.47 0 11.92 0

SMULT (0. 04, B) — D;

D** A — E;

MATPR(E);

1.907 1.907 4.47 3.397
2.503 2.444 3,278 4.172
2.026 1.192 6.437 1.907
1.788 2.622 1.371 3.874
SUBMAT(1, 4, 3,4,E) — F;
MATPR(F);

4,47 3.397

3.278 4,172

6.437 1.907

1.371 3.874
MATPRHMULT (A, F));

2 45 3 4,47 3.397
119 4 3.278 4,172
3417 6,437 1.907
3080 1,371 3.874
DET(A) =>

** 'DET ERROR. NON SQUARE MATRIX'
SETPOP:

DET(E) =>

** 4,073

oy e ~——"

206) Payt 4: Progvam Library

CMATRIX]

VARS COLNO ROWNO DLISTOF SMULT COPYMAT:

FUNCTION FUNTOMAT DLIST F;
FC% %) => F;

IF F.FNPROPS.ATOM THEN F_FNPROPS::NIL-)#.FNPRO#S CLOSE:

DLIST => F.FNPROPS.TL; F
END

FUNCTION NEWMATRIX X Y F3;
FUNTOMAT(CXX,Y%]1,F);
END;

FUNCTION MATPR F;

VARS MAXI MAXJ: F.ROWNO => MAXI; F.COLNO =-> MAXJ;

2.NL3 VARS.1 J;
1 ->1;
Lo: IF I > MAXI THEN EXIT
2.NL 1 => U3
L1t IF J > MAXJ THEN I + 1. => I; GOTO LO CLOSE;
PR(F(L,JY)s J + 1:=> J; GOTO L1
END

FUNCTION ROWNO A;
A.FNPROPS.TL.HD
END '

FUNCTION COLNO A:
A.FNPROPS.TL.TL.HD
END

LAMBDA; .FNPROPS.TL END ->DLISTOF;
VARS OPERATION 5 (++ --) OPERATION 4 sa;

FUNCTION ++ A B3
IF EQUAL(DLISTOF(A) , DLISTOF(B)) THEN
FUNTOMAT(DLISTOF(A),

LAMBDA I JU F G; F(I,J) + G(1,J) END (XA,

EXIT

[++ ERROR] => ; .SETPOP;
END

FUNCTION -- A B;
IF EQUAL(DLISTOF(A), DLISTOF(B)) THEN
FUNTOMAT(DLISTOF (A),
LAMBDA I J F G; 'F(L,J) = G(I,J) END (XA,
EXIT

C-- ERROR] => .SETPOP
END

FUNCTION SIGMA ISIG FSIG; VARS SS1G; 0 -> SSIG;
Lot IF ISIG = 0 THEN SSIG EXIT

FSIG(ISIG) + SSIG ~> SSIG; 1ISIG - 1 -> ISIG;
END

FUNCTION #» A B;
IF A.ISNUMBER THEN SMULT(A,B) EXIT;
If B.ISNUMBER THEN SMULT(B,A) EXIT;
IF A.COLNO = B.ROWNO THEN
FUNTOMAT([C%A.ROWNO, B.COLNOX],
LAMBDA I J F G

BX))

BX))

GOTO LO

SIGMA(F.COLNO, LAMBDA K; F(I,K) # G(K,J) END)

END(X A, B¥%))
EXIT

[s#+ ERROR1 => ,SETPOP
END

Fl

F1

Et

Fl

Et

Fi

Et

F

E

Fl

El

€l

cyam Library

LIB MATRIX (207

FUNCTION SUBMAT TLO TUP JLO JUP A;

ILO - 1 => IL0; JLO -1 => JLO;

FUNTOMAT(L% 1UP-ILO, JUP=-JLOX%],

LAMBDA I J ILO JLO A: ACI+ILO, J+JLO) END (XILO, JLO, AX))
END

. FUNCTION HMULT A B

IF A.ROWNO = B.ROWNO THEN
FUNTOMAT (LXA.ROWNO, A.COLNO + B.COLNO X1,
LAMBDA I J OFFSET A B:
IF J =< OFFSET THEN A(1,J) ELSE B(l,J-OFFSET) CLOSE

END (XA.COLNO, A, BX))

EXIT

[HMULT ERROR] => .SETPOP

END

FUNCTION VMULT A B:
IF A.COLNO = B.COLNO THEN
FUNTOMAT(CXA.ROWNO + B.ROWNO, A.COLNOXJ],
LAMBDA 1 J OFFSET A B;
IF I =< OFFSET THEN A(I,J) ELSE B(I-OFFSET,J) CLOSE
END (X A.ROWNO, A, B X))
EXIT
[VMULT ERROR] => .SETPOP
END

FUNCTION QUAD A B C D;

HMULT (VMULT(A,C), VMULT(B,D))
END

_FUNCTION DELROWCOL [J A;

QUAD(SUBMAT(1,1~-1, 1,J~1, ‘A), SUBMAT(1,I-1, J+1, A.COLNO, A),
SUBMAT(I+1, A.ROWNO, 1, J=1, A)., 'SUBMAT(I+1, 'A.ROWNO, Je+1, A.COLNOD, A))

END

FUNCTION DET A:
IF A.ROWNO = A.COLNO THEN
IF- A.ROWNO = 1 THEN A(1,1) ELSE
SIGMA(A.COLNO, LAMBDA I3 (=1)+(I+1) « DET(DELROWCOL(1,1,A)) # A(1,1) END)

CLOSE
ExIT
[DET ERROR] => .SETPOP3;
END

FUNCTION READMAT;
VARS A IMAX JMAX 1 J;
1 -> I; [ITEMREAD() -> IMAX; [ITEMREAD() =-> JMAX:

IF NOT (ITEMREAD() = ";") THEN L[ITEMREAD ERROR] => .SETPOP CLOSE:
COPYMAT(FUNTOMAT(CXIMAX, JMAXX1, LAMBDA I J3 0 END)) => A;
LO:

IF 1 > IMAX THEN IF ITEMREAD() = ";"_THEN A EXIT CREADMAT ERROR] => A EXIT:

1 -> 0
L1:
IF J > UMAX THEN I + 1 => I; GOTO LO CLOSE;
e ;TEMREAD() => A(I,J)5 Jel => J; GOTO L1
N

208) Payt 4: Progvam Library

VARS OPERATION 7 ==> ; MATPR => NONOP =2=> ;

FUNCTION COPYMAT A;
FUNTOMAT(A.DLISTOF, NEWARRAY(LX1, A.ROWNDO, 1, A.COLNO X1, A)) => A;
A,FNPROPS =-> A.FNPART.FNPROPS: A.FNPART

END

FUNCTION SMULT X A;

FUNTOMAT(A.DLISTOF, LAMBDA T J X A; XeA(l,J) END (XX, AX))
END
PR(

LIB MATRIX NOW READY FOR USE

)

Bamp - YT

oy

—
Ty

o

[l S - B)

hoA oo

S po S

vam Library

A => A3

LIB MEMOFNS (209

Program name. LIB MEMOFNS
Source. D.Michie, R. J. Popplestone, D. L., Marsh, DMIP; Date of
issue. December 1968.

fDescription. This is a revised version of the memo-function facilities
proposed by D, Michie (1967,1968) and implemented by R. J, Popplestone
(1967).

Purpose. To improve function evaluation time by the automatic
storage of previously computed results. For a more general discussion
see the above references.

Operation of a memo-function. Each memo-function has a rote
attached to it. This rote is composed of argument-result pairs which
have been derived from previous evaluations of the function. Before
each new argument is evaluated, the rote is searched to see whether
that argument has occurred in some previous evaluation, If it has, the
function result is then taken from the rote, otherwise the function is
evaluated and the new argument-result pair is inserted on the rote.

New pairs are inserted at the top of the rote, which is limited to a
certain size. When it exceeds that size, pairs are removed from the
bottom of the rote.

Whenever an argument-result pair is used, that pair is promoted one
place on the rote, This means that the more frequently used arguments
are nearer the top of the rote.

Recuvsive functions. A memoized recursive function distinguishes
between two types of function calls., Top-level calls are those whose
arguments are provided from outside the function body, and other calls
are those from within the body of the recursive function itself,

The rote is searched at every call of the function, but only the argument
and result from the top-level call of the function will be inserted in the
rote. This ensures that the distribution of argument values in the rote
will reflect the distribution of the main function arguments, and will

not be skewed by the sub-arguments resulting from recursion.

Economies, The hlemo-apparatus may be effectively applied to
functions under the following conditions:

(a) The average function evaluation time is greater than 100msecs for
recursive functions, or greater than 200msecs for non-recursive
functions.

(b) The function will be applied to not more than about 100 different
arguments,

(c) The function is used frequently enough to allow the rote to grow
to the maximum specified size.

With rotes containing about 80 per cent of the possible number of

" argument values, 10-fold speed-ups in evaluation time can result.

Very generally, it was found that, with a numerical function (log
factorial) where the arguments were distributed both uniformly and
normally, a rote size equal to the standard deviation of the argument
population produced a 3-fold speed-up with a recursive definition, and
a 1, 2-fold speed-up with an iterative definition. Larger speed-ups
were associated with larger rotes.

210) Part 4: Program Library
THow to use program. The program should be compiled by typing: -
COMPILE (LIBRARY ([LIB MEMOFNS]));

Creation of a memo-function. The function NEWMEMO is provided
for this:

NEWMEMO ¢ F,N, EQUIV => memo-function,

1. Arguments

F — The function to be memoized. This must be a function which
takes one argument and produces one result,
N — The maximum size to which the rote is allowed to grow.

EQUIV — The equality function to decide whether two arguments are
identical, for example, NONOP= for numbers, EQUAL for
lists.

2. Results

The result of the function NEWMEMO is a memo-function with a rote of
a specified size. This result must be assigned back to the variable
which contained the original function,

3. Example of the use of NEWMEMO

NEWME MO(PRIME, 20, NONOP =) — PRIME;

NEWMEMO(NUMSORT, 30, EQUAL) — NUMSORT;

where NUMSORT is a function to sort a list of numbers into ascending
order. :

Subsidiary functions

ISMEMO(F); Produces the result TRUE if the function ¥ is a memo-
function, otherwise FALSE.

UNME MO(F); Produces the original function from a memo-function

F. n.b. UNMEMO is destructive and once applied to
a memo-function, that memo-function should not be
used again,

DICTOF (F); Produces the rote of the memo-function F. The rote
is implemented as a strip. This may be printed using
the standard function DATALIST, or with PRDICTOF.

PRDICTOF(F); Prints the rote of the memo-function F. Each
argument-result pair is output on a new line,

Functions used in the implementation. The rote is implemented as a
POP-2 strip with the argument-result pairs as POP-2 Pairs.

When a memo-function is created, all the storage required by the rote
is claimed, Care must therefore be taken not to specify a rote size
greater than that actually required.

ASSOCVAL(X, ROTE, EQUIV, N); Finds the item associated with the
item "X" under the equivalence "EQUIV" in the rote "ROTE" of size
"N", '

ASSOCUD(Y, X, ROTE, N); Associates the items "X" and "Y" (argument
and result) on the rote "ROTE" of size "N".

NEWASSOCFN (N, EQUIV); Produces a rote of size "N" whose selector
function is ASSOCVAL and whose updater function is ASSOCUD.

DOMEMO(X, F, A); The general purpose memo-function which
NEWMEMO converts to a particular memo-function by partially apply-
ing the function "F" and a rote "A",

Storage requivements, The memo apparatus occupies approximately
9 sectors on the disc and 2 blocks of core store. Once the program is
in store the only overheads for each function memoized will be the
rote.

e

R

v oAn ek hed e G M b bdrem d o Y Mt - W b . Y .

ogram Library

by typing:

s provided

nction which

to grow.
iments are
JUAL for

1 with a rote of
e variable

nto ascending

on F is a memo-

nemo-function
ce applied to
hould not be

L . The rote
2 printed using
h PRDICTOF.
. Each

v line.

mented as a
irs.

d by the rote
L rote size

ed with the
TE" of size

"Y" (argument
hose selector
OCUD,

vhich
artially apply-

proximately
e program is
7ill be the

LIB MEMOFNS (211

YEvrovs. A memo-function should be redefined if a run time error

occurs. This is because the FNPROPS of the functions are used to
indicate whether a particular function call is at top level or not. Con-
sequently, when an error occurs during the evaluation of a recursive
function which has been memoized, this indicator will be left in the
wrong state, and subsequent results may not be left on the rote,

9Global variables used. NEWMEMO, UNME MO, ISMEMO, DICTOF,
PRDICTOF.

JExamples of the use of the progvam. Consider the function log-
factorial:

FUNCTION LOGFACT N;

IF N=1 THEN 0 ELSE LOG(N)+LOGFACT (N—1) CLOSE
END;

This may be memoized with a rote size of, say, 4:

NEWME MO(LOGFACT, 4, NONOP=) —> LOGFACT;

There is no change in the way it is called:

LOGFACT (5) =>

** 4,787,

This call will, however, have resulted in an entry in the rote:
PRDICTOF (LOGFACT);

[5. 4.787]

Further calls will extend the rote:

LOGFACT (3); LOGFACT(6) =>

** 1,792, 6, 579,

PRDICTOF (LOGFACT);
[6 . 6.579]
[5. 4.781]
[3. 1.792]

Evaluation of LOGFACT (4); will terminate when the argument 3 is
found on the rote, thus saving three function calls. The rote entry for
argument 3 will be promoted by one place:

PRDICTOF (LOGFACT);
4, 3,178]
6. 6.579]
[3. 1.792]
[5. 4.787]

The rote is now full size. Further entries will cause the bottom entry
to be lost:)
LOGFACT(7) =>
** 8,525,
PRDICTOF (LOGFACT);
[7. 8.525]
[6 . 6.579]
[4. 3.178]
[3. 1.792]
Obviously:
EMEMO(LOGFACT) =>
1,
Finally, to obtain the original log-factorial function:
UNMEMO(LOGFACT) — LOGFACT;

REFERENCES

Michie, D. (1967) Memo functions: a language facility with 'rote-
learning' properties. Research Memovandum MIP-R29 Edinburgh:
Department of Machine Intelligence and Perception.

212) Part 4: Program Library

Michie, D. (1968) Memo functions and Machine Learning., Nature, 218,
19-22,

Popplestone, R. J. (1967) Memo functions and the POP-2 language.
Research Memovandum MIP-R-30 Edinburgh: Department of
Machine Intelligence and Perception.

r

ram Libyary LIB MEMOFNS (213
'Q -
ture, 218, C{MEMOFNS]
FUNCTION ASSOCVAL X ROTE EQUIV N;
guage. VARS P PO U;
nent of - §UBSCR(N+1,ROTE)=>P; P=>PO;

L1: SUBSCR(P,ROTE)->U;
IF EQUIV(X,FRONT(U)) THEN BACK(U):
IF NOT(P=P0) THEN P-1=>P0;
IF P0=0 THEN N->P0; CLOSE:
SUBSCR(PO,ROTE),U, =>SUBSCR(PO,ROTE); ~>SUBSCR(P»ROTE);
CLOSE;
EXIT
P+1->P;
1F P>N THEN 1->P;CLOSE;
IF (P=P0) OR (FRONT(U)=UNDEF) THEN UNDEF EXIT
GOTO L1
END

FUNCTION ASSOCUD Y X ROTE N;

VARS P U;

SUBSCR(N+1,ROTE)=>P;

IF P=1 THEN N->P; ELSE P=-1->P; CLOSE;
X=>FRONT(SUBSCR(P,ROTE));

Y=> BACK(SUBSCR(P,ROTE));

P=> SUBSCR(N+1,ROTE);

END

FUNCTION NEWASSOCFN N EQUIV;

VARS U v N1

INIT(N+1)=>U; 1->SUBSCR(N+1,U);

1->N13

L1: IF N1=<N THEN UNDEF : tUNDEF->SUBSCR(N1,U); N1+1->N1; GOTO L1 CLOSE:
ASSOCVAL(% U,EQUIV,N X)->V;

ASSOCUD(X U,N %)~>UPDATER(V);

v

END

FUNCTION DOMEMO' X F Aj

VARS Y3

AL =>Y3

IF F.FNPROPS.TL.HD THEN IF Y = UNDEF THEN FALSE => F.FNPROPS.TL.HD;
X F=>Y5 Y=>A(X);
TRUE=>F .FNPROPS.TL.HD;
CLOSE;;
Y;
ELSE IF Y = UNDEF THEN F(X); ELSE Y
CLOSE;

CLOSE;

END

FUNCTION NEWMEMO F N EQuUlv:

VARS U v;
IF F.FNPROPS.ATOM THEN F.FNPROPS::NIL~>F,FNPROPS CLOSE;
{%X 1, TL(FNPROPS(F)) %] =>TL(FNPROPS(F));
NEWASSOCFN(N,EQUIV,) => U3
DOMEMO(X F, U, %) => Vi
UPDATER(U) => UPDATER(V)}

IF V,.FNPROPS.ATOM THEN V.FNPROPS::NIL ->V.FNPROPS CLOSE:;
U"MEMO"::TL(FNPROPS(V)) =>TL(FNPROPS(V))}
v

END

FUNCTION ISMEMO F;

IF F.FNPROPS.ATOM THEN FALSE EXIT

IF F_FNPROPS.TL.NULL THEN FALSE EXIT
F.FNPROPS.TL.HD = “"MEMO"

END

FUNCTION UNMEMO F: VARS MF;

IF F,ISMEMO THEN

FROZVAL(1,F)=>MF;
IF MF.FNPROPS.TL.NULL.NOT THEN TL(TL(FNPROPS(MF))) => TL(FNPROPS(MF))3}
CLOSE; MF

ELSE UNDEF
CLOSE:
END

214) Part 4: Program Library

FUNCTION DICTOF F;
IF F.ISMEMO THEN FROZVAL(1,FROZVAL(2,F)) ELSE UNDEF CLOSE;
END .

FUNCTION PRDICTOF F;

VARS P P1 N STRIP;

F.DICTOF->STRIP;

1.NL; IF STRIP=UNDEF THEN UNDEF.PR; EXIT
FROZVAL(3,FROZVAL(2,F))=>N;
SUBSCR(N+1,STRIP)->P; 1->P1;

L1: IF HD(SUBSCR(P,STRIP))=UNDEF THEN EXIT
PR(SUBSCR(P,STRIP)); 1.NL; P+1=>P; P1+1->P1;
If P1L > N THEN EXIT

IF P > N THEN 1->P; CLOSE:;

GOTO L1

END

2.NL; ‘MEMOFNS READY FOR USE',PR; 2.NL;

[T A

~ I T LI =k MNTH -

Joed bl L P TN A0 M AT O A e Bl LI e oA

(23]

1

vgram Library , LIB NEW STRUCTURES (215

Program name, LIB NEW STRUCTURES
Source. A.P.Ambler,R. M, Burstall, DMIP; Dale of issue.
February 1969.

fDescviption. This program provides a new kind of data structure
system more versatile than POP-2 arrays or records, although less
efficient. This system can also be used to provide simple 'memo-
functions' (see library program LIB MEMOFNS).

The facilities provided, are non-numerical arvays, function arvays,
pseudo-recovds, and function-components. They are each described
separately, although their implementations are very similar and are
trivial applications of association sets, defined by LIB ASSOC which is
used by this package,

INon-numerical arrays. A POP-2 array provides a means of storing
a fixed amount of information indexed by integers. It is sometimes
convenient to index by other items (for example, by names when
referring to people) and to have no restrictions on the ultimate size of
the array (so that,for example, more people can be added to the array).
The non-numerical arvays described here provide these facilities.

A non-numerical-array (n-n-array) is a function which is similar to a
POP-2 array in that it is a doublet which maps a subscript onto a
component, but dissimilar in that subscripts are not restricted to
integers, but can be items of any type. The array is of unlimited length,
but only one dimension. The function NEWNNARRAY produces a new
n-n-array with, as yet, no subscript-component 'pairs'. These 'pairs’
are added by using the n-n-array in the update sense. An attempt to
select from a subscript-component pair which does not yet exist
produces the failure result UNDEF,

NEWNNARRAY ¢ () => (SUBSCRIPT ==> COMPONENT or UNDEF)
The contents of an n-n-array may be printed using the function
PRNNARRAY

PRNNARRAY ¢ N-N-ARRAY => ()

Example 1
: COMPILE (LIBRARY ([LIB NEW STRUCTURES)));
: VARS DMIP; NEWNNARRAY() — DMIP; (creates a new, empty,

n-n-array)
"MICHIE " —> DMIP("CHAIRMAN"); {(adds items to the array.
MICHIE is indexed by
"CHAIRMAN™"),
: / FORREST HILL' —> DMIP("ADDRESS");
: DMIP("CHAIRMAN") => (selects item indexed by
"CHATRMAN™") »
**MIC HIE,
"GREGORY " —> DMIP("CHAIRMAN™"); (updates the item indexed
by "CHAIRMAN")
: DMIP("ROBOT") => (attempt to select an item
not yet in the array)
**UNDEF,
"FREDDY" — DMIP("ROBOT"); (adds a new item to the
array)
: PRNNARRAY (DMIP); (prints the contents of the
array)

CHAIRMAN GREGORY
ADDRESS /FORREST HILL!
ROBOT FREDDY

216) Part 4: Progvam Library

It is not always convenient to have the failure result UNDEF. For
example, an n-n-array might be used to store functions, and a function
might therefore be a more appropriate failure result, If the n-n-array
is defined using NEWNNFARRAY then a different result for the failure
case can be specified by the user, (NNF stands for non-numerical with
specified failure result.)

NEWNNFARRAY ¢ FAIL RESULT => (SUBSCRIPT ==> COMPONENT)
(OR FAILRESULT)

Example 2

: VARS POPLIB;

: NEWNNFARRAY (LAMBDA; 'NO SUCH PROGRAM'. PR; TERMIN;
END;) — POPLIB; (creates a

n-n-array with

function as the

failure result)
LIBRARY ([LIB POPEDIT]) —> POPLIB ("EDIT"); (the LIB POPEDIT

file, indexed by
"EDIT" is added)
: COMPILE (POPLIB("EDIT")); (The library file
(followed by the usual output); LIB POPEDIT is
. compiled)
: COMPILE (POPLIB("ABC")); (attempt to select
'NO SUCH PROGRAM* and compile an

item which is not
in the array. The
fail result is a
function and so
Error 37 is
avoided.)

YFunction-avrays. Michie, Popplestone, and March describe memo-
functions elsewhere. The data structures described now are a kind of
simplified memo-function, omitting the rote optimization and forgetting
facilities. They consist of a non-numerical array,together with a
function which computes the component value for any subscript not
occurring in the array. The newly-computed value is stored in the
array. Thus they generalize the previous concept of a non-numerical
array by producing a result which, in the failure case, depends on the
subscript, rather than being a fixed result, They are produced by the
function:

NEWFNARRAY ¢ (SUBSCRIPT => COMPONENT) => (SUBSCRIPT ==>

COMPONENT)
the function to be function-
incorporated in the function part array

Example 3

The use of function arrays as simple memo-functions.

: FUNCTION LOGFACT N;

: IF N=1 THEN 0 ELSE LOG(N)+LOGFACT (N—1); CLOSE;

: END;

: NEWFNARRAY (LOGFACT) —> LOGFACT; (converts LOGFACT
to a function array)

LOGFACT (5) => : (computes the result
and adds it to the
** 4 g7 array)
* ’
: PRNNARRAY(LOGFACT); (prints the contents

of the array)
5 4,787

L. iy) e S v md b e P s e b A A bl M b o sm b e FA s A% AR

e TO M -

‘ogram Library

DEF, For

and a function
the n-n-array
for the failure
numerical with

COMPONENT)
ESULT)

s TERMIN;
eates a
1-array with
ction as the
lure result)

e LIB POPEDIT
, indexed by
DIT" is added)
e library file

3 POPEDIT is
npiled)

lempt to select
d compile an
'm which is not
the array. The
1 result is a
1ction and so
ror 37 is
oided.)

ribe memo-
are a kind of
and forgetting
er with a
script not
red in the
n-numerical
pends on the
duced by the

BSCRIPT ==>

MPONENT)
function-
array

H

ts LOGFACT
nction array)
tes the result
ds it to the

i

the contents
array)

LIB NEW STRUCTURES (217

Example 4

The use of function arrays to construct data structures. (In this

example we have a class of students, A student is a data structure, and

we want to be able to update it without having to worry about whether

we have heard of the student before.)

: VARS CLASS;

. NEWFNARRAY(LAMBDA X; X::UNDEF; END;) —> CLASS;

: "GERMAN" —> BACK(CLASS("JOHN")); (CLASS is a function

: "FRENCH" — BACK(CLASS("BILL™)); array which constructs

: PRNNARRAY (CLASS); a new "student" when it
JOHN [JOHN . GERMAN] cannot find one of the
BILL [BILL . FRENCH] right name)

YPseudo-vecords. The standard POP-2 function RECORDFNS, when
applied to suitable arguments, produces, for a particular record class,
a constructor function, a destructor function, and a fixed number of
component-accessing doublets. Suitable records, which have a fixed
size, have to be created using the constructor function, and are accessed
using the doublets. There are situations, however, in which it is not
known in advance what, or even how many, components the records in a
class will have, The records may not all have the same components,
for example, all men do not have a wife. In this case the pseudo-records
described here may be used. There is a single doublet-generating
function (NEWCPT) and a single constructor function (NILPSREC). The
doublet-generating function, given the name of a component (that is, the
subscript), produces a doublet for accessing components of that name
from any pseudo-record. The constructor function creatés a pseudo-
record which has, as yet,no components. Components are added by
using the doublets described above in the update sense. An attempt to
select a component which does not exist produces the failure result
UNDEF. _

NEWCPT ¢ SUBSCRIPT => (PSEUDO—RECORD => COMPONENT or
UNDEF)
NILPSREC € () => PSEUDO-RECORD, with, as yet, no components,

A pseudo-record may be printed using PRPSREC

PRPSREC € PSEUDO-RECORD => ()

Example 5

The use of pseudo~records.

: VARS JIM JOHN NAME;

: NILPSREC() — JIM; NILSPREC() —> JOHN; (creates two pseudo-

records)

(creates a component-

accessing function)

"JIM" —> NAME (JIM); "JOHN" —> NAME (JOHN); ~ (a2dds name
components to JIM
and JOHN)

: NEWCPT ("NAME ") — NAME;

: JIM — FATHER(JOHN);

ERROR 38 (because the function
CULPRIT [FATHER. UNDEF] FATHER has not been
SETPOP: defined)

: NEWCPT("FATHER") —> FATHER;
: JIM — FATHER(JOHN);

(definition of FATHER.,
Contrast with a

: PRPSREC (JOHN); POP-2 record class
NAME JOHN where it would be
impossible to define
a new component,)
FATHER ASS,... (ASS... is the record

held in JIM)

218) Part 4: Program Library

Pseudo-records can be used to store a variety of component types. It
is not always convenient to have UNDEF as the fail result, If the
component-accessing doublet is defined using the function NEWCPTF,
then a different result for the failure case may be specified by the user.
NEWCPTF € SUBSCRIPT, FAIL RESULT => (PSEUDO-RECORD =>
COMPONENT or FAIL RESULT)

Example 6
(continuing example 5)
: VARS WEIGHT;
: NEWCPTF ("WEIGHT", 130)-> WEIGHT; (creates a component-
30 — WEIGHT (JOHN); accessing function
whose fail result is
130)
: WEIGHT (JOHN)+WEIGHT (JIM) => (WEIGHT fails to find a
** 160, component in JIM and
: PRPSREC (JOHN); 80 assumes the result
NAME JOHN is 130, If the result
FATHER ASS... had been UNDEF then

WEIGHT 30 there would have been
: an arithmetic error).

TFunction-components, Function-components provide for pseudo-
records a facility similar to that of function-arrays: They have two
parts—a 'look up' doublet and a function which computes the component
value for any subscript not occurring in the pseudo-record. The new
subscript-component pair so formed is added to the pseudo-record,
NEWCPTFN ¢ SUBSCRIPT, (SUBSCRIPT => COMPONENT)

=> (PSEUDO-RECORD ==> COMPONENT)

Example 7

(continuing examples 5 and 6)

: VARS FOOD;

: NEWCPTFN("FOOD", LAMBDA X; NL(l);

: PR(WHAT IS THE FOOD OF] <> [,NAME (X)%,]);

ITEMREAD(); (creates a function
END) —> FOOD; which asks for
"PORRIDGE" — FOOD (JOHN); information when it
cannot find a suitable
component)
: MAPLIST ([%JOHN, JIM%], FOOD) —> BREAKFAST; BREAKFAST =>
[WHAT IS THE FOOD OF JIM] (question asked by

system, which waits
for a reply)

: KIPPERS (reply typed by user)
** [PORRIDGE KIPPERS], (breakfast)

PRPSREC (JIM); (prints out the pseudo-
NAME JIM ' record JIM, Note
FOOD KIPPERS that the pair (food,

kippers) has been
added).

fMethod used, The data structures and functions described here are
implemented using ASSOCIATION SETS, (See accompanying description
of the library program LIB ASSOC.) When LIB NEW STRUCTURES is
compiled it automatically brings LIB ASSOC into store. A n-n-array is
a closure of the function ASSF and an association list. The function

NEWNNARRAY creates a n-n-array which has a '"NULL' association list,

Updating of such an array causes subscript-component 'pairs' to be

ogram Library

nent types. It
It. If the

n NEWCPTF,
ied by the user.
XECORD =>

5 a component-
ing function
fail result is

[T fails to find a

1ent in JIM and

imes the result
If the result

oan UNDETF then

vould have been

hmetic error).

1 pseudo-

oy have two
the component
rd. The new
ido-record,
T)

E (X)%]);
2s a function
‘asks for

nation when it

t find a suitable
onent)

EAKFAST =>
lon asked by

m, which waits
reply)

typed by user)
fast)

, out the pseudo-
d JIM. Note

he pair (food,
rs) has been

).

bed here are

ing description
UCTURES is

A n-n-array is
he function
association list.
airs' to be

LIB NEW STRUCTURES (219

added to the end of the association list. The association list of an
n-n-array may be obtained using CONTNNARRAY.

A pseudo-record is an association list. The function NILPSREC is the
same function as the operation ASSNIL. A component-accessing

doublet is a closure of a function with a subscript. Used in the update
sense it adds subscript-component 'pairs' to the end of a pseudo-record.

N-n-arrays and the component-accessing functions of pseudo records
are closely related. They are obtained from the same function, ASSF,
but in the first case it is partially applied to an association list, and in
the second case the arguments are rearranged, and it is partially
applied to a subscript.

In this program, association lists are implemented using POP-2
records of three components, data word ASS. An empty association list
requires four words of store, and each subscript-component pair
requires an additional four words.

YEvvors. An attempt to apply a function created by NEWCPT, etc, to an
item which is not a pseudo-record, gives ERROR 45, the culprit being
the item,

7Global variables used. In general all global variables used in LIB
DATA STRUCTURES are prefixed by the letters ASS. The exceptions
are;: NEWNNARRAY, NEWNNFARRAY, NEWFNARRAY, NEWCPT,
NEWCPTF, NEWCPTFN, NILPSREC, CONTNNARRAY, PRNNARRAY,
PRPSREC.

¥Stove used. The program occupies approximately 1 block of store.

REFERENCES

Library program LIB ASSOC

Library program LIB MEMOFNS

Ambler, A. P, & Burstall, R, M. (1969) Question-answering and syntax
analysis. Experimental Programming Reports: No 18, Edinburgh:
Department of Machine Intelligence and Perception, University of
Edinburgh.

Michie, D, (1967) Memo functions: a language feature with 'rote-learning'
properties. Research Memovandum MIP-R-29. Edinburgh:
Department of Machine Intelligence and Perception.

Popplestone, R. J. (1967) Memo functions and the POP-2 language.
Reseavch Memovandum MIP-R-30. Edinburgh: Department of
Machine Intelligence and Perception.

220) Part 4: Progvam Library

CNEW STRUCTUR)

VARS NEWNNARRAY NEWNNFARRAY NEWFNARRAY NEWCPT NEWCPTF
NEWCPTFN NILPSREC PRNNARRAY PRPSREC CONTNNARRAY POPLIBCUC;

CUCHAROUT=>POPLIBCUC; ERASE=->CUCHAROUT}
COMPILE(LIBRARY(LLIB ASS0C1));

POPLIBCUC->CUCHAROUT;

FUNCTION NEWNNFARRAY U; VARS ASS ASSFF;)
ASSNIL->ASS; ASSF(XASS,UX)=>ASSFF; ASSUF(XASSX)-DUPDATER(ASSFF);
ASSFF3;

END;

NEWNNF ARRAY (XUNDEF %) =>NEWNNARRAY 3

FUNCTION NEWCPTF ASSKEY U; VARS ASSFF;
ASSCF (%ASSKEY, U %)-> ASSFF;
ASSUCF (XASSKEYX)->UPDATER(ASSFF); ASSFF}
END3

NEWCPTF{XUNDEFX) ~> NEWCPT;

FUNCTION NEWFNARRAY ASSMF;
VARS ASS; ASSNIL=->ASS;
ASSMEMO (XASS,ASSMFX)->ASSFF; ASSUF (XASSX)=>UPDATER(ASSFF);
ASSFF;

END;

FUNCTION NEWCPTFN ASSKEY ASSMF; VARS ASSFF:
ASSMEMOC (%XASSMF , ASSKEY%)~>ASSFF 3
ASSUCF(XASSKEYX) => UPDATER(ASSFF); ASSFF3

END;

ASSNILCONS->NILPSREC;

FUNCTION PRNNARRAY NNARRAY; VARS ASS;
FROZVAL(1,NNARRAY)=>ASS;
ASSPR(ASS);

END;

ASSPR=>PRPSREC:;

FUNCTION CONTNNARRAY NNARRAY:;

FROZVAL(1,NNARRAY);
END3

‘L18 NEW STRUCTURES READY FOR USE‘.PR; 2.NL3}

