272) Part 4: Progvam Library

Program name. LIB RANDOM
Source. J.E.Doran, DMIP; Date of issue. December 1968,

fDescviption. The function RANDOM is a éimple but reliable pseudo-
random number generator. It produces a real number in the range
0 to 1.

fHow to use progvam. The program should be compiled by typing:
COMPILE (LIBRARY(JLIB RANDOM)));

The global variable RANSEED must now be initialized by the user to
an integer value in the range 0 to 16383. The user can change the
stream of random numbers from run to run by giving this variable
different initial values, or can reproduce the same stream by re-
initializing it to its starting value.

The function RANDOM takes no arguments and produces as its result
the random number.

If numbers in a different range are required, a simple function can be
written-to do this, for example, to produce random integers in the range
5 to 20, we could write the function:
FUNCTION RANDINT;

INTOF(RANDOM( )*15)+5
END;

fMethod used. Generation is by a congruential method with a full
period of 16384, and approximate correlation between successive
numbers of 0.008 + 0. 007.
The function is:
FUNCTION RANDOM;
(125*RANSEED+1)//16384; . ERASE; —> RANSEED;
RANSEED/16384
END;

9Global variables. RANSEED RANDOM.




gram Libvary

1968,

able pseudo-
the range

oy typing:

the user to
ange the
variable
by re-

s its result

ction can be
s in the range

th a full
essive

LIB RANDOM

(273

CRANDOM]

VARS RANSEED;FUNCTION RANDOM; )
(125#RANSEED+1)//16384; .ERASE; ->RANSEED;
RANSEED/16384;

END3

2.NL; ‘RANDOM READY FOR USE'.PR; 2.NL:




274) Payt 4: Program Library

Progvam name. LIB RANDPACK
Source. R.H.Owen (based on program obtained from Oxford Computing
Laboratory program library); Date of issue. June 1969

fDescription. Procedure to generate random numbers in several
standard distributions.

THow to use program. The program should be compiled by typing:

COMPILE(LIBRARY([LIB RANDPACK])));
The global variable RANSEED must now be initialized by the user to
an integer value in the range 0 to 16383.

The following functions are available to the user.
RANDREAL(w) gives a random real number in the range (0, w); -
RANDINTEGER(n) gives a random integer in the range (0,n-1);

RANDBOOLEAN(p) gives a truthvalue which is true with probability p.

RANDNORMAL(m, d) gives a random deviate with mean m and standard
deviation d;

RANDPOISSON(w) gives a random poisson integer variable with
mean w, which should not be large.

fMethod. The program uses the same random number generator as
LIB RANDOM.

RANDNORMAL uses the fact that

DV(—2.R).COS(m.R) + M

is normally distributed with mean m and standard deviation d, provided
R is uniformly distributed.

RANDPOISSON uses the fact that the n for which

1=n

5! 1 _R-exp(-w)
iz'li ~ “wexp(-w)

is a Poisson Variable -with mean w, if R is uniformly distributed.

fGlobals, RANSEED.. RANDOM, RANDREAL,
RANDINTEGER, RANDBOOLEAN,
RANDNORMAL, RANDPOISSON

¥Storve used. The program occupies approximately 0.5 blocks of store.

YExample
COMPILE(LIBRARY(|LIB RANDPACK)));
'LIB RANDPACK READY FOR USE'
: 123 —> RANSEED:,
: RANDREAL(25) =>
*%*19. 42,
: RANDINTEGER(100) =>
**42,
L *RANDBOOLEAN(O. 2) =>
1
: RANDNORMAL(0, 1) =>
**1.03

: RANDPOISSON(3) =>
**3




gram Libyary

ord Computing
)

several

)y typing:

the user to

range (0,w); -
(0, n-1);

h probability p.

1 and standard

able with

nerator as

n d, provided

ibuted.

ocks of store.

A@

LIB RANDPACK (275

CRANDPACK]

VARS RANDREAL RANDINTEGER RANDBOOLEAN RANDNORMAL
RANDPOISSON ;

[LIB RANDOM].LIBRARY.COMPILE:;

FUNCTION RANDREAL W;RANDOM()#W;END;

FUNCTION RANDINTEGER M; INTOF (RANDOM()#M);END;
FUNCTION RANDSOOLEAN P;RANDOM()<P;END;

FUNCTION RANDNORMAL M D:VARS QA @B:
SQRT(=~-2#LOG(RANDOM()))=>QA;
3.14159+RANDOM()~>QB;
QA=COS(QB)*D+M;

END3

FUNCTION RANDPOISSON W;VARS J Z:D;
EXP(=W)=>D;RANDOM()=D=>Z;0~>J;
L:IF Z<0 THEN J EXIT:
J*1=>J;D#H/J=>D;:Z=-D~>Z;
GOTO L3
END:

2.NL;‘LIB RAND PACK IS READY FOR USE‘.PR;2.NL:




276) Payt 4: Program Library

Program name, LIB SETS
Source. R.J.Popplestone, R, M. Burstall, DMIP; Date of issue.
December 1968.

fDescviption. This package contains a number of useful list process-
ing functions which are given below.

fHow to use progvam. The program should be compiled by typing:
COMPILE(LIBRARY(|LIB SETS)));
All the following functions will now be available for use.

(1) MEMBER(X, XLIST, XEQ);
If X is equal to any member of the list XLIST, under the equivalence
relation XEQ, then the function produces the result TRUE, otherwise
FALSE. For example,
Q/,IkEMBER(l, [1 2 3], NONOP =) =>

1

b4

(2) UNION(ALIST, BLIST, ABEQ);

This produces a list whose elements are also elements of either the
lists ALIST or BLIST, using the function ABEQ to test for equality of
elements. For example,

UNION([1 2 3], [2 7 9], NONOP=) =>

**12379],

(3) INTERSECTION(ALIST, BLIST, ABEQ);
Produces a list whose elements are members of both the list ALIST
and BLIST, again using the function ABEQ to test for equality. For
example,
&I;ITERSECTION([I 234],[227 1], NONOP=) =>

[1 2],

(4) SUBTRSET(ALIST, BLIST, ABEQ);

Produces a list of all those elements of ALIST which are not equal,
according to the function ABEQ, to any of those in BLIST. For example,
SUBTRSET([A B C], [C D E], NONOP =) =>

** [A B],

(5) SUBSET(SETLL, PLL);

Produces a list of all those elements of the list SETLL which satisfy
the predicate PLL. For example,

SUBSET([1 2 9 3 5], LAMBDA X; X<4 END) =>

**[1 2 3],

(6) EXISTS(SETLL, PLL):,
This function gives the value TRUE if at least one element of the list
SETLL satisfies the predicate PLL, otherwise the result is FALSE.
For example,
EE(ISTS([Z 9 3 14], LAMBDA X; BOOLOR(X=2, X=1) END) =>

1,

(7) LIT(XS,Y, F);

If XSisalist[l; 1,15... In],Y is an item 1,,and F is a function of two
arguments and one result, then in the above, the result is:
F(...F(FQ,,1),1,)...,1n) _

It should be noted that LIT associates to the right. There could be a
corresponding LIT function to associate to the left, but this is not
implemented in this package. If F is commutative, the two LIT functions
produce identical results when F is their common last argument. For
example,

LIT([12 3 4 5],0, NONOP+) =>

% 15,

L bd M TD =

A e = 2

.



vam Libvary

isSsue.

st process-

typing:

uivalence
otherwise

either the
equality of

ist ALIST
ity. For

ot equal,
For example,

ich satisfy

of the list
3 FALSE.

=>

inction of two

ould be a

| is not

LIT functions
ument. For

LIB SETS (277

that is, 0+1+2+3+4+5 = 15.
LIT(%NIL, UNION(% NONOP= %) %) —> SUMSET;
SUMSET([%[1 2], [4 7], {9 3]%] =>
112479 3], -
LIT([9 3 21 14 7 1 11 2],—100, LAMBDA X Y;
IF X>Y THEN X ELSE Y CLOSE

END) =>
* %k 21,
that is, the max of the given list.
(8) SUMSET(LISTLIST) (produced by 'partial application' of LIT as
shown above);

This is the function given in the above example. It takes as argument
a list of lists, and unions them. For example,

SUMSET([[A B] [C D] [E F] [GID =>-

*ABCDEFG],

9Global variables., SETFN SUMSET LIT MEMBER UNION INTER-
SECTION SUBTRSET SUBSET EXISTS.

gStove used. The program occupies approximately 1.5 blocks of store.




278) Part 4: Progvam Library

[SETS]

FUNCTION DELETE ITEMLL LISTLL EQUIVLL:

L0: IF LISTLL.NULL THEN NIL EXIT
IF . EQUIVLL(LISTLL.HD, ITEMLL) THEN LISTLL.TL-> LISTLL GOTO LO CLOSE:
LISTLL.HD::DELETECITEMLL,LISTLL.TL, EQUIVLL)

END

FUNCTION SURSET SETLL PLL:

LO: IF SETLL.NULL THEN NIL EXIT
IF SETLL.HD.PLL THEN SETLL.HD::SUBSET(SETLL.TL,PLL) EXIT
SETLL.TL => SETLL; GOTO LO

END

FUNCTION MEMBER ITEMLL LISTLL EQUIVLL:

LO: IF LISTLL.NULL THEN FALSE EXIT .
IF EQUIVLL(ITEMLL, LISTLL.HD) THEN TRUE EXIT
LISTLL.TL => LISTLL; GOTO LO

END

FUNCTION CONSSET ITEMLL SETLL EQUIVLL:;
IF MEMBER(ITEMLL,SETLL,EQUIVLL) THEN SETLL EXIT;
ITEMLL:sSETLL

END

FUNCTION EXISTS SETLL PLL3

L0: IF SETLL.NULL THEN FALSE EXIT;
IF SETLL.HD.PLL THEN TRUE EXIT;
SETLL.TL =-> SETLL; GOTO LO

END

FUNCTION LIT XS Y YFXY; VARS X;
LOOP: IF XS NULL THEN Y
ELSE XS.DEST=>XS->X 3
YFXY(Y,X)=>Y; GOTO LOOP;
CLOSE;
END3

FUNCTION SETFN XS1 XS2 EQUIVLL T1 T2; REV(XS1)->X51; VARS X XS3

IF T1 THEN XS2=->XS3:; ELSE NIL->XS3;CLOSE;
LOOP: IF XS1.NULL THEN XS3

ELSE XS1.DEST=>XS1->X;

IF MEMBER(X,XS2,EQUIVLL)=T2 THEN X::XS3->XS3 CLOSE:;
GOTO LOOP

CLOSE:

END;

VARS SUMSET,UNION, INTERSECTION,SUBTRSET;
SETFN(% TRUE,FALSE %)=>UNION; .
SETFN(% FALSE,TRUE X)=>INTERSECTION;
SETFN(% FALSE,FALSE %)->SUBTRSET;

LITCX NIL,UNION(XNONOP=%) X)=>SUMSET;

2.NL; ‘SETS READY FOR USE‘.PR; 2.NL;

o ) A ) e e e 2z ‘

— A M



am Library

0 LO CLOSE:

~jumps of ISWIM (Landin 1966), CPL (Strachey 1967), PAL (Evans 1968) |

NOTE ADDED IN PROOF

A LANGUAGE EXTENSION: GENERALIZED JUMPS
AND BACKTRACKING

After the main text of this book was completed it became apparent to
us, largely through work at Aberdeen (Elcock el al. 1971) and at MIT
(Hewitt 1969), that a facility for packtrack' programming would be
very useful. Using some jdeas of Leavenworth (1970) we have added to
the POP-2 language primitives for state saving to provide backtracking
and swapping between processes. These are related to the generalized

and GEDANKEN (Reynolds 1970). We define this extension by adding ]
a section to the Primer and one to the Reference Manual. We . wish to
thank Bruce Anderson, who used macros to implement and experiment
with backtracking in POP-2, and Ray Dunn who implemented the new
primitives on the 4130 POP-2 system over a weekend.

A PRIMER OF POP-2 PROGRAMMING, “w
SECTION 25. STATE SAVING AND !
BACKSCATTERING |

There are occasions when one wishes to jump to another point in the !
program in a different function application. 1t is possible using jump-
out to jump to the exit point of a function which has already been !
entered. But one may wish to jump back into a function applicationfrom |
which one has already exited. On jumping back we may wish to reset :
some but not all the variables to their previous values. Applications
include search algorithms which involve exploring a tree of decision
points by "backtracking', for example, syntax analyzers and a number
of artificial intelligence problems, also 'swapping' between apparently
simultaneous processes, as jin simulation programs, co-routines,-and
programs servicing more than one user.

Standard functions appstate and veinstale enable part of the current
state of the POP-2 system to be saved as a data structure and later
reinstated, that is, the computation returns to the point where the state
was saved, resetting some Or all of the local variables to their pre-
vious values. Global variables and components of data structures are
not reset. A function barvievapply is used to indicate which local
variables are to be saved and reset. It setsup a ‘barrier' separating
the computation between ijts entry and exit from that outside. The vari-
ables saved are the locals, formals and output locals of those functions
which have been entered inside this barrier. appstate must be given as
argument a function g. It constructs a state data structure and applies
g to it normally g will be used to store the state away for future rein-
statement. appstate exits normally but on reinstatement control returns
to the exit point of appstale. States cannot be reinstated outside the
parrier in which they were constructed.

Thus we may compare

appsiate lambda s; s—>s0 end);
x+1—>%; ' l: x+1—>x;

veinstate (s0); goto /;

The differences are that a state, unlike a label, may be made the value
of a variable, and that when s0 is reinstated the variable x will (if suit-
ably declared) be reset to its previous value instead of being incremen-

ted.
279




280) Note added in proof

Here is an example, a program which given y tries to find z such that
22=y3 by setting z successively to the numbers greater than y.

vars a s;0—>qa;
function greaterihan x;
appstate(lambda state; state—>s end);
comment veinstate(s) jumps back in to heve;
atl—sa;1.nl;" a =" .pv;a.pr;
x+a
end;
function g y=>z;
greatevthan(y)—>z;
Ty = prsy. prs’ 2 =L priz.pr;
yFYFy >y z¥z >z
if z=y then’solved" . pv else veinstale(s) close
end;
barrievapply(4,g8,1);

a=1y=4z=25
a=2y=4z2=6
a:3y:4z=7
a=4y =4z =8 solved

BACKTRACK PROGRAMMING

To illustrate the use of the state saving mechanism we give function
and macro definitions to provide 'backtrack' or 'non-deterministic'
programming (Floyd 1967), usable without knowledge of the appsiate
and reinstate functions. We define an operation fail and macros either,
orelse, orlast, ndbegin and ndend to provide two new statements:

(non-deterministic statement)::= ndbegin (function body)ndend _

(either statement):: = either (imperative sequence) {ovelse clause* ?)
(ovlast clause) close

{orelse clause)::= orelse (imperative sequence)

(ovlast clause)::= orlast (imperative sequence}

After entering a non-deterministic statement one can evaluate 'either
statements' which cause the computation to branch, notionally into
parallel branches although in fact the branches are executed in suc-
cession from left to right. Each branch consists of executing one of
the imperative sequences and then passing on to the next statement.
When fail is applied the branch terminates. When all branches of an
either statement have terminated it acts as a fail and control goes
back to the previous either statement, giving an error if there is none.
After ndend control cannot pass back to an either statement evaluated
during the evaluation of the non-deterministic statement. A macro
crossvar declares a 'cross-talk' operation variable which is not reset
on failing. The mechanism is that either constructs a state, adding it
to a 'trail' and fail reinstates the last state of the trail. More sophisti-
cated search strategies such as 'graph traversing' can be added using
extra functions.

macro 'crossvay;vars. x; . itemvead—> x;
macvesults([vars opevation 1]<>(x::[;
cont(%consvef("[)<>(x::[": :undef) %)—>nonop])<>(x::mnil))

end;
crossvar birail; vars swbak eithevf operation 2 (dectestsw fail);
function eitherfl appstat; crossvar esw; 0—>esw;

g appstat(lambda s; s::btrail—>birail end); 1+ esw—>esw; esw
end;




rdded in proof

2z such that
han y.

ve function
rministic’

e appstate
acros either,
ments:

dend _
2 clause™* ?)

luate 'either
1ally into
ted in suc-
ting one of
statement.
nches of an
trol goes
there is none.
nt evaluated
A macro
h is not reset
te, adding it
Vlore sophisti-
> added using

J)<>(x::mil))
v fail);

€S, eSw

Note added in proof (281

function dectestsw; swbak—I—>swbak; swbak= 0 end;
macro either; macvesults([. eithevf—>swbak; if dectestsw then])
end;
macro ovelse; macvesulis(felseif dectestsw then])
end;
macro ovlast;
macvesults([elseif dectestsw then birail. ll—>bivail; ])
end;
function fail; bivail. hd. reinstate end;
macro ndbegin;
macvesults([barrievapply(lambda; vars eitherfs
crossvay btvail ; eithevfl (Y.appstate/)—> eithevf; nil—>bivail; ])
end;
macro ndend; macvesults(fend. 0); ]) end;

For example the following program builds two towers from a set of
bricks. The function twotowers takes the heights of the towers and a
list of the heights of the bricks. Thus fwotowers (3,5,[1 11 2 2 4])
prints [2 1] and [ 4 1], having tried to build the first tower as [I 1 1]
and backtracked on finding that it then fails in all attempts to build
the second tower.

function ymember xl;vars x; comment gives some member of xl;
loop: if xl.null then fail close; '
xl. dest—>xl—x;
either x orlast goto loop close
end;
function delete y xl;vars x; comment copies xl missing out y;
xl. dest—>xl—>x;
if x=y then x! else x::delete(y, x1) close
end;
function fower h =>t;vars b;nil—>t;
loop: if k=0 then exit;
rmembev(free)—>b; if b>h then fail close;
h-b—>h; b::1—>t; delete(b, free)—>free; goto loop
end;
function fwotowers hl h2 bvicks;
ndbegin vars {1 {2 free; bricks—>free;
either tower(hi)—>t1; towev(h2)—>12; t1=> {2=>
orlast "noluck"=> close
ndend
end;

POP-2 REFERENCE MANUAL. SECTION
5,7.. SAVED STATES AND
REINSTATEMENT

There is a standard function barviervapply
barrievapply € item, ..., item, function, integey =>ilem, ... ,ilem

Suppose that fis a function of n arguments and m results such that
f(x1,. .. %) =91, ...,ym. Thenbarvievapply applies f to its arguments,
taking the number of arguments as an additional parameter, thus
barvievapply (Xis.. %, frW) =Y1,-..,Vm

We call an application of barvievapply a Barriev and other functions,
including the parameter function f, which are applied between this
entry to barvievapply and the corresponding exit are said to be applied
inside this barrier. Any attempt to take items off the stack in excess
of ¥4, ..., xy during the application of barrierapply causes an error.

9 |



282) Note added in proof ;

4
There is a standard data structure called a saved state. Its dataword B11]
ig "sqvedstate” and it has no censtructor, destructor or select/update
functions. DOC
The function barrievapply has a standard local variable appstate whose the 1
value is a function, a different function for each barrier. This function '
constructs a saved state whenever it is applied and applies a given argu- 1 '
ment function to it. o the ¢
appstate € (saved state=>()=>()
A saved state constructed by the appsiale function of a barrier is said the
to belong to that barrier. The application of an appstate function is
only allowed jnside its barrier. At

A variable is said to belong to a saved state if it is a local, formal or

output Yocal of the application of a function, which has been entered .

but not exited when the state is constructed, and this application is the
inside the barrier to which the state belongs.

There is a standard function reinstate
. the
veinstate € saved state =>()

When reinstale is applied to a saved state the computation proceeds
again from immediately after the exit of the application of the appstate

function which constructed the state. The value of each variable the

belonging to the state is reset to the value which it had when the state

was constructed, in spite of any assignments which may have inter-

vened. The values of other variables and the components of data the

structures are not reset. Any functions which were active, that is

entered but not exited from, when the state was constructed become

active once again. yeinstate may only be applied to a state inside the

parrier to which the state belongs. Rl
B
B
E
E

T



ed in proof

dataword
ct/update

tate whose
is function

\ given argu-~

er is said
>tion is

‘'ormal or
entered .
tion is

roceeds
e appsiate
able

1 the state
e inter-
data

hat is
become
nside the

BIBLIOGRAPHY

DOCUMENTATION

the language: POP-2 Papers, R. M. Burstall, J. S, Collins & R. J.
Popplestone. Edinburgh: Edinburgh University Press 1968 (made
obsolete by this book).

the compilers: 'POP-2 in POP-2',J.G.P. Barnes and R. J. Popplestone.
Property of the University of Edmburgh Round Table, Department
of Machine Intelligence and Perception, 1968,

the POP-2/4100 implementation: '"POP-2/4100 Users' Manual', R.D.Dunn.

Edinburgh: Department of Machine Intelligence and Perception, 1970.

'A plain man's guide to Multi-POP implementation’, D.J.S. Pullin,
Mini-MAC Report No, 2. Edinburgh: Department of Machine
Intelligence and Perception, 1967.

the Uni-POP/1900 implementation: 'A Supplementary Manual for the
Lancaster POP-2 System', John Scott. University of Lancaster,
1968.

the Uni-POP/System 4 implementation: 'System 4 POP-2 compiler-
internal conventions', J. G. P. Barnes. Research memovandum
MIP-R-41. Edinburgh: Department of Machine Intelligence and
Perception, 1968.

the Basic POP/903 implementation: 'The Basic POP/903', Horace
Townsend. Regional Clinical Neurophysiology Service, Western
General Hospital, Edinburgh 1968.

the Uni-POP/System 4 implementalion: 'System 4 POP-2 Users
Guide' and 'System 4 Regime J Batch Environment', J.G. P. Barnes.
Edinburgh: Department of Machine Intelligence & Perception 1968.

REFERENCES

Barron, D. W., Buxton, J. N., Hartley, D. F., Nixon, F., & Strachey,

C.S., (1963) The main features of CPL. Comput.J.,6,134-43.

Burstall, R. M. & Popplestone, R. J. (1968) POP-2 reference manual.
Machine Intelligence 2,pp. 207-46 (eds. E. Dale & D. Michie).
Edinburgh: Edinburgh University Press.

Elcock, E. W., Foster, J. M., Gray, P. M. D., McGregor, J. J., & Murray,
A. M. (1971) ABSET. A programming language based on sets;
motivation and examples. Machine Intelligence 6,pp. 467-90 (eds.
B. Meltzer & D. Michie). Edinburgh: Edinburgh University Press.

Evans, A. (1968) PAL—A language designed for teaching programming
linguistics. Proc.Ass. comput. Mach. 23vd Nat. Conf.1968,pp. 395-
403, Brandon Systems Press, Princeton, N.J.

Floyd, R. W. (1967) Non—deterministic algorithms. J.Ass. comput. Mach.,
14, 636-44.

Hewitt, C. (1969) PLANNER: a language for proving theorems in robots.
Proc.Joint Int. Conf. on Avtificial Intelligence, Washington,D.C.
pp. 295-301,

Landin, P. J. (1964) The mechanical evaluation of expressions. Comput.
dJ.,6,308-20.

Landin, P.J. (1965) The correspondence between ALGOL 60 and
Church's lambda notation. Comm. Ass. comput. Mach.,8,89-101,
158-165.

Landin, P.J. (1966) The next 700 programming languages. Comm.ASS.
comput. Mach.,9, 157-66.

Leavenworth, B. M. (1970) Definition of quasi-parallel control processes
in a high level language. Proc.Int. Computing Symposium, Bonn,
Assoc. Comput. Mach.,pp. 442-T1,

283




284)

McCarthy, J. (1960) Recursive functions of symbolic expressions.
Comm. Ass. comput. Mach., 3, 184-95.

McCarthy, J., Abrahams, P.W., Edwards, D. d., Hart, T. P., & Levin, M. 1.
(1962) LISP 1.5 Programming Manual. Cambridge, Mass.: MIT
Press.

Marks, S. L. (1967) The JOSS User's Reference Manual. Memovandum
RM-5219-PR. Rand Corporation, Santa Monica.

Mooers, C. M. (1966) TRAC,a procedure describing language for the
reactive typewriter. Comm.Ass. comput. Mach.,9, 215-24.

Popplestone, R. J. (1968) POP-1: an on-line language. Machine Intelli-
gence 2,pp. 185-94 (eds.E.Dale & D. Michie). Edinburgh: Edinburgh
University Press.

Popplestone, R. J. (1968a) The design philosophy of POP-2. Machine
Intelligence 3,Pp. 393-402 (ed.D. Michie). Edinburgh: Edinburgh
University Press.

Reynolds, J.C. (197 0) GEDANKEN—A simple typeless language based
on the principle of completeness and the reference concept. Comm.
Ass. comput. Mach., 13, 308-19.

Shaw, J. C. (1964) Joss: 2 designer's view of an experimental on-line
computing system. AFIPS Confevence Proceedings (FICC 1964),
26, 455-64.

Strachey, C. (1967) Ed. CPL reference manual. Privately circulated.
Programming Research Unit, Oxford University.

Sussman, G. J. & Winograd, T. (1970) Micro-planner reference manual.
A.I. Mewmo, No.203, Project MAG, MIT, Cambridge, Mass,

Wirth, N, & Hoare, C.A.R. (1966) A contribution to the development
of Algol. Comm.Ass. comput. Mach., 9, 413-32.

g

~

*+ PN LRl

o AV VLN

et m. ks v A RS AY AT A e ™ A



sions.

Levin, M. 1.
5s.: MIT

> movandum

e for the
-24.

vine Intelli-
rh: Edinburgh

Machine
idinburgh

age based
cept. Comm.

al on-line
[CC 1964),

jrculated.
nce manual.

5S.
opment

20 10

<>: 10

[% %] 14

(% %): 18

actual parameters: 5

.and: 6

array: 17
assignment: 3
association list: 10
back: 15

bit manipulation: 24
body: 5

booland: 24
boolean functions: 24
boolor: 24

cancel: 21
character strip: 18
chavin: 20
charout: 20

close: 6

closure: 18

‘compound operator: 24

condition: 6
conditional: 6
conditional expression: 6
conditional statement: 6
cons: 10
conspaiv: 15
consvef: 18
consumer: 20
cont: 18

cos: 2
cucharout: 20
datalength: 24
datalist: 24
dataword: 15
declaration: 3
dest: 12
destpair: 15
destword: 9
device: 20
dynamic list: 14
doublets: 14

else: 6

elseif: 6.

evase: 4

exit: 7

exp: 2

false: 6
fnprops: 24
funtolist: 14
forall: 7

formal parameters:
freezing in: 18
Jront: 15
frozval: 18
function definition: 5
global variable: 5
goon: 22

goto: 7

hd: 10
identifier: 3
identprops: 24
imperative: 3
incharitem: 20
init: 18

initc: 18

input: 20
integers: 2
islist: 14
itemvead. 14,20
iterative: 12

jumpout: 23
label: 7
lambda: 11
list: 10

list brackets: 14
local variables: 5
log: 2

logand: 24
lognot: 24
logor: 24
loopif: 7
macvesults: 22
macro: 22
maplist: 10
meaning: 24
newarray: 17
nil: 10

nl: 8,20
non-local: 18
not: 6

null; 10
operations: 13
or: 6

output: 20
output local: 5
pair: 14

285

5




286)

Index to the Primevr

partial application: 18
popmess: 20

popval: 22

pr: 8,20

precedence: 2,13
print: 20

printing: 8

proglist: 20

prreal: 8,20

prsiring: 20
reals: 2
record: 15

recovdfns: 15
recursive: 12
reference: 18
repeater: 20
return: 7

section: 21

selector: 14

setpop: 4
sin: 2
sp: 8,20

sqrvt: 2
stack: 4
stacklength: 4
statement: 3
static list: 14
string: 18
strip: 18
stripfns: 18
subscr: 18
subscrc: 18
syntax word: 3
tan: 2
termin: 20
then: 6

t: 10

true: 6
truthvalue: 6
undef: 10
updater: 14
variables: 3
vars: 3
words: 9

In

TE

act
apy
ar
ass
ato
bit:
boc
che
che
che
che



the Primev

INDEXES to the reference manual

TECHNICAL TERMS

actual parameters: 4,2
applied: 4.2

array: 8.5

assignment: 5.5

atom: 8.2

bit-string: 2.2

body: 4.1

character groups: 9.1
character strips: 8.4
characteristic functions: 7.1
characters: 8.6

closed: 9.1

closure function: 4.4
component size: 7.3
components: 7.1
compounds: 2,1
compound expression: 5.1
condition: 6,1
conjunction: 6, 2
consequent: 6.1

constant: 5.1
constructor: 7.1
consumer: 9,2

copied at the top level: 7.1
currently associated: 3.1, 3.2
current input file: 9.1
current output file: 9,2
data structure: 7.1
declaration: 3.2

derived structures: 7.1
destination expression: 5.5
destination sequence: 5.5
destructor: 7.1

device: 9.1

dimensions: 8.5
disjunction: 6.2

doublet: 4.5

entry: 4,2

equivalent: 7.1

exit: 4.2

expression: 5.1

extent: 3.2

external identifier: 3.4
false: 2.4

files: 9.1

formal: 3.2

formal parameters: 4.1
frozen formals: 4.4
frozen values: 4.4

full item: 7.2

full strips: 8.4

function: 4.4

garbage collection: 7.4

general selector: 7.1
general update routine: 7.1
global: 3.2

global declaration: 3.2
goto statement: 5,4
hole in the extent: 3.2
identifier: 3.1
imperative expression: 5,3
imperative sequence: 5,3
initialisation: 3.2
internal identifier: 3.4
items: 2.1

label: 5.4

lambda expression: 4.1
link: 8.3

list: 8.3

local: 3.2

local declaration: 3,2
macro; 11,2

meaning: 8.6

n-tuple: 4.2

nonlocal: 4.3

null list: 8.3

number: 4.6

opened: 9.1

operands: 5.1
operation: 3.2
operator: 5.1

output locals: 4.1
output local variable: 4.2
pairs: 8.2

partial application: 4.4
precedence: 5.2
program device: 9.1
program file: 9.1
property of an identifier; 3.1
protected: 3.2

record: 7.2

record class: 7.2
references: 8.1
repeater: 8,3

results: 4, 2

results device: 9.2
results file; 9.2
routine: 4.1

running: 4.2

scope: 3.2

section: 3.4

selector: 7.1

share: 7.1

simple: 2.1

simple expression: 5.1
size: 7.2

287




286)

partial application: 18
popmess: 20
popval: 22

pr: 8,20
precedence: 2,13
print: 20
printing: 8
proglist: 20
prrveal: 8,20
prstring: 20
reals: 2

record: 15
vecovdfns: 15
recursive: 12
reference: 18
repeater: 20
return: 7
section: 21
selector: 14

setpop: 4
sin: 2
sp: 8,20

Index to the Primey

sqvl: 2
stack: 4
stacklength: 4
statement: 3
static list: 14
string: 18
strip: 18
stripfns: 18
subscr: 18
subscrc: 18
syntax word: 3
tan: 2
termin: 20
then: 6

t1: 10

true: 6
truthvalue: 6
undef; 10
updater: 14
variables: 3
vars: 3
words: 9

e s e



he Primer

INDEXES to the reference manual

TECHNICAL TERMS

actual parameters: 4,2
applied: 4.2

array: 8.5

assignment: 5.5

atom: 8.2

bit-string: 2.2

body: 4.1

character groups: 9.1
character strips: 8.4
characteristic functions: 7.1
characters: 8.6

closed: 9.1

closure function: 4.4
component size: 7.3
components: 7.1
compounds: 2,1
compound expression: 5.1
condition: 6,1
conjunction: 6, 2
consequent: 6.1
constant; 5.1
constructor: 7.1
consumer: 9,2

copied at the top level: 7,1
currently associated: 3.1,3.2
current input file: 9.1
current output file: 9,2
data structure: 7.1
declaration: 3.2

derived structures: 7.1
destination expression: 5.5
destination sequence: 5.5
destructor: 7.1

device: 9.1

dimensions: 8.5
disjunction: 6.2

doublet: 4.5

entry: 4.2

equivalent: 7.1

exit: 4.2

expression: 5.1

extent: 3.2

external identifier: 3.4
false: 2.4

files: 9.1

formal: 3.2

formal parameters: 4.1
frozen formals: 4.4
frozen values: 4.4

full item: 7.2

full strips: 8.4

function: 4.4

garbage collection: 7.4

general selector: 7.1
general update routine: 7.1
global: 3.2

global declaration: 3.2
goto statement: 5.4
hole in the extent: 3.2
identifier: 3.1
imperative expression: 5,3
imperative sequence: 5.3
initialisation: 3.2
internal identifier: 3.4
items: 2.1

label: 5.4

lambda expression: 4.1
link: 8.3

list: 8.3

local: 3.2

local declaration: 3.2
macro; 11,2

meaning: 8,6

n-tuple: 4.2

nonlocal: 4.3

null list: 8.3

number: 4.6

opened: 9.1

operands: 5.1
operation: 3.2
operator: 5.1

output locals: 4.1
output local variable: 4.2
pairs: 8.2

partial application: 4.4
precedence: 5.2
program device: 9.1
program file: 9.1
property of an identifier: 3.1
protected: 3.2

record: 7.2

record class: 7.2
references: 8.1
repeater: 8.3

results: 4,2

results device: 9,2
results file: 9,2
routine: 4.1

running: 4.2

scope: 3,2

section: 3.4

selector: 7.1

share: 7.1

simple: 2.1

simple expression: 5.1
size: 7.2

287




288)

source: 5.5

gource items: 5.5
specification of a record: 7.2
stack: 4.2,5.3

standard function: 3. 2
standard input device: 9.1
standard input file: 9. 1
gtandard output device: 9.2
standard output file: 9.2
standard variable: 3.2
standardized: 8.6

strip: 7.3

strip class: 7.3

string: 8.4

structure constant: 5.1
subscripts: 8.5
terminator; 2.6

text item: 9.1

top of the stack: 4,2,5.3
true: 2.4

truthvalues: 2.4

unique name: 3.2

update routine: 4. 57.1
value: 3.1

variable: 3.1

variadic: 4.2

variresult: 4.2

words: 8.6

SYNTAX DE FINITIONS

alphanumeric: 3.1
assignment: 5.5

binary digit: 2.2

binary integer: 2. 2
bracket: 1.4

bracket decorator: 1.4
cancellation: 3.3

character group: 9.1
closed expression: 5. 1
code instruction: 10
comment: 5.6

compound expression: 5. 1
condition: 6.2

conditional expression: 6.1
constant: 5.1

decimal integer: 2.2
declaration: 3.2
declaration list element: 3.2
decorated bracket: 8.6
destination: 5.5
destination expression: 5.5
digit: 1.4

dot operator: 5. 1

else clause: 6.1

elseif clause: 6.1
exponent: 2.3

expression: 5.1

Indexes to the vefevence manual

expression sequence: 5.1
external list: 3.4
formal parameter list: 4,1
function body: 4.1
function definition: 4. 1
goto statement: 5.4
identifier: 3.1
imperative: 5.3
imperative expression: 5.3
imperative sequence: 5.3
integer: 2.2

label: 5.4

labelled statement: 5.4
lambda: 4.1

lambda expression: 4,1
letter: 1.4

list constant: 8.3

list constant element: 8.3
list expression: 8. 3
non-operation identifier: 5.1
octal digit: 2.2

octal integer: 2.2
operation: 3. 1

operation list: 3.2
ordinary or loop if: 6. 1
output local list: 4,1
parentheses: 5.1
parenthesized expression: 5. 1
partial application: 4. 4
period: 1.4

precedence: 3.2

program: 11.1

program element: 11.1
property: 3.2

property specification: 3.2
quote: 1.4

quoted word: 8.6

real: 2.3

gection: 3.4

section name: 3.4
geparator: 1.4

sign: 1.4

simple expression: 5.1

statement: 5.3

string constant: 8.4

string constant element: 8.4

string quote: 1.4

structure constant: 5.1

gtructure expression: 5.1

sub ten: 1.4

unguoted word: 8.6

STANDARD FUNCTIONS

AND VARIABLES

<: 4.6
>; 4.6
=<: 4.6

g

LEy

> 20 %
s .\." ..

U S S T N I I~ VIR S TR = Y



wce manual

.1

4.1

3. 3

on: 5.1

3.2

TIONS

Indexes to the refevence manual (289

LN SO B

...> LR |

w\_p—a‘maamaml‘h
=3 (2]
Jud

<>: 8.3

atom: 8.2
back: 8.2
booland: 2.4
boolor: 2.4
boundslist: 8.5
charin: 9.1
chavout: 9,2
charword: 8.6
compile: 9,1
cons: 8.3
conspaiv: 8.2
consvef: 8.1
conswovrd: 8.6
cont: 8.1
copy: T.2
cuchavin: 9.1
cuchavout. 9,2
datalength: 7.2
datalist: 7.2

datawovd:. 7.1,7.2

dest: 8.3
destpair: 8.2
destref: 8.1
destword: 8.6
ervase: 4,1
evvfun: 9,2
false: 2.4
fnpart: 8.7
fnprops: 8.7
Jfntolist: 8.3
forall: 6.1
fromt: 8.2
frozval: 8.7

" genout: 9.2

hd:. 8.3
identfn: 4.1
identprops: 3.2
inchavitem: 9,1
init: 8.4

initc: 8.4
intof: 4.6
iscompnd: 2,1
isfunc: 8.7
isinteger: 2.1
islink: 8.3
islist: 8.3
isveal: 2.1
iswovd: 8.6

itemread: 9.1
jumpout: 5, 4
logand: 2.2
lognot: 2.2
logor: 2.2
logshift: 2.2
macvesults: 11,2
maplist; 8.3
meaning: 8.6
newanyarvay: 8.5
newarvay: 8.5
nextchar: 9.1
nil: 8.3

nl: 9,2

not: 2.4

null: 8.3
partapply: 4.4
popmess: 9.1
popval: 113
pr: 9.2
print: 9,2
prreal: 9,2
proglist: 9.1
prstving: 9.2
realof: 4.6
recordfns: 1.2
samedata: 1.1
setpop: 11.3
sign: 4.6

sp: 9.2
stacklength: 4.2
stripfns: 7.3
subscr: 8.4
subscrc: 8.4

8.3

true: 2.4
undef: 2.5
updater: 8.7

OPTIONAL FUNCTIONS

These are defined in Appendix 2,
appdata
applist
apply
arcian
carvyon
copylist
corveused
cos
equal
exp
JSfncomp
length
librvary
listvead

log




290) Indexes to the reference manual

numbervead => 4.1,9.2
poptime $: 10
prbin ' and: 6.2
proct cancel: 3.3
rev close: 6.1
sin else: 6.1
sqrt elseif: 6.1
tan end: 4.1
valof endsection: 3.4
exit: 5.4
function: 3.2
SYNTAX WORDS goon: 11.3
(: 5.1,3.2 goto: o+
): 5.1,3.2 lambda: 4.1
,,(/": 4.4 loopif: 6.1
/‘j):5 41'4 macro: 11.2
51 nonmac: 11,2
5 3 nonop: 5.1
A operation: 3.2
[ 8.3 or: 6.2
];_8533 return: 5.4
o[°' : section: 3.4
w: 8.3 switch: 5.4
o then: 6.1
—>: 5.5

vars: 3.2




